
T
he

de
fin

iti
ve

ve
rs

io
n

is
av

ai
la

bl
e

at
ht

tp
://

di
gl

ib
.e

g.
or

g/
an

d
ht

tp
://

on
lin

el
ib

ra
ry

.w
ile

y.
co

m
/

Eurographics Conference on Visualization (EuroVis) 2012
S. Bruckner, S. Miksch, and H. Pfister
(Guest Editors)

Volume 31 (2012), Number 3

Computing Voronoi Treemaps
Faster, Simpler, and Resolution-independent

Arlind Nocaj and Ulrik Brandes

Department of Computer & Information Science, University of Konstanz

Abstract
Voronoi treemaps represent hierarchies as nested polygons. We here show that, contrary to the apparent popular
belief, utilization of an algorithm for weighted Voronoi diagrams is not only feasible, but also more efficient
than previous low-resolution approximations, even when the latter are implemented on graphics hardware. More
precisely, we propose an instantiation of Lloyd’s method for centroidal Voronoi diagrams with Aurenhammer’s
algorithm for power diagrams that yields an algorithm running inO(n logn) rather than Ω(n2) time per iteration,
with n the number of sites. We describe its implementation and present evidence that it is faster also in practice.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces; I.3.6 [Computer Graphics]: Methodology and Techniques; I.3.8 [Computer Graphics]: Applications

1. Introduction

Much data is either inherently hierarchical, or purposefully
made hierarchical for comprehension, abstraction, or inter-
action. The hierarchical inclusion relations can be repre-
sented in a rooted tree, where singleton sets of base elements
form the leaves, and each inner node represents the union
of the sets represented by its children. Treemaps have been
proposed as a space-filling representation of such inclusion-
hierarchy trees [Shn92]. Each node of the hierarchy tree is
depicted by a rectangle, and rectangles are subdivided re-
cursively into smaller rectangles depicting the children of
the corresponding tree node. In most applications, base ele-
ments have associated weights, and the area of a rectangle is
required to be proportional to the total weight of the corre-
sponding subset. There are several other degrees of freedom
in this representation, in particular with respect to layout and
rendering, and many of them have been utilized in various
applications [Shn09].

A special variant are Voronoi treemaps [BD05], in which
more general polygons are used instead of rectangles. These
polygons are defined as the regions of centroidal Voronoi
diagrams, and the resulting visualizations have good aspect
ratio and an appealing, organic look to them. Moreover, they
are more robust to changes in time-varying hierarchical data.

Despite the extensive praise they are receiving, Voronoi

(a) Fig. 11 of [BD05]
(impl. in C, 5:48 min)

(b) our method
(impl. in Java, 0:35 min)

Figure 1: A hierarchical software structure (Fujaba Tool
Suite, 16K nodes). Since no ordering is imposed, com-
parison should be according to relative area sizes only.
Timings on same machine (8 Core Intel Xeon E5345
CPU@2.4 GHz). Our implementation requires 12.5 seconds
on more up to date hardware (4 Core Intel Core i7-2600K
CPU@3.40GHz).

treemaps are not as frequently used in visualization ap-
plications [Got11, HTS09, BFHS09]. Adoption appears to
be slowed by their seemingly cumbersome implementation
and high computational demands. Common algorithms are
based on resolution-dependent approximate computations

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

http://dx.doi.org/10.1111/j.1467-8659.2012.03078.x

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

(a) (b) (c)

Figure 2: A hierarchical partition with uniform leaf values
(top) and recursive construction of a Voronoi treemap (a–c).
Dots correspond to the sites which generate the cells.

and state of the art appears to be the approach of [SFL10]
which achieves run-time improvements over other variants
by utilizing fast parallel processing in graphics hardware.
We here demonstrate that a carefully revised, yet rela-
tively simple implementation using a conventional algorithm
from computational geometry, Aurenhammer’s method for
power diagrams [Aur87], actually outperforms even the par-
allelized approximation while also removing the resolution
limit.

The remainder is organized as follows. We first recall
the definition of Voronoi diagrams and Voronoi treemaps.
In Section 3, we then review previous approaches for their
computation. The approach proposed here is presented in
Section 4 and evaluated in Section 5. We conclude with a
brief discussion.

2. Background

2.1. Voronoi Diagrams

Given a set S of n distinct points in the plane, called sites,
the corresponding Voronoi diagram divides the plane into
regions, one for each site. Each region, called (Voronoi) cell,
consists of exactly those points that have the same closest
site. Since display space is usually bounded, we consider
bounded Voronoi diagrams that divide up some convex area
(e.g., a rectangle) rather than the entire plane.

Formally, we are given a bounded, convex area Ω ⊂ R2

and a set of sites S = {s1, . . . ,sn}. For each point si ∈ S its
associated cell V(si) is defined as

V(si) = {p∈Ω : ‖p−si‖< ‖p−s‖ for each s∈ S−si} (1)

where ‖p1 − p2‖ =
√

(x1− x2)2 +(y1− y2)2 is the Eu-
clidean distance of points p1 = (x1,y1) and p2 = (x2,y2).
Each cell Vs = V(s) is bordered by a polygon Vs of points
that have equal distance to at least two sites, or belong to
the boundary of Ω. Furthermore the area of a cell (region) is
denoted by A(Vs).

An (ordinary) Voronoi diagram is thus defined as the col-
lection of cells,

V (S) = {V(s1), . . . ,V(sn)} .

It can be computed in O(n logn) time using any of a variety
of algorithms [GO04].

2.2. Area Requirements

The area of a cell depends on the relative position of its as-
sociated and neighboring sites. Since the cells of a Voronoi
diagram are going to be used to depict numerical data ele-
ments, we require a mechanism to control their area better.

To have the possibility of influencing the size of the
cell area, weighted Voronoi diagrams can be used. Let
W (S) = {w1,w2, . . . ,wn} be a set of positive real weights
wi = w(si) ∈ R>0 associated with sites S = {s1, . . . ,sn}.

Two generalizations of Voronoi diagrams that take
weights into account are common, both defined by substi-
tuting a weight-dependent distance for the Euclidean dis-
tance in (1). In the additively weighted (AW) Voronoi dia-
gram [For87], ‖p− si‖ is replaced by ‖p− si‖−wi. Note
that the boundaries between pairs of sites thus become hy-
perbolic curves. In the power weighted (PW) Voronoi dia-
gram [Aur87], or power diagram for short, ‖p− si‖2−wi is
used instead and boundaries remain polygonal.

In either variant, increasing a single weight increases
the area of the associated cell. While the relation between
weights and areas is monotonic, it is in general non-linear.
Note also that cells are empty when the defining site is
“closer” (w.r.t. to the modified distances) to another site than
to itself. This does not happen in ordinary Voronoi diagrams.

We here restrict our attention to power diagrams, but our
results are likely to extend to additively weighted Voronoi
diagrams because both can be computed in O(n logn) time
using algorithms of similar practical performance [Aur87,
For87].

2.3. Centroidal Voronoi Diagrams

In addition to accuracy in the representation of magnitudes,
we would like to ensure good readability. An important read-
ability aspect, among other things supporting the visual com-
parison of areas, is the aspect ratio of cells, i.e. the ra-
tio of the lengths of sides of the smallest enclosing rect-
angle. Aspect ratio can be changed by moving sites, and
it has been shown that, for ordinary Voronoi diagrams, as-
pect ratio close to one is achieved when sites are evenly dis-
tributed and located in the centroid (the center of mass) of
their cell [LWL∗09]. The latter property defines centroidal
Voronoi diagrams (CVDs).

Note that the subdivison of a rectangle by parallel lines
as in the slice-and-dice technique [Shn92] also yields, in
fact, centroidal Voronoi diagrams (the sites would have to
be placed at the center of each rectangle), but the resulting
subrectangles are often long and thin and thus have very poor
aspect ratio.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

2.4. Voronoi Treemaps

A Voronoi treemap is the recursive subdivision of a region
into the cells of a centroidal Voronoi diagram defined as fol-
lows.

Let O = {o1, . . . ,on} be a set of objects, each with an as-
sociated positive real value vi ∈R>0, i = 1, . . . ,n. We define
v : 2O→ R>0 as the additive extension to subsets of P⊆ O,

v(P) = ∑
i : oi∈P

vi .

A hierarchical partition of O is a rooted tree T = (P, I;r)
with nodes P representing subsets of O and edges I repre-
senting set inclusion. The root r ∈ P represents O and the
leaves represent exactly the singleton sets {oi}, i = 1, . . . ,n.
We will identify nodes in the tree with the subsets they repre-
sent. Each inner node represents the set formed by the union
of the sets of its children.

A hierarchical partition is represented by a Voronoi
treemap, if the bounding region represents the entire set of
objects, this region is subdivided by a centroidal Voronoi
diagram with one cell per child of the root and these
cells are subdivided recursively such that the leaves are
represented by cells with an area (approximately) propor-
tional to their value. The children of p ∈ P are given by
children(p) = {x ∈ P : x⊂ p}. We denote by A(Vp) · v(c)

v(p)
the target area of c ∈ children(p). See Figure 2 for an exam-
ple.

3. Previous Approaches

Because of the recursive nature of Voronoi treemaps, it is
sufficient to consider a single level of the computation: given
a bounded region representing an inner node of a hierar-
chical partition, subdivide this region by a Voronoi diagram
such that each cell corresponds to exactly one child.

To address aspect ratio and area requirements, weighted
centroidal Voronoi diagrams are used instead of ordinary
ones. Following Balzer and Deussen [BD05], the core
scheme for their computation is Lloyd’s iterative method
for centroidal Voronoi diagrams augmented by weight adap-
tation to control cell areas. We therefore outline Lloyd’s
method first, and then present the various approaches build-
ing on it.

3.1. Lloyd’s Method

Originally, Lloyd’s method [Llo57] is designed to deter-
mine a centroidal Voronoi diagram inside a bounded region
Ω ⊂ R2 such that the density of sites approximates a given
density ρ : Ω→ R>0.

Starting from random initial sites S, an ordinary Voronoi
diagram is determined. Then, each site s ∈ S is moved into

the centroid ∫
V(s) ρ(p)p dp∫
V(s) ρ(p) dp

,

of its cell, and the Voronoi diagram is recomputed. This pro-
cess is repeated until an approximately centroidal Voronoi
diagram is obtained.

In our present scenario, however, there is no variation in
density. While this simplifies the calculation of centroids to
the average of the corners of each cell, it also causes the limit
solution to be a centroidal Voronoi diagram with evenly dis-
tributed sites and thus (near) equal-area cells. The methods
described in the next section therefore adapt Lloyd’s method
to accommodate weights.

3.2. Methods for Voronoi Treemaps

We are not aware of any method to determine a centroidal
weighted Voronoi diagram directly from a set of area re-
quirements, even if a solution satisfying one of the two prop-
erties is given.

The central idea of Balzer and Deussen [BD05] is to ap-
ply Lloyd’s method to weighted Voronoi diagrams to make
these centroidal, and to adapt weights during the iteration
to meet the area requirement. After each iteration, weights
are increased or decreased proportionally to the missing or
excess area.

However, because the computation of weighted Voronoi
diagrams is found to be “non-trivial” [BDL05], they re-
sort to sample-based approximation. That is, a sufficiently
dense number of sample points is tested for their closest
site according to the weighted distance function, and sites
are subsequently moved to the average of all sample points
closest to them. This approach has two major drawbacks
with respect to efficiency: it introduces a resolution prob-
lem (where higher resolution corresponds to more sample
points and thus higher running times) and the cell bound-
aries are not obtained as part of the process. The sampling
needs quadratic running time and thus asymptotically dom-
inates the time spent in each iteration. To actually construct
the Voronoi diagram, pairwise boundaries are determined,
irrelevant ones discarded, and the remaining ones clipped.
This again has at least a quadratic running time and slows
down the overall process.

Sud et al. [SFL10] present an improved implementation
of the sampling approach using graphics hardware and Gen-
eral Purpose GPU techniques. While actual running times
are reduced significantly, the advantage of parallelization on
the graphics card could not be used for all parts of the al-
gorithm and the asymptotic running time for a single itera-
tion remained quadratic in the number of sites. Several other
authors have worked on computing centroidal Voronoi dia-
grams completely on GPU [VSCG08, RLW∗11], but we are

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

not aware of one such approach that also allows for weight
adaptation.

Instead of computing the treemap level by level,
Gotz [Got11] suggests to interleave the iterative computa-
tions on all levels. The argument being more flexible reac-
tions to changes in the data, but it seems that the constant
change of bounding regions increases the number of itera-
tions rather dramatically. It is interesting to note, though, that
in this approach a combinatorial algorithm is used for com-
puting weighted Voronoi diagrams. Unfortunately, its adap-
tation for Lloyd’s method is not described and no running
times are reported.

Applications using Voronoi treemaps generally stick to
the original computation scheme [HTS09,BFHS09], and au-
thors therefore note that running times are a major limitation.

Let us summarize the main drawbacks of previous ap-
proaches as follows:

(speed) at least quadratic running time
(resolution) samples determine accuracy and level of detail
(hardware) practical running times require parallelization

We show in the next section that a careful adaptation of
a conventional analytic algorithm with no resolution limit
outperforms even the hardware-accelerated approach at very
low resolution.

4. Resolution-independent Algorithm

In this section, we introduce our modified Voronoi treemap
algorithm. While we stick to the overall scheme of Balzer
and Deussen in which Lloyd’s method is applied to weighted
Voronoi diagrams, our approach differs in three main as-
pects:

• an analytic algorithm for power diagrams
• a modified update scheme for sites and weights
• a heuristic to reduce the number of iterations

As a byproduct, implementation complexity is reduced as
well. The initialization of the sites depends strongly on the
application, as an example we use random positions in Ω.

Although we keep Lloyd’s method and the weight change
step, we need to handle them separately to have non empty
regions after each iteration, see Algorithm 1. By doing this
separation we could possibly use the L−BFGS optimization
method which has been shown to converge faster for the or-
dinary Voronoi diagram [LWL∗09] than Lloyd’s method, but
its influence on the weighted Voronoi diagram and the area
requirements are not known. We thus keep Lloyd’s method
in this step to be able to compare our implementation with
previous work.

4.1. Description

After starting with an initialization we improve the layout
in each iteration of the for-loop. In AdaptPosition-

Algorithm 1: Compute Voronoi Treemap (single layer)

Input: Ω⊂ R2: convex polygon , p ∈ P: hierarchy
node with n children, imax: maximal iteration
number, Ethreshold: error threshold

Output: Voronoi diagram V(S) with n polygons
1 init. sites S = children(p) with unique positions in Ω

2 init. weights W with small constant ε

3 error←∞
4 V(S)← ComputePowerDiagram(Ω,S,W)
5 for i← 1 to imax do
6 AdaptPositionsWeights(p,V(S),S,W)
7 V(S)← ComputePowerDiagram(Ω,S,W)
8 AdaptWeights(p,V(S),S,W)
9 V(S)← ComputePowerDiagram(Ω,S,W)

10 error← ∑s∈S A(Vs)−A(Ω)· v(s)
v(p)

2·AΩ

11 if error < Ethreshold then return V(S)
12 return V(S)

Algorithm 2: Update steps

1 AdaptPositionsWeights(p,V(S),S,W)
2 foreach site s ∈ S do
3 s← centroid(Vs)
4 distanceBorder←minx∈Vs

‖x− s‖)
5 ws← (min(

√
ws,distanceBorder))2

6 AdaptWeights(p,V(S),S,W)
7 NN← Nearestneighbor(S)
8 foreach site s ∈ S do
9 Acurrent← A(Vs) /* current area */

10 Atarget← A(Ω) · v(s)
v(p) /* target area */

11 fadapt←
Atarget
Acurrent

12 wnew←
√

ws · fadapt
13 wmax←‖s−NNs‖
14 ws← (min(wnew,wmax))

2

15 ws←max(ws,ε)

sWeights (line 6) the sites are moved to the centroid but
at the same time the weights are decreased if necessary. In
AdaptWeights (line 8) the weights are changed in such
a way that the areas are improved in each iteration. Further
the weight of each site s∈ S is limited by its nearest neighbor
NNs (line 13 and line 14). After each adaption of the diagram
we need to recompute the power diagram (line 7 and line 9).
This is necessary since Lloyd’s method is a different opti-
mizer than our area error reduction step (AdaptWeights).
If the area error is below a certain threshold we can cancel
the optimization process (line 11).

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

(a) Conflict in AdaptPosition-
sWeights

(b) Conflict in AdaptWeights

Figure 3: Example of two weighted power diagrams and conflicts when updating the sites and their weights. Circles represent
the weight and have thus√wp as radius for a site p ∈ S. (a) Site s (with red circle) is moved to the centroid of its Voronoi cell,
which could cause in combination with other site movements the site v to have an empty cell (dotted blue circle contains v).
Conflict is solved by reducing the radius of s to

√
w∗s (blue circle) if necessary (line 5 of Algorithm 2). (b) Site s is not a neighbor

of v in the weighted Voronoi diagram (black lines), but is one in the ordinary Voronoi diagram. Increasing the weight (dotted
black circle) of v has thus to be limited by its neighbors in the ordinary Voronoi diagram or by its nearest neighbor (line 14 of
Algorithm 2).

4.2. Complexity

For the complexity analysis we say n = |S| and k is the num-
ber of iterations which are made. We first look at the com-
plexity of the update steps (Algorithm 2). Since the Voronoi
diagram of n sites has linear complexity, the computation of
the centroids for all sites needs O(n) time. To compute the
minimal distance of the centroid to the border of the corre-
sponding cell, one has to determine the smallest distance of
the centroid to the set of segments (bisectors) which define
the corresponding Voronoi cell. Note that this can be done
in constant time for a single segment. For each segment we
have to compute the minimal distance to two sites, which
needs O(n) time due to the linear number of segments. We
can therefore say that adaptPositionsWeights needs
O(n) time and space.

When adapting the weights with AdaptWeights we
need to compute the nearest neighbor of every site in S,
which takes O(n logn) by e.g., computing the ordinary
Voronoi diagram (power diagram with zero weights). Since
all the other steps in the for-loop (line 8) are trivial we need
O(n logn) time for AdaptWeights.

For Algorithm 1 we can now follow that the runtime for a
single iterationO(n logn) and due to the for-loop the overall
runtime is O(k ·n logn).

4.3. Correctness

In this section we prove the correctness by showing that no
Voronoi diagram with empty regions is generated by Algo-
rithm 1.

The following invariant helps us proving the correctness:

∀s, t ∈ S,s 6= t : ‖s− t‖> max(
√

ws,
√

wt) (2)

We first show some helpful lemmas.

Lemma 1 Invariant (2) holds for Algorithm 1

Proof By choosing unique coordinates in Ω and ε <
minp,q∈S (‖p−q‖), Equation 2 holds after the initialization.
Since the use of ComputePowerDiagram() in Algo-
rithm 1 does not change the sites or weights, it cannot break
the invariant.
Since each Voronoi cell of a bounded power diagram is con-
vex, the centroid has to lie in the cell. By moving a site to
the centroid of its cell AdaptPositionsWeights the in-
variant could be broken. By decreasing the corresponding
weight in line 5 to the distance of the site to its closest bi-
sector the following holds for two neighboring sites s, t ∈ S:

‖s− t‖ ≥ ws +wt > max(ws,wt). (3)

This further means that
√

ws for a site s ∈ S, can at most
be the minimal distance of the site to its Voronoi cell.
Since every other site t ∈ S lies in its own cell Vt it
also lies outside of the cell Vs, thus the distance between
s and t is larger than the minimal distance of s to its
cell border, ‖s− t‖ > √ws. Respectively ‖s− t‖ > √wt
holds, therefore ‖s− t‖ > max(

√
ws,
√

wt) is valid after
AdaptPositionsWeights().
The limitation of the weight in line 13 further guarantees
that the invariant holds after the call of AdaptWeights().

Lemma 2 Invariant (2)⇒∀s ∈ S : Vs 6= ∅

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

Proof (by contradiction) Assume there is a site s ∈ S for
which Vs = ∅, which means that the point p = (sx,sy) = s
has a smaller distance to another site t ∈ S, t 6= s and wt >ws:

‖p− t‖2−wt < ‖p− s‖2−ws

‖s− t‖2 < wt −ws < wt = max(ws,wt)

‖s− t‖< max(
√

ws,
√

wt)

But this is a contradiction to our assumption that ∀s, t ∈
S,s 6= t : ‖s− t‖> max(

√
ws.
√

wt).

Theorem 3 Algorithm 1 does not produce empty Voronoi
cells and is thus correct.

Proof This follows directly from Lemma 1 and Lemma 2.

4.4. Computation of the Power Diagram

It will turn out that the power diagram is easy to compute by
using any convex hull algorithm in 3D.

Aurenhammer [Aur87] describes how the general
d−dimensional power diagram can be computed by using
a transformation to the d+1 dimensional space. In the same
breath he further generalizes his method for higher-order
Voronoi diagrams. This sweeping blow results in a very gen-
eral description and makes it hard to use his algorithm with-
out intensively dealing with computational geometry.

We now reduce the complex algorithm to the important
steps for the two dimensional case. It turns out that for the
two dimensional case one has mainly to combine several
easy transformations with a convex hull computation in 3D.
The main steps are:

• transform the weighted sites in 2D to half-planes in 3D
• compute the lower envelope of the half-plane intersections

(convex hull)
• map the dual solution back by reversing the applied trans-

formation

4.4.1. Transformation from 2D to 3D

This transformation uses the property that the power func-
tion in 2D can be described as a plane in three-dimensional
space. The plane h0 in R3 is the plane which is spanned by
the x and y-axis, z = 0. Let s = (xs,ys) ∈ S and ws the corre-
sponding weight. Each site lies on h0, see Figure 4a.

The transform Π maps a sphere with coordinates of s and
radius r =

√
ws into the three-dimensional plane

Π(s) : z = 2
(
x y

)
·

(
xs

ys

)
−
(

xs
2 + ys

2
)
+ r2 (4)

The most important property of Π is that the vertical pro-
jection of Π(s)∩Π(t) is the bisector of the sites s and t in 2D,
see Figure 4 for an illustration, or see section 4.1 in [Aur87]

for the proof. The corners and edges of the lower envelope
correspond to the vertices and the bisectors of the Voronoi
diagram. Since the projection from 3D to 2D can easily be
done by just ignoring the z-coordinates, we only have to look
at the computation of the lower convex hull.

(a) Transform Π

(redrawn from [Aur87])
(b) Lower convex hull
mapped from 3D to 2D

Figure 4: Computation of a power diagram: (a) sites s, t are
transformed to the planes Π(s) and Π(t) in 3D. The bisector
between s and t is a vertical mapping of the intersection of
Π(s) and Π(t) back to the two-dimensional plane h0. (b)
The intersection of the projected half-planes creates a lower
convex hull in 3D (gray facets) which is a dual solution to
the power diagram.

4.4.2. Lower Convex Hull

A plane in R3 can be defined by h : z = ax + bx + c. The
plane-point duality is an interesting relation between planes
and points. Each plane h can be represented as a point (or
polar) in a dual space by using a polarity function ∆ of a,b,c:

∆(h) =
(

a
2
,

b
2
,−c

)
. (5)

∆ further maps each point p into a plane ∆(p) =
⋃

h⊇p ∆(h).
An important characteristic of ∆ is that it maintains the rel-
ative positions of points and planes. If a plane h contains a
point p in the normal space, then the plane ∆(p) contains the
point ∆(h) in the dual plane, see [Cox03] for an extensive
description of polarity and duality.

By using the plane duality we can just map the half-
planes, which we want to intersect, to points in the dual
space. The convex hull of this set of points in dual space
is then a dual solution to the wanted lower envelope of half-
plane intersections. The dual solution just has to be trans-
formed back to the normal space by using ∆. A face of the
convex hull in dual space corresponds to a point in the nor-
mal space.

For the algorithm we need to concatenate ∆ and Π for
s ∈ S, which results in:

∆(Π(s)) = (xs,ys,x2
s + y2

s − ws︸︷︷︸
r2

). (6)

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

As a result of the convex hull in dual space, we have triangu-
lated faces. Each plane defined by a face needs to be trans-
formed back using ∆. For a face f defined by three points
P1 = (x1,y1,z1),P2 = (x2,y2,z3),P3 = (x3,y3,z3) ∈ R3 the
plane h f : z = ax+bx+ c is defined with a =−α

γ
, b =− β

γ
,

c = δ

γ
, where α,β,γ and δ are

α = y1(z2− z3)+ y2(z3− z1)+ y3(z1− z2)

β = z1(x2− x3)+ z2(x3− x1)+ z3(x1− x2)

γ = x1(y2− y3)+ x2(y3− y1)+ x3(y1− y2)

δ = x1(y2z3− y3z2)+ x2(y3z1− y1z3)+ x3(y1z2− y2z1).

(7)

Eqn. 7 is used to determine the plane from a triangle, and
transform it back from dual space.

Algorithm 3: Compute Power Diagram
Input: Ω: convex polygon, S : n unique sites, W : set of

weights
Data: L: double connected edge list (convex hull) from

which a sequence of faces F(s∗) = (f1, . . . , fk)
can be derived for each s∗ ∈ S∗, F : list of the
triangulated faces in L

Output: Power diagram V(S) with n polygons
1 if n < 4 then
2 Compute V(S) by intersecting the bisectors
3 return V(S)∩Ω

4 else
5 S∗←

⋃
s∈S ∆(Π(s))

6 {F(s∗) : s∗ ∈ S∗}← convexHull(S∗)
7 V(S)←{}
8 F ←{ f ∈ F : normal n f = (x,y,z) with z < 0}
9 for s∗ ∈ S∗ do

10 (f1, f2, . . . , fk)← F(s∗)\F
11 P← (∆(f1),∆(f2), . . . ,∆(fk))
12 for p = (x,y,z) ∈ P do p← (x,y)
13 V(S)←V(S)∪{P}
14 return V(S)∩Ω

4.4.3. Description of the Power Diagram Algorithm

In line 1 of Algorithm 3 we need to check whether the mini-
mal number of points for a convex hull in 3D is given, if this
is not the case we can determine the cells by intersecting the
bisectors (see [OBSC00]). Otherwise (line 4), the sites are
transformed to planes in 3D and then to points in the dual
space by using the function in Eq. 6. Note that this requires
nothing more than two multiplications and one subtraction
to directly get the point we need in dual space from a given
site.

The convex hull of the set S∗, which is the dual solution to
an intersection of half-planes, is then computed in line 6. The

result of the convex hull computation is stored in a double
connected edge list. If two sites s1,s2 ∈ S are neighbors in
V(S), then an edge exists between s∗1 and s∗2 in the convex
hull of S∗. An Edge directed from s∗1 to s∗2 has a pointer to
the face it belongs to and to the edge which goes from s∗2 to
s∗1 . By walking along these edges one can easily get all the
edges belonging to a site s∗ ∈ S∗ and the corresponding faces
as a sequence in the right order (line 10). This can clearly be
done in O(n) time and space where n = |S∗|. Note that a
face in dual space represents a point in normal space, when
transformed back using ∆ in line 11. The points we need to
represent a polygon for a cell are determined by dropping the
z-coordinate (line 12). Since not all cells of a Power diagram
are closed, they need to be closed such that they are a subset
of Ω. As a last step the resulting Voronoi diagram needs to
be intersected with the bounding polygon Ω (line 14).

4.5. Implementation Details

In the following we analyze the available algorithms for
the convex hull of a set of points in 3D with regard to our
Voronoi treemap algorithm.

Several optimal O(n logn) algorithms exist for the con-
vex hull computation in 3D [PH77], where n is the num-
ber of points. Unfortunately the divide and conquer algo-
rithm of Preparata and Hong [PH77, Ede87] is very difficult
to implement and has poor practical performance [Day90].
We are not aware of a complete and stable implementation.
Although output-sensitive algorithms exist [CMS93, CM95,
ES91], which exploit the fact that in many applications few
points are on the convex hull, they are not important in our
case. Since every site of our Power diagram has a non empty
region, the corresponding point in 3D has to lie on the con-
vex hull. We thus propose to use the randomized incremental
algorithm of Clarkson and Shor [CS89] which is expected
to run in O(n logn), where n is the number of points. It is
simple to implement and many stable implementations are
already available; see [O’R98] for an implementation in C
or [dBCvKO08] for a general description.

For the intersection of two convex polygons we use the
linear-time algorithm of O’Rourke et al. [OCON82]. The
implementation for polygons with integer coordinates is de-
scribed in [O’R98] and can be adapted with few changes for
polygons with real-valued coordinates.

5. Performance

While our approach is asymptotically faster than previous
ones, this does not ensure that it is faster on typical prob-
lem instances as well. We first show that our method com-
pares favorably with previous ones already during a single
iteration, and then present a new heuristic to further reduce
running times speeding up convergence.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

Method (Resolution)

GPU (256x256)
GPU (128x128)
GPU (64x64)
GPU (32x32)
CPU only (exact)

5 50 100 150 200 250 300 350 400 450 500 550 600

0
2

4
6

8
1
0

Our Method (CPU) Fastest Previous Method (GPU)vs.

number of sites

ti
m

e
 i
n
 m

s
 p

e
r

it
e
ra

ti
o
n

(0.17) (0.22) (0.3) (0.43) (0.61) (0.79) (1.05) (1.19) (1.43) (1.82) (1.94) (2.2) (2.52)

Figure 5: Timings for a single iteration (sites vs. time in ms). Blue dots are timings reported in [SFL10] for the GPU-accelerated
approach at different resolutions, with quadratic curves fitted to extrapolate to larger instances. Red dots are our timings for
our CPU-only approach, taken on a comparable machine.

5.1. Single Iteration Comparison

Since concrete timings are given only in [BD05, SFL10],
but to the best of our knowledge, the approach of Sud
et al. [SFL10] is the fastest implementation of Voronoi
treemaps to date.

In a single iteration of the adapted method of Lloyd, Sud
et al. [SFL10] determine new sites, new weights, and an (ap-
proximate) additively weighted Voronoi diagram, whereas
we determine new sites and weights, a power diagram, again
new weights (including a power diagram), and again a power
diagram.

Note that differences in objective, programming language,
and hardware requirements do not allow for reasonably con-
trolled experiments. In fact, we do not even have access to
the hardware-accelerated code. The testing environments are
sufficiently similar, though, to allow for a rough comparison
of absolute times. The runtime of our approach only depends
on the quantity of the sites and not on their coordinates, any-
way we chose random site coordinates for each run.

Sud et al. [SFL10]: PC, Windows 7, Intel Core2 CPU,
2.4 GHz, 4 GB memory, NVIDIA GTX260 GPU

Our setting: MacBook, MacOS 10.6, Intel Core2 CPU,
2.5 GHz, 4 GB memory, without GPU (Java 6)

As can be seen in Figure 5, the hardware-accelerated ap-
proach is dominated by our analytical method in terms of
growth, but also already on small instances and even with re-
spect to the poorest resolution. Since our implementation is
entirely in Java, and no optimizations have been attempted,
we think that it is justified to conclude that our method is
more efficient.

Note that any approach, including ours, can benefit from
parallelization on different cores once the top level of the
hierarchy has been dealt with. This was already exploited
in [BD05].

5.2. Fewer Iterations

Up to now we have argued that our method is faster in each
iteration. We now show that the number of iterations can also
be reduced significantly by including assumptions about fu-
ture updates.

Instead of general extrapolation techniques, we propose
to use a heuristic based on an observation made during our
preliminary experiments. The number of iterations needed
until convergence was particularly high when the variance
of required areas was large.

This appears to be due to cells with large area require-
ments having to push smaller cells in their vicinity away to
gain space. A large number of iterations is required to prop-
agate these movements.

Figure 6 shows an example in which the weight of site t
needs to be increased to enlarge the cell. If the neighboring
cells do not have excess area, they would become smaller in
the next iteration, their site would be moved outward to the
new centroid, their weight increased and their area enlarged
in the next iteration. This process is cut short by adding a
radial displacement vector to the sites of cells near t. Note
that sites may be subject to displacement triggered by several
growing cells near them, and we simply add them up so that
they cancel each other out when contradictory.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

Figure 6: The large growing cell of a site t needs to push
surrounding sites s away. To reduce the number of iterations,
we determine displacements ds depending on the distance
from t directly rather than alternating between weights and
centroid updates for the same effect.

To determine which sites should cause movement of oth-
ers, we use the ratio of current and target area as a criterion.
If a cell has a large enough target area, we start generating
displacement vectors if the misrepresentation is significant.
In our experiments, excluding cells that occupy less then 5–
10% of the total area or which already have more then 2/3 of
their area worked well, but further experiments are necessary
to tune these parameters to a context.

Moreover, we made the magnitude of displacement lin-
early dependent on the distance from the underrepresented
cell to avoid excessive flow and oscillations. See Algo-
rithm 4 for details.

Algorithm 4: Site Update with speedup heuristic

1 AdaptPositionsWeights(V(S),S,W)
2 K← sites causing displacement
3 foreach site s ∈ S do
4 c← centroid(Vs)
5 c∗← c+ds
6 if (c∗∩Vs) = ∅ then
7 p← cc∗∩Vs

8 c∗← c+ ds
‖ds‖ · (1− ε)‖p− c‖

9 s← c∗

10 distanceBorder←minp∈Vs
‖p− s‖

11 ws← (min(
√

ws,distanceBorder))2

The impact of our heuristic on convergence is illustrated
by the following experiment. We created 100 instances by
distributing 50 sites randomly in a 2x1 rectangle and as-
signing area requirements drawn from a power-law distribu-
tion. Figure 7 summarizes the convergence behavior of our
method with and without the speed-up heuristic. Note that,
in the long run, there is no difference in quality of area rep-
resentation, but the number of iterations needed is reduced
by approximately 70%.

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Speedup heuristic for faster convergence

number of iterations

a
re

a
 e

rr
o
r

move strategy

Lloyd's method
Lloyd's method with speedup heuristic

Figure 7: Boxplots showing area misrepresentation after
each iteration of our adaptation of Lloyd’s method with (red)
and without (black) the speedup heuristic. For 100 sample
instances, initial sites have been distributed uniformly in a
rectangle with aspect ratio 2, and target areas drawn from a
power-law distribution with f (x) = 1

x4 .

This heuristic is compatible with other instantiations of
Lloyd’s method as well.

6. Discussion

We described an asymptotically optimal algorithm for
Voronoi treemaps. Our straightforward implementation of
this algorithm outperforms tuned and hardware-accelerated
implementations of previous approaches. In contrast to pre-
vious approaches it is based on a combinatorial algorithm
for weighted Voronoi diagrams and therefore resolution-
independent; as a consequence, zooming does not require
recomputation. Like all previous approaches, our method is
an adaptation of Lloyd’s method for centroidal Voronoi dia-
grams, and yields only locally optimal area representation.

The second element of our contribution is a new site up-
date strategy that reduces the number of iterations in Lloyd’s
method considerably. This technique is not specific to our
approach and can be used in other schemes as well, but it
would be interesting to explore further the tuning of its pa-
rameters.

Other issues to address in future work include the exten-
sion of the Voronoi treemap to higher dimensions and paral-
lel computation of the 3d convex hull. The most immediate,
however, is whether Fortune’s algorithm [For87] yields simi-
lar improvements for additively weighted Voronoi diagrams.

Acknowledgments. This research was partially sup-
ported by DFG via grant GRK/1042. We thank Michael
Balzer and Oliver Deussen for providing us with the data
to reproduce their example in Figure 1.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Nocaj & U. Brandes / Computing Voronoi Treemaps

References
[Aur87] AURENHAMMER F.: Power diagrams: properties, algo-

rithms, and applications. SIAM Journal on Computing 16, 1
(1987), 78–96. 2, 6

[BD05] BALZER M., DEUSSEN O.: Voronoi Treemaps. In Pro-
ceedings of IEEE Symposium of Information Visualization (Info-
Vis’05) (2005), IEEE Computer Society Press, p. 7. 1, 3, 8

[BDL05] BALZER M., DEUSSEN O., LEWERENTZ C.: Voronoi
Treemaps for the Visualization of Software Metrics. In Proceed-
ings of the 2nd ACM Symposium on Software metrics (2005),
ACM Press, pp. 165–172. 3

[BFHS09] BERNHARDT J., FUNKE S., HECKER M., SIEBOURG
J.: Visualizing Gene Expression Data via Voronoi Treemaps.
In Proceedings of the 2009 Sixth International Symposium
on Voronoi Diagrams (2009), IEEE Computer Society Press,
pp. 233–241. 1, 4

[CM95] CHAZELLE B., MATOUŠEK J.: Derandomizing an
output-sensitive convex hull algorithm in three dimensions. Com-
putational Geometry 5 (1995), 27–32. 7

[CMS93] CLARKSON K., MEHLHORN K., SEIDEL R.: Four re-
sults on randomized incremental constructions. Computational
Geometry 3 (1993), 185–212. 7

[Cox03] COXETER H. S. M.: Projective Geometry. Springer,
2003. 6

[CS89] CLARKSON K., SHOR P.: Applications of random sam-
pling in computational geometry, ii. Discrete & Computational
Geometry 4 (1989), 387–421. 7

[Day90] DAY A. M.: The implementation of an algorithm to find
the convex hull of a set of three-dimensional points. ACM Trans-
actions on Graphics 9 (January 1990), 105–132. 7

[dBCvKO08] DE BERG M., CHEONG O., VAN KREVELD M.,
OVERMARS M. H.: Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2008. 7

[Ede87] EDELSBRUNNER H.: Algorithms in combinatorial ge-
ometry. EACTS Monographs on Theoretical Computer Science.
Springer-Verlag, 1987. 7

[ES91] EDELSBRUNNER H., SHI W.: An o(n log2 h) time algo-
rithm for the three-dimensional convex hull problem. SIAM Jour-
nal on Computing 20 (March 1991), 259–269. 7

[For87] FORTUNE S.: A sweepline algorithm for Voronoi dia-
grams. Algorithmica 2 (1987), 153–174. 2, 9

[GO04] GOODMAN J. E., O’ROURKE J.: Handbook of Discrete
and Computational Geometry. Discrete Mathematics and its Ap-
plications. CRC Press, 2004. 2

[Got11] GOTZ D.: Dynamic Voronoi Treemaps: A Visualiza-
tion Technique for Time-Varying Hierarchical Data. Tech. Rep.
RC25132, IBM Research Division, Thomas J. Watson Research
Center, 2011. 1, 4

[HTS09] HORN M. S., TOBIASZ M., SHEN C.: Visualizing bio-
diversity with voronoi treemaps. In Proceedings of the 2009 Sixth
International Symposium on Voronoi Diagrams (2009), IEEE
Computer Society Press, pp. 265–270. 1, 4

[Llo57] LLOYD S. P.: Least squares quantization in PCM’s. Tech.
rep., Bell Laboritories Memo, 1957. 3

[LWL∗09] LIU Y., WANG W., LÉVY B., SUN F., YAN D.-M.,
LU L., YANG C.: On centroidal voronoi tessellation: energy
smoothness and fast computation. ACM Transactions on Graph-
ics 28 (2009), 101:1–101:17. 2, 4

[OBSC00] OKABE A., BOOTS B., SUGIHARA K., CHIU S. N.:
Spatial Tessellations: Concepts and Applications of Voronoi Di-
agrams, 2nd ed. Wiley, 2000. 7

[OCON82] O’ROURKE J., CHIEN C.-B., OLSON T., NADDOR
D.: A new linear algorithm for intersecting convex polygons.
Computer Graphics and Image Processing 19, 4 (1982), 384–
391. 7

[O’R98] O’ROURKE J.: Computational Geometry in C. Cam-
bridge University Press, 1998. 7

[PH77] PREPARATA F. P., HONG S. J.: Convex hulls of finite
sets of points in two and three dimensions. Communications of
the ACM 20 (February 1977), 87–93. 7

[RLW∗11] RONG G., LIU Y., WANG W., YIN X., GU X. D.,
GUO X.: Gpu-assisted computation of centroidal voronoi tes-
sellation. IEEE Transactions on Visualization and Computer
Graphics 17 (2011), 345–356. 3

[SFL10] SUD A., FISHER D., LEE H.-P.: Fast dynamic voronoi
treemaps. In Proceedings of the 7th International Symposium on
Voronoi Diagrams in Science and Engineering (2010), ISVD ’10,
IEEE Computer Society, pp. 85–94. 2, 3, 8

[Shn92] SHNEIDERMAN B.: Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on Graphics 11
(1992), 92–99. 1, 2

[Shn09] SHNEIDERMAN B.: Treemaps for space-constrained
visualization of hierarchies. webpage, June 2009. http:
//www.cs.umd.edu/hcil/treemap-history/,
visited on November 2011. 1

[VSCG08] VASCONCELOS C., SÁ A., CARVALHO P., GATTASS
M.: Lloyd’s algorithm on gpu. In Advances in Visual Comput-
ing, vol. 5358 of Lecture Notes in Computer Science. Springer-
Verlag, 2008, pp. 953–964. 3

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/

