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Motivation

The visualization of graphs using classical node-link diagrams works well up
to the point where the number of nodes exceeds the capacity of the display.
To overcome this limitation Zinsmaier et al. [5] proposed a rendering technique
which aggregates nodes based on their spatial distribution, thereby allowing for
visual exploration of large graphs. Since the rendering is done on the graphics
processing unit (GPU) this process is reasonably fast. However, the connection
between input graph and visual image is partially lost, which makes it harder,
for instance, to process weights and labels of the input graph.

Fig. 1. Level-of-Detail rendering of the US air-traffic dataset.

We reproduce their approach with the goal of establishing a flexible structure
to improve the connection between input data and visualization. Additionally,
we control the layout features in a more direct way. For example, contour lines
are explicitly drawn in order to remove fuzziness of the density visualization.
Though the proposed CPU-based approach cannot render at interactive rates, it
can be computed as a preprocessing step and then interactively explored given
some predefined resolution constraints.
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Approach

The visualization consists of two main parts: the construction of the terrain and
the aggregation of the edges depending on the underlying terrain. Our terrain
is a triangulation, where the triangle corners consist of the nodes of the graph.
The node clutter is reduced by a density visualization where each node gets a
height assigned and the resulting terrain is visualized.

The heights of the nodes are computed by a kernel density estimation (KDE),
which approximates unknown density distributions by overlaying kernel func-
tions at different positions. The density of a particular point is the sum over all
kernel functions evaluated at that point. We use the Improved Fast Gaussian
Transform (IFGT) [4], which takes on average O(N) time for N sources and N
evaluations.

We use a Delaunay triangulation to create a triangulated irregular network in
O(N logN) time [1]. Each node of the TIN has a height assigned by the KDE and
we assume a linear interpolation between two nodes on the TIN. Large triangles
can lead to a false depiction of the graph of the terrain. For instance, let us
assume that two neighboring nodes in the Delaunay triangulation represent a
hilltop with a valley between them. Without an additional point between the
hilltops the edge between them represent a ridge. Therefore, Ruppert’s Delaunay
refinement algorithm [2] is used to insert points in the circumcenter of triangles
which have a minimum angle of 15◦ or triangles which are particularly large.
Additionally, a convex hull is created around the input to prevent confusing
non-closing contour lines.

A contour line represents all points with a specific height and is often used
to visualize the 3D terrain of topographic maps. We extract equidistant con-
tour lines with van Kreveld’s find-isolines algorithm [3]. The contour lines are
polylines because of the TIN and get smoothed with splines to be more visual
pleasing. The contour lines form a hierarchy, which is used to aggregate the
edges: A contour tree (i.e. a hierarchical representation of the contour lines,
where a parent has a child if the child is completely contained in the parent) is
constructed and only edges between leaves of the contour tree are created.

In practice many of the contour trees are degenerated and consist of list-like
substructures. Nevertheless, there could be nodes that are not represented by the
edge visualization and therefore, edges of the non-represented nodes are moved
to the nearest (in Euclidean distance) leaf of the contour tree. Additionally, the
aggregated edges are scaled in width and opacity depending on the sum of the
weights of the original edges.

In our implementation of this approach, graphs with up to 42 thousand nodes
and 1.5 million edges (e.g., the net150 graph from the University of Florida sparse
matrix collection1) can be handled in less than 10 s.

1 http://www.cise.ufl.edu/research/sparse/matrices/Andrianov/net150.html.

http://www.cise.ufl.edu/research/sparse/matrices/Andrianov/net150.html


Flexible Level-of-Detail Rendering for Large Graphs 627

References

1. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a delaunay triangula-
tion. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

2. Ruppert, J.: A delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. Algorithms 18(3), 548–585 (1995)

3. Van Kreveld, M.: Efficient methods for isoline extraction from a TIN. Int. J. Geogr.
Inf. Syst. 10(5), 523–540 (1996)

4. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast gauss trans-
form and efficient kernel density estimation. In: Proceedings of the Ninth IEEE
International Conference on Computer Vision, vol. 1, pp. 664–671 (2003)

5. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 2486–2495
(2012)


