Exercise Sheet 2

Issue date: 30 October 2002 **Hand in by** 12 November 2002

Exercise class: 14 November 2002

Exercise 2.1: Show that every tree is bipartite.

Exercise 2.2: For which $m, n \in \mathbb{N}_{>0}$ the complete bipartite graph $K_{m,n}$ is a tree?

Exercise 2.3: Let G be a simple connected graph with d(v) = 2 for all vertices v of G. Is G always a cycle?

Exercise 2.4: Let G be a simple graph. Prove the following equivalence:

G is a tree $\Leftrightarrow G$ contains no cycle and has exactly one spanning tree

Exercise 2.5: Let G be a network, i.e. a graph where each edge e is associated with a real-valued cost c_e .

- a) Give an example of a network that has two different minimum spanning trees.
- b) Suppose now that the cost values of the edges are distinct, i.e. $e_1 \neq e_2 \Rightarrow c_{e_1} \neq c_{e_2}$. Show that then G has only one minimum spanning tree.