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Clustering

� basic notions: cluster, clustering, feasible clustering, criterion function,
dissimilarities, clustering as an optimization problem

� different (nonstandard) problems: assignment of students to classes,
regionalization; general criterion function; multicriteria problems.

� complexity results about the clustering problem – NP-hardness theorems
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Basic notions
Let us start with the formal setting of the clustering problem. We shall use the
following notation:

� – unit

� – description of unit �

� – space of units

� – finite set of units, � � �

� – cluster, � � � � �

	 – clustering, 	 
 � � � 


� – set of feasible clusterings

� – criterion function,

� � � � IR� �
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Clustering problem
With these notions we can express the clustering problem � � � � � as follows:

Determine the clustering 	�� � � for which

� � 	� � 
 �� �� �� � � 	 �

Since the set of units � is finite, the set of feasible clusterings is also finite. Therefore
the set  � � � � � � � of all solutions of the problem (optimal clusterings) is not empty.
(In theory) the set  � � � � � � � can be determined by the complete search.

We shall denote the value of criterion function for an optimal clustering by � � � � � � � � .
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Units
real or imaginary objects of analysis

WORLD UNITS DESCRIPTIONS
� � 
 ! � � ! � " � #

formalization operationalization

� produced cars T 
 car T " seats=4, max-speed= . . . #

Usually an unit � is represented by a vector/description � $ " � # 
 "&% ' � % ( �*) ) ) � % + #

from the set " � # of all possible descriptions. % � 
 , � � � � is the value of the - -th of
selected properties or variables on � . Variables can be measured in different scales:
nominal, ordinal, interval, rational, absolute (Roberts, 1976).

There exist other kinds of descriptions of units: symbolic object (Bock, Diday, 2000),
list of keywords from a text, chemical formula, vertex in a given graph, digital picture,
. . .
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Clusterings
Generally the clusters of clustering 	 
 � � ' � � ( �) ) ) � � . 
 need not to be pairwise
disjoint; yet, the clustering theory and practice mainly deal with clusterings which are
the partitions of �

.
�/ '

� � 
 �

- 0
 132 � �54 � 6 
 �

Each partition determines an equivalence relation in � , and vice versa.

We shall denote the set of all partitions of � into 7 classes (clusters) by � . � � � .
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Simple criterion functions
Joining the individual units into a cluster � we make a certain ”error”, we create
certain ”tension” among them – we denote this quantity by 8 � � � . The criterion
function � � 	 � combines these ”partial/local errors” into a ”global error”.

Usually it takes the form:

S. � � 	 � 

9 � � 8 � � �

or
M. � � 	 � 
 � :;9 � � 8 � � �

which can be unified and generalized in the following way:

Let � IR �=< �3> �? � be an ordered abelian monoid then:

< . � � 	 � 

9 � � 8 � � �

For simple criterion functions usually �� � � � .� ' � � � � � ? � � � � � . � � � � � � — we fix
the value of 7 and set � � � . � � � .
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Cluster-error function / dissimilarities
The cluster-error 8 � � � has usually the properties:

8 � � �@ A : � B C � � � � 8 � � � 
 � 
 A

In the continuation we shall assume that these properties of 8 � � � hold.

To express the cluster-error 8 � � � we define on the space of units a dissimilarity

D � � E � � IR� � for which we require D1 and D2:

D1. C � � � � D � � � � � 
 A

D2. symmetric: C � �*F � � � D � � �*F � 
 D �F � � �
Usually the dissimilarity D is defined using another dissimilarity G � " � # E " � # � IR� �

as

D � � �*F � 
 G � " � # � "F # �
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Properties of dissimilarities
The dissimilarity D is:

D3. even: C � � F � � � � D � � �*F � 
 A2 CH � � � D � � �H � 
 D �F �H � �

D4. definite: C � � F � � � � D � � �*F � 
 A2 � 
 F �

D5. metric: C � �*F �H � � � D � � � F � ? D � � �H �JI D �H �*F � – triangle

D6. ultrametric: C � � F �H � � � D � � � F � ? � :; � D � � �H � � D �H �*F � �

D7. additive, iff the Buneman’s or four-point condition holds C � �*F �JK �JL � � �

D � � �*F � I D �K �JL � ? � :; � D � � �JK �JI D �F � L � � D � � �JL �JI D �F �JK � �

The dissimilarity D is a distance iff D4, D5 hold.

Since the description " # � � � " � # need not to be injective, D can be indefinite.
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Dissimilarities on IRM / examples 1

n measure definition range note

1 Euclidean

NOO +
�/ ' � % �QP R � � ( " A �3S � T �VU �

2 Sq. Euclidean

+
�/ ' � % ��P R � � ( " A �3S � T � U � (

3 Manhattan
+

�/ 'W
% ��P R �W " A �3S � T �VX �

4 rook
+� :;�/ ' W % � P R �W " A �3S � T �S �

5 Minkowski Y
NOO +

�/ ' � % ��P R � �[Z " A �3S � T � 8 �
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Dissimilarities on IRM / examples 2

n measure definition range note

6 Canberra

+
�/ '

W % �P R �W

W % �I R �W " A � S �

7 Heincke

NOO +
�/ ' �W % �P R �W

W % �I R �W � ( " A � S �

8 Self-balanced
+

�/ '
W % �P R �W

� :; � % � � R � � " A � S �

9 Lance-Williams
+�/ 'W % ��P R �W+�/ ' % �I R � " A � S �

10 Correlation c.

\]^ � � �*_ �

^ :` � � �^ :` �_ � "X �P X #
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(Dis)similarities on IBM / examples

Let IB 
 � A � X 
 . For � � _ � IB + we define a 
 � _ , b 
 � _ , c 
 � _ , D 
 � _ .
It holds a I b I c I D 
 d . The counters a � b � c � D are used to define several
(dis)similarity measures on binary vectors.

In some cases the definition can yield an indefinite expression �� . In such cases we
can restrict the use of the measure, or define the values also for indefinite cases. For
example, we extend the values of Jaccard coefficient such that e f � � � � � 
 X . And for
Kulczynski coefficient, we preserve the relation g 
 'h i P X by

e f 
 j
k l

X D 
 d

mm� n� o otherwise
eqp 'r 
 g 


jss
k ssl

A a 
 A � D 
 d

S a 
 A � D t d

n� om otherwise

We transform a similarity e from "X � A # into dissimilarity D on " A � X # by D 
 X P e .

For details see Batagelj, Bren (1995).
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(Dis)similarities on IBM / examples 1

n measure definition range

1 Russel and Rao (1940) m+ "X � A #

2 Kendall, Sokal-Michener (1958) m� u+ "X � A #

3 Kulczynski (1927), g p ' mn� o "S � A #

4 Jaccard (1908) mm� n� o "X � A #

5 Kulczynski '( � mm� n I mm� o � "X � A #

6 Sokal & Sneath (1963), vw f 'f � mm� n I mm� o I uu� n I uu� o � "X � A #

7 Driver & Kroeber (1932) m
xy m� n zy m� o z "X � A #

8 Sokal & Sneath (1963), vw { m u

xy m� n zy m� o zy u� n zy u� o z "X � A #
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(Dis)similarities on IBM / examples 2

n measure definition range

9 | � n om u " A �3S #

10 Yule (1927), | m up n om u� n o "X �P X #

11 Pearson, } m up n o

xy m� n zy m� o zy u� n zy u� o z "X �P X #

12 – bc – f n o+�~ " A � X #

13 Baroni-Urbani, Buser (1976), ��� � m� � m um� n� o� � m u "X � A #

14 Braun-Blanquet (1932) m� �� y m� n � m� o z "X � A #

15 Simpson (1943) m��� y m� n � m� o z "X � A #

16 Michael (1920) fy m up n o zy m� u z~ � y n� o z~ "X �P X #
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Dissimilarities between sets

Let � be a finite family of subsets of the finite set � ;� �*� � � and let� < � 


�� � � ��� �� � � � denotes the symmetric difference between� and� .

The ’standard’ dissimilarity between sets is the Hamming distance:

D � �� �*� � � 
 \ :` B �� < � �

Usually we normalize it D � �� �� � 
 '� \ :` B �� < � � . One normalization is

T 
 \ :` B � � � ; the other T 
 d ' I d ( , where d ' and d ( are the first and the
second largest value in � \ :` B � � � � � � � 
 .

Other dissimilarities

D h �� �� � 
 \ :` B �� < � �

\ :` B �� � I \ :` B �� � D � �� �*� � 
 \ : ` B �� < � �

\ : ` B �� � � �

D + �� �� � 
 � :; � \ :` B �� � � � � \ :` B �� � � � �

� :; � \ : ` B �� � � \ :` B �� � �
For all these dissimilarities D �� �� � 
 A if� 
 � 
 � .
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Problems with dissimilarities

What to do in the case of mixed units (with variables measured in different types of
scales)?

� conversion to a common scale

� compute the dissimilarities on homogeneous parts and combine them (Gower’s
dissimilarity)

Fairness of dissimilarity – all variables contribute equally. Approaches: use of
normalized variables, analysis of dependencies among variables.
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Cluster-error function / examples
Now we can define several cluster-error functions:

S. 8 � � � 

� ��� � 9 � � � �

� � � ��� � �F ��� D � � �*F �

� ) 8 � � � 
 X
� � � � � �� � 9 � � � �

� � � ��� � �F � � D � � �*F �

where� � � � IR� is a weight of units, which is extended to clusters by:
� � � � 
 � 
 � � � � � � � �

� � � ' � � ( � 
 � � � ' � I � � � ( � � � ' 4 � ( 
 �

Often� � � � 
 X holds for each � � � . Then� � � � 
 \ :` B � � � .
M. 8 � � � 
 � :;� ��� � 9 D � � � F � 
 B� : � � � � – diameter

T. 8 � � � 
 � � �� � � � � � �� � ��  �¡¢ £ £¤¥ £¢ 9y �¦ � z � �
D � � �*F �
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We shall use the labels in front of the forms of (partial) criterion functions to denote
types of criterion functions. For example:

SM. � � 	 � 

9 � �

� :;� �� � 9 D � � �*F �

It is easy to prove:

Proposition 1.1 Let � � � � � � � � � �  �  � �  � �   
 then there exists an

§©¨ . � � �«ª A such that for each 	 � � . � � � :

� � 	 � @ §¬¨ . � � ��� � :;9 � � � :;� �� � 9 D � � � F �

holds.

Note that this inequality can be writen also as � � 	 � @ § ¨ . � � ���   � 	 � .
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Sensitive criterion functions
The criterion function � � 	 � , based on the dissimilarity D , is sensitive iff for each
feasible clustering 	 it holds

� � 	 � 
 A­ 2 C � � 	 C � �*F � � � D � � �*F � 
 A

and is § -sensitive iff there exists an § ¨ . � � �«ª A such that for each 	 � � . � � � :
� � 	 �@ §®¨ . � � � �   � 	 �

Proposition 1.2 Every § -sensitive criterion function is also sensitive.

The proposition 1.1 can be reexpressed as:

Proposition 1.3 The criterion functions � � � � � � �  �  � �  � �   are § -sensitive.
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Representatives
Another form of cluster-error function, which is frequently used in practice, is based
on the notion of leader or representative of the cluster:

R. 8 � � � 
 �� �¯ �° � � 9
� � � ��� D � � �*± �

where ² � � is the set of representatives. The element � � ² , which minimizes
the right side expression, is called the representative of cluster � . It is not always
uniquely determined.

Example 1 The representation space need not be the same as the description space.

" � # � IR ( and " ² # 
 � � a � b � c � � a % I b R 
 c � a ( I b ( 
 X 
 . ³

Example 2 In the case " � # � IR + � " ² # 
 IR + , D � � �*± � 
 D (( � � �± � 
+�/ ' � % � P ´ � � ( there exists a uniquely determined representative – center of gravity

� 
 'µ �¢ ¶y 9 z � � 9 � . In this case the criterion function �· is called Ward’s

criterion function (Ward, 1963). ³
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The generalized Ward’s criterion function

To obtain the generalized Ward’s clustering problem we, relying on the equality

8 � � � 

¸ � 9

D (( � � � � � 
 X
U \ :` B � � � ¸ ��¹ � 9

D (( � � �*_ �

replace the expression for 8 � � � with

8 � � � 
 X
U� � � � ¸ ��¹ � 9

� � � �� � �_ ��� D � � � _ � 
 � � � �

Note that D can be any dissimilarity on � .

From the definition we can easily derive the following equality: If � � 4 � º 
 � then

» ¼¾½ ¿À ½ Á ÂÄÃ Å ¼¾½ ¿À ½ Á ÂÇÆ » ¼ ½ ¿ ÂÃ Å ¼¾½ ¿ Â5È » ¼ ½ Á ÂÃ Å ¼¾½ Á Â È É ÊË ÌÍ=Î ÊË Ï
» ¼ÑÐ ÂÃ » ¼ÑÒ ÂÄÃ Ó ¼Ð Ô Ò Â

In Batagelj (1988) it is also shown how to replace � by a generalized, possibly
imaginary (with descriptions not neccessary in the same set as � ), central element in
the way to preserve the properties characteristic for Ward’s clustering problem.
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Representatives cluster error

Proposition 1.4 Let 8 � � � be of type· then

a) 8 � � � I � � � ��� D � � � � � � � ? 8 � � � � � � � Õ� �

b) 8 � � � � � I � � � ��� D � � � � � ? 8 � � � � � � �

Proof: The definition of � can be equivalently expressed in the form:

C ± �Ö � 8 � � � 

� � 9

� �F � � D �F � � � ? � � 9
� �F ��� D �F �± �

Therefore in case a):

8 � � � 

� � 9

� �F � � D �F � � � ? � � 9
� �F ��� D �F � � � � � 




� � 9× �

� �F ��� D �F � � � � � P � � � ��� D � � � � � � � 



 8 � � � � � P � � � ��� D � � � � � � �

In the similar way we can prove also inequality b). ³
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Other criterion functions
Several other types of criterion functions were proposed in the literature. A very
important class among them are the ”statistical” criterion functions based on the as-
sumption that the units are sampled from a mixture of multivariate normal distributions
(Marriott, 1982) .

General criterion function

Not all clustering problems can be expressed by a simple criterion function. In some
applications a general criterion function of the form

� � 	 � 

y 9 Ø � 9~ z � � Ù �Ú � � ' � � ( � � Ú � � ' � � ( � @ A

is needed. We shall use it in blockmodeling.

Multicriteria clustering

In some problems several criterion functions can be defined � � � � ' � � ( �) ) ) � � h � .
See Ferligoj, Batagelj (1994).
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Example: problem of partitioning of a generation of pupils into a
given number of classes

so that the classes will consist of (almost) the same number of pupils and that they
will have a structure as similar as possible. An appropriate criterion function is

� � 	 � 
 � :;Û=Ü ØÝ Ü ~Þ ßà á àâãä å æÜ Øçè âã ä å æÜ ~ ç
�� �éê Ü Ø5ë Ü ~é is surjective

� :;� � 9 Ø D � � � ì � � � �

where D � � �*F � is a measure of dissimilarity between pupils � andF .
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Example: Regionalization

The motivation comes from regionalization problem: partition given set of territorial
units into 7 connected subgroups of similar units – regions.

Suppose that besides the descriptions of units " � # they are related also by a binary
relation í � � E � .

In such a case we have an additional requirement – relational constraint on clusterings
to be feasible. The set of feasible clusterings can be defined as:

î � í � 
 � 	 � � � � � : each cluster � � 	 is a subgraph � � � í 4 � E � � in the
graph � � � í � with the required type of connectedness 


If í is nonsymmetric we can define different types of sets of feasible clusterings for
the same relation (Ferligoj and Batagelj, 1983).
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Complexity of the clustering problem
Because the set of feasible clusterings � is finite the clustering problem � � � � � can be
solved by the brute force approach inspecting all feasible clusterings. Unfortunately,
the number of feasible clusterings grows very quickly withw . For example

\ :` B � � . � 
 � �w � 7 � 
 X
7ï

.p '
�/ � �P X � � 7
- � 7 P - �ñð � A t 7 ? w

where � �w � 7 � is a Stirling number of the second kind. And to get an impression:

� � U A �Jò � 
 X ó X ô Aõö U ÷ ÷ U ÷ ôõ

� �ö A � X X � 
 U X ó Aø ô X A X ó ÷ A ÷ ÷ ÷ ò ô ÷ ÷ X õ ÷õ A

� �w � U � 
 U ð p ' P X
For this reason the brute force algorithm is only of theoretical interest.

We shall assume that the reader is familiar with the basic notions of the theory of
complexity of algorithms (Garey and Johnson, 1979) .
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Complexity results
Although there are some polynomial types of clustering problems, for example

� � ( �   � and � � . � �ù � , it seems that they are mainly NP-hard.

Brücker (1978) showed that ( ú denotes the polynomial reducibility of problems) :

Theorem 1.5 Let the criterion function
� � 	 � 


9 � � 8 � � �

be § -sensitive, then for each problem � � . � � � � � � there exists a problem � � .� ' � ��û � � � � ,
such that � � . � � � � � � ú � � .� ' � �Äû � � � � .
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Proof: Select a value ü�ý such that üý þÿ �� � Ê� �� � � ü ¼	� Â , extend, 
�� Æ 
 À 
�� � � , the
set of units with a new unit� � , and define the dissimilarities between it and the ’old’ units such
that Ó ¼� Ô� � Â þ üý �	� � , for� � 
 and� � Æ � � � �� ¼ 
� Â . We get a new clustering problem

¼ ü � �� ¼ 
� Â Ô ü Â .
Consider a clustering� � � ü � � � ¼ 
�� Â . There are two possibilities:

a.� � forms its own cluster� � Æ � À 
 
�� � � � ,� � ü � ¼ 
 Â . Then

ü ¼� � ÂÇÆ ü ¼� Â�� Å ¼ 
�� � � ÂÇÆ ü ¼	� Â� ÿ ��� Ê� �� � � ü ¼� Â�� üý

b.� � belongs to a cluster½ � with � ��  ¼ ½ � Â! " . Then

ü ¼� � Â ! � � Ãÿ ��Ë Ê �$# ÿ ��% Í'& ÊË Ó ¼� Ô�( Â! � � Ã ÿ ��% Í'& ÊË ) Ó ¼� Ô( Â Æ

Æ � � Ã ÿ ��% Ê Ë ) *+ % ) , Ó ¼� Ô� � Â þ üý

We see that all optimal solutions of the problem ¼ ü � � � ¼ 
� Â Ô ü Â have the form a. Since in this
case ü ¼� � ÂÇÆ ü ¼� Â

� � �- ./ ¼ ü � �� ¼ 
� Â Ô ü Â10 � �- ./ ¼ ü � ¼ 
 Â Ô ü Â

2
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Complexity results 1

Theorem 1.6 Let the criterion function � be sensitive then

ö P 34 ± 4 · ú � � r � � �

Proof: Let 5 
 � , �76 � be a simple undirected graph. We assign to it a clustering
problem � � r � , � � � � as follows. We define a dissimilarity D (on which � is based) by

D � v �98 � 
 j
k l

X � v � 8 � � 6

A � v � 8 � Õ� 6

Since � is sensitive it holds: the graph 5
is 3-colorable iff � � � � � r � , � � � � 
 A .
Let 	 
 � � ' � � ( � � r 
 then � � 	 � 
 A iff

c � , � � X � U �ö 
 � � c �8 � 
 - : 8 � � � �

is a vertex coloring.

³
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Complexity results 2

Polynomial NP-hard note

� � ( �   � � � r �   � Theorem 1.6

� � r � �  � Theorem 1.6

� � ( � � � � MAX-CUT ú � � ( � � � �

� � ( � � � � � � ( � � � � ú � � ( � � � �

� � ( �  � � PARTITION ú � � ( �  � �

� IR + ( � � � �

� IR '. � � � �

� IR '. � �  �

� IR '. �   �

Note that, by the Theorem 1.5, � � . �   � , 7 ª ö are also NP-hard . . .
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Consequences

From these results it follows (it is believed) that no efficient (polynomial) exact
algorithm exists for solving the clustering problem.

Therefore the procedures should be used which give ”good” results, but not necessarily
the best, in a reasonable time.

The most important types of these procedures are:

� local optimization

� hierarchical (agglomerative, divisive and adding)

� leaders and the dynamic clusters method

� graph theory methods
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