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Summary

The numerous network centrality indices proposed in the

literature have little in common but the operational quan-

tification of an intuition that nodes in better positions

are more central, where “position” is relative to a par-

ticular conceptualization. We propose to discriminate

centrality indices from other indices by focusing on a min-

imal requirement for “better” instead. Formally, we posit

that a centrality ranking must preserve the neighborhood-

inclusion preorder, and discuss advantages of such an

approach.

Additional details

For ease of exposition, we consider only networks repre-

sented as simple undirected graphs. Vertex centrality is

commonly defined via mappings c : V → R≥0 assigning a

non-negative number to every vertex such that

c(u) > c(v) ⇐⇒ u considered more central than v .

Thus, any index c induces a ranking of the vertices, but

not every such ranking represents a plausible concept of

structural importance. Several attempts have been made

to delineate and break down the space of centrality indices.

One such line of research was initiated by Sabidussi [8]

and has focused on axiomatic characterization. Ideally, a

combination of (intuitively plausible) axioms describes the

behavior of centrality indices to an extent that facilitates

interpretative statements about centrality rankings and

aids in the selection of indices [3]. On the other hand, ax-

iomatic approaches are typically restrictive, often leaving

only few possibilities to satisfy a combination of axioms.

This impedes general theorems about centrality indices

and sometimes only shifts the focus from the definition of

indices to the definition of axioms.

A second line of research is more conceptually ori-

ented [4, 2] providing terminology and intuition to reason

about the features embodied in centrality indices. It thus

relates formal definitions with substantive motivations,

but does not allow for sharp distinctions and provable

statements.

It appears that the only requirement that is both for-

mally established and substantively accepted is the star

property. In the words of Freeman [4],

“A person located in the center of a star is uni-

versally assumed to be structurally more central

than any other person in any other position in

any other network of similar size.”

As we will argue below, however, it is not strong enough

to ensure plausibility and interpretability by itself.

We therefore introduce a new approach to characterize

centrality concepts. It is positioned between the weak

star property and restrictive axiomatizations, but devi-

ates from both in several respects. Most importantly, it

weakens the scale of measurement from quantitative to

ordinal, and thus allows for the progressive tightening of

feasible rankings rather than intersecting regions in the

space of indices. The core element of our approach is a

well-studied preorder on the vertices of a graph.

Definition 1. Let G = (V,E) be a simple undirected

graph and u, v ∈ V . Denote by N(u) the neighborhood of

u and by N [u] = N(u)∪ {u} the closed neighborhood of u.

Then, u dominates v, u < v, if N [u] ⊇ N(v).

Domination defines a preorder < (i.e., a partial ranking)

on the set of vertices, often referred to as the neighborhood-

inclusion or vicinal preorder. If the shared meaning of

all centrality concepts is, that a better position is char-

acterized by having better relations, a vertex dominating

another should (a) be comparable to the other and (b)

never be less central than it. In the extended version of

this paper we show that these requirements are indeed

satisfied for all common centrality indices. This motivates

the following formulation.

Proposition 2. For a simple undirected graph G =

(V,E), an index c : V → R≥0 is a centrality, if and

only if it respects the neighborhood-inclusion preorder <,

i.e.,

u < v =⇒ c(u) ≥ c(v)

for all u, v ∈ V .
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In the remainder, we provide three arguments to make

the case for our criterion.

Star property. An immediate consequence of our require-

ment is that the rankings of all centrality indices coincide

on networks for which the neighborhood-inclusion preorder

is complete. This holds, in particular, for stars so that the

star property is maintained as a necessary requirement.

It is strengthened, however, to the much larger class of

threshold graphs which are completely ranked as well [6].
To illustrate the strengthening of the star property,

consider a crafted index that we refer to as hyperbolic
centrality,

chyp(u) = D(G[N [u]]) ·

 ∑
v∈N [u]

∞∑
k=0

A(G[N [u]])2kvv
(2k)!

 ,

where G[N [u]] is the subgraph induced by N [u],

A(G[N [u]]) is its adjacency matrix, and D(G[N [u]]) its

density (also known as the clustering coefficient of u). The

index thus corresponds to a density-weighted sum over

all length-scaled closed walks of even length within the

closed neighborhood of a vertex. It thus combines ideas

from other centrality indices such as total communicabil-

ity [9], and it satisfies the star property. We even find that,

experimentally, it compares well with centrality indices

previously applied to a biological prediction task. Given

that the walks considered here may start anywhere in

the neighborhood it is difficult to argue, though, that it

matches any intuitive notion of centrality and, indeed, it

fails to preserve the proposed dominance criterion.

Axiomatization. The goal of centrality axiomatization

is comparative in general: which properties character-

ize a particular index and distinguish it from others?

Sabidussi’s [8] seminal work appears to be the first along

these lines, and many others have followed (cf. the review

sections in [5, 3]).

In line with Vigna and Boldi [3, p. 11], we avoid pre-

scribing a set of axioms, but only postulate a necessary

requirement. Moreover, the requirement in Proposition 2

disregards the actual values being assigned and assumes

only an ordinal scale of measurement. It also does away

with the analytically inconvenient differentials after graph

transformation such as edge addition or switching.

Empirical research. Centrality is commonly used as ex-

planatory, independent, as well as intermediate variable

in empirical research. Research hypotheses typically state

that the level of some variable (say, trust placed in an

organization) is either positively or negatively associated

with some centrality index (say, in a business network

the organization is part of). The selection of a centrality

index is usually the weakest part of a research design, as

little reliable knowledge exists that places one index over

another. Moreover, if the association cannot be confirmed

empirically, one is at loss.

With a strengthened necessary condition, it is possible

to make more powerful general statements about all cen-

trality indices. If, for example, it turns out the ordering

of levels in the other variable is already inconsistent with

the partial ranking obtained from the dominance relation,

we can conclude that there is no centrality that supports

the hypothesis, no matter which ones we try.

Moreover, the shared partial ranking of centrality in-

dices can serve to explain frequently observed correlations

of centrality indices. The closer a graph to a threshold

graph, i.e., a graph with a unique centrality ranking, the

fewer degrees of freedom exist for indices. If multiple

centrality indices operationalizing different ideas of what

makes a vertex central yield similar rankings, they repre-

sent competing explanations. Distance from a threshold

graph [1, 7] or sparseness of the neighborhood-inclusion

preorder thus provide a level confidence in an explanation

offered by a particular index.
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