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Abstract
We describe a novel approach to visualize bibliographic networks that facilitates the simultaneous identification
of clusters (e.g., topic areas) and prominent entities (e.g., surveys or landmark papers). While employing the
landscape metaphor proposed in several earlier works, we introduce new means to determine relevant parameters
of the landscape. Moreover, we are able to compute prominent entities, clustering of entities, and the landscape’s
surface in a surprisingly simple and uniform way. The effectiveness of our network visualizations is illustrated on
data from the graph drawing literature.

Categories and Subject Descriptors(according to ACM
CCS): H.3.3 [Information Search and Retrieval]: Informa-
tion filtering

1. Introduction

Bibliographic analysis24 uses publication data to structure
and summarize a scientific field. These data are often given
in the form of networks, with nodes representing authors,
journals, or publications, and edges representing relations
between these entities such as authorship, collaboration, or
citation.

We present an approach to analyze and visualize biblio-
graphic networks using uniform algorithms to determine the
prominent entities in the network, to spatially represent the
clustering of the network, and to compute a surface for a
landscape visualization of results.

Since we propose an integrated method of analysis and
visualization directed at particular aspects of bibliographic
analysis, it may serve as a specialized component in more
elaborate systems,10, 5, 9 and in particular as a communica-
tion/exploration back-end for systems that specialize in ex-
tracting and presenting network data.7, 23

This paper is organized as follows. In Sect.2 we recall
the definition of Kleinberg’s hubs & authorities indices15 and
sketch their use in the analysis of bibliographic data. Based
on similar principles, a new method for two-dimensional
layout of bibliographic networks preserving the scientific

topography is presented in Sect.3. In Sect.4, index and
layout are turned into a landscape visualization, again us-
ing the same algorithmic principles. An illustrative example
comprised of publications in proceedings of Graph Drawing
Symposia is given in Sect.5.

2. Landmark Papers

To identify prominent entities in bibliographic networks, we
determine the structural importance of vertices according to
their position in the graph. Many concepts formalizing this
notion are in use, but the concept of hubs & authorities,15

though originally conceived to improve relevance ranking in
Web search engines, appears to be particularly suitable for
bibliographic networks. In this section, we present an alter-
native derivation of these indices to emphasize the similarity
of their computation with those in later sections. We assume
familiarity with basic matrix properties and computations.12

A straightforward notion of prominence in undirected
graphs, commonly applied in the analysis of social net-
works,22 is the idea that the importance of a vertex is de-
termined by the importance of its neighbors. According to
the following definition, the importance assigned to a vertex
is proportional to the total importance of its neighbors.

Definition 1 (eigenvector centrality4) Let A be the adja-
cency matrix of a connected undirected graphG = (V,E).
Eigenvector centrality, c(G) = c = (cv)v∈V , is the (unique)
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Figure 1: Operators transforming a citation network into
weighted undirected graphs representing the essence of cer-
tain analytic perspectives.

solution of

A ·c = λ ·c

subject tocv > 0 for all v∈ V and∑v∈V cv = 1, whereλ is
the (real, positive, and simple) largest eigenvalue ofA.

To simplify the presentation, we confine ourselves to the
analysis of connected citation networks with respect to land-
mark publications. We thus consider as basic input con-
nected directed graphsG = (V,E), in which verticesv ∈ V

represent a publication, and directed edgese = (u,v) ∈ E
represent a citation ofv in u. With straightforward modifi-
cations, our methods can be applied to other types of biblio-
graphic networks and other types of analyses targeted, e.g.,
at surveys, prominent authors, or journals with high impact.

Two operators modeling two different aspects of posi-
tions in the directed graph are defined to transform it into a
weighted undirected graph suitable for eigenvector centrality
analysis. See Fig.1 for an illustration.

Definition 2 (bibliographic coupling14 & co-citation19)
Let G = (V,E) be a directed graph with adjacency matrixA.
The weighted undirected graphsB(G) andC(G) induced by
adjacency matricesB= AAT andC = ATA are called thebib-
liographic couplingandco-citationgraph, respectively.

It is interesting to note that bibliographic coupling of a
bipartite graph in which vertices represent authors or publi-
cations, with edges from authors to their publications, yields
a collaboration graph.

Designed to increase the effectiveness of Web search en-
gines, hubs & authorities are formal notions of structural
prominence of vertices in directed graphs. Intuitively, a Web
page is considered a hub, if it links to many authorities, and
a resource is an authority, if many hubs link to it. The im-
plicit assumptions about the meaning of a link are generally
the same as the ones made for citations. In fact, the Web can
be considered the largest citation network there is.

Definition 3 (hubs & authorities15) For a connected di-
rected graphG = (V,E), let B andC denote the adjacency
matrices ofB(G) and C(G), respectively. Thehub index,
h(G) = h = (hv)v∈V , and theauthority index, a(G) = a =
(av)v∈V , are defined by

B ·h = λh ·h
C ·a = λa ·a

subject tohv,av > 0 for all v∈V and∑v∈V hv = ∑v∈V av =
1, whereλh andλa are the (real, positive, and simple) largest
eigenvalues ofB andC, respectively.

Hubs & authorities are thus eigenvector centralities in
the weighted undirected graphs constructed from a directed
graph by means of bibliographic coupling and co-citation,
i.e. h(G) = c(B(G)) and a(G) = c(C(G)). Starting from
a(1)← 1

n ·1, the following interleaved version of power iter-
ation is used to compute the indices without explicitly con-
structing the undirected graphs:

h(k) ← A ·a(k)

h(k) ← h(k)/‖h(k)‖

a(k+1) ← AT ·h(k)

a(k+1) ← a(k+1)/‖a(k+1)‖

for k > 0, wheren is the number of vertices inG. While

c© The Eurographics Association 2002.



Brandes and Willhalm / Bibliographic Landscapes

the speed of convergence depends on the ratio between the
largest and second-largest eigenvalue, convergence is usu-
ally rapid and we use stabilization of the eigenvalue approx-
imation as our stopping criterion. Since bibliographic net-
works tend to be very sparse, with the number of edges lin-
ear in the number of vertices, each iteration takes time linear
in the number of vertices in general.

3. Topics

We next describe a method to compute a two-dimensional
positioning of the vertices of a bibliographic network that
represents thematic clusters geometrically, but is technically
very similar to the iterative computation of a prominence
vector in the previous section.

The prominence analysis carried out in the previous sec-
tion is based on an undirected graph in which weighted
edges correspond to the extend of bibliographic coupling
(hubs) or co-citation (authorities). Weights thus reflect sim-
ilarity of entities with respect to the analytic perspective
taken. However, if two vertices in a directed graphG are
connected by just a single edge, they are adjacent in nei-
therB(G) norC(G). To incorporate similarity implicit in di-
rected linkages, our definition of similarity contains an addi-
tional unit weight for each directed edge.

Definition 4 (similarity graphs) Let G = (V,E) be a di-
rected graph with adjacency matrixA. The weighted undi-
rected graphsSB(G) andSC(G) induced by adjacency ma-
tricesSB = AAT +A+AT andSC = ATA+A+AT are called
similarity graphswith respect to bibliographic coupling and
co-citation, respectively.

Similarity graphs may be clustered geometrically using
standard methods such as multidimensional scaling or force-
directed graph layout algorithms. However, with these ap-
proaches optimum solutions are hard to obtain, and algo-
rithms typically get stuck in local optima of varying qual-
ity. We therefore opt for spectral layout methods. We re-
mark, though, that in comparison with other approaches,10

our similarity graphs are special, and both the way we com-
pute eigenvectors and the technique to avoid well-known de-
fects of spectral layouts are different.

Spectral layout refers to the use of eigenvectors of graph-
related matrices for positioning the vertices of the graph.
The following matrix has fascinating applications in diverse
areas.17

Definition 5 (Laplacian matrix) Let G = (V,E) be a
(weighted) undirected graph with adjacency matrixA, and
let D be the diagonal matrix of (weighted) degrees. The ma-
trix L(G) = L = D−A is called the(weighted) Laplacian
matrix of G.

Let us recall some fundamental facts about the Laplacian
spectrum from algebraic graph theory.11

Lemma 1 Let L be the Laplacian matrix of a (weighted)
undirected graphG. The eigenvalues ofL are non-negative
real numbers, the smallest being zero (with multiplicity one
if G is connected), and the largest being bounded by twice
the maximum degree inG. Any two eigenvectors ofL are ei-
ther collinear or orthogonal, and the entries of an eigenvector
associated with eigenvalue zero are all equal.

The reason for using eigenvectors of the Laplacian matrix
for graph layout, in particular those associated with small
eigenvalues, is the following. The value of the quadratic
form (xTLx)/(xTx) = ∑e={u,v}∈E ωe · (xu− xv)2 whereωe

is the weight of edgee, is called thestressresulting fromx.
The non-trivial eigenvectors ofL are orthogonal to the triv-
ial minimizer1, i.e. centered around the origin, and their re-
sulting stress is the associated eigenvalue ofL. Therefore,
pairwise orthogonal eigenvectors associated with the small-
est non-zero eigenvalues yield balanced layouts of minimum
stress.

If the underlying graph is not “round-shaped” (roughly, if
the second-smallest eigenvalue is not large enough), Lapla-
cian layouts yield clusterings which are too dense to be use-
ful for visualization. This defect is well-known, and it has
been suggested to use the Laplacian layout only to initialize
a force-directed layout algorithm10 which, however, results
in significantly increased running times.

Instead, we propose to modify the Laplacian matrix by
introducing a relaxation factor 0≤ ρ ≤ 1. The matrixLρ =
(1−ρ) ·D−A compromises between the Laplacian and the
adjacency matrix and thus avoids excessive displacement of
loosely connected vertices. Figure2 illustrates the effect.

To be able to compute eigenvectors ofLρ with the same
simple power iteration used for hubs & authorities, we re-
verse the order of its eigenvalues and repeatedly orthogo-
nalize with 1.6 Moreover, because of the potential loss of
sparsity, we do not construct the similarity graphs explicitly,
but proceed back and force along edge directions as in the
computation of hubs & authorities.

To compute a similarity clustering with respect to, say, co-
citation, letA be the adjacency matrix of a directed graphG
with n vertices,DSC(G) the diagonal weighted degree matrix
of SC(G), and∆ the maximum weighted degree ofSC(G).

x(k+1) ← A ·x(k)

x(k+1) ← AT ·x(k+1) + (A+ AT) ·x(k)

x(k+1) ← x(k+1) + (2∆ · I − (1−ρ) ·DSC(G)) ·x
(k)

x(k+1) ← x(k+1)− 1
n ∑

v∈V
x(k+1)

v

x(k+1) ← x(k+1)/‖x(k+1)‖

A second dimension,y, is computed in much the same way,
except that we orthogonalize with the first dimension by
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(a) Spring embedding of citation networkG

(b) Laplacian layout of co-citation graphSC(G)

(c) modified Laplacian layout (ρ = 0.25) ofSC(G)

Figure 2: Co-citation in citation network of Sect.5; note
that the Laplacian layouts are not primarily determined by
citations, but the similarity of citation patterns.

computing

y(k+1) ← y(k+1)− xT ·y(k+1)

xT ·x x

at the end of each iteration. Again, we require only sparse
matrix-vector and vector-vector multiplications, so that each
iteration needs linear time and space.

4. Scientific Landscapes

The landscape metaphor is popular for visualizing biblio-
graphic networks,8, 10, 9 but in general the landscape is pro-
duced simply by overlaying a triangulated grid, where grid
points are elevated according to the density of data points in
their vicinity. The shape of the landscape thus conveys only
one aspect in the network’s analysis, namely clustering.

We define the shape of the landscape so as to display
both clustering and prominence in the same visualization
and to represent the underlying network structure more accu-
rately. Intuitively speaking, we simplify a three-dimensional
drawing of the network (in which two dimensions represent
similarity between entities and the third is determined by a
prominence index) by placing a table cloth over it. We next
show how this table-cloth can be positioned with yet another
variation of the iterative procedure used in the previous sec-
tions.

Assume we are given a connected undirected graphG =
(V,E) with n vertices andm edges together with a three-
dimensional layout(x,y,z), in which eachv ∈ V is associ-
ated with a point(xv,yv,zv) ∈ R3. In our particular applica-
tion, x- andy-coordinates are the entries of eigenvectors of
the modified Laplacian matrix ofG, andz-coordinates are
eigenvector centralities inG, i.e. z = c(G), but a landscape
could be generated in much the same way from any other
three-dimensional layout as well.

We want to cover the layout from the top (z-direction)
with a smooth surface to resemble a landscape in which el-
evations correspond to prominent entities. We therefore first
generate a point set in thexy-plane, triangulate it, and finally
computez-coordinates for all points using this triangulation
and the prominence of vertices.

The set of points defining the shape of the landscape is
generated as follows. Consider the two-dimensional straight-
line drawing ofG defined by(x,y), and addΩ(

√
n) equidis-

tant horizontal and vertical lines each to the drawing. The
set of pointsP that defines the landscape consists of all ver-
tices ofG and all intersections (between edges, grid lines,
or edges and grid lines) thus created. Since|P| ∈ O(m2), it
may be desirable for very large graphs to reduce the num-
ber of points (at the cost of resemblance quality) by ignoring
those induced by edges that cross other edges or grid lines.

Next, a Delaunay triangulation ofP is computed, the re-
sulting triangles of which are later used to render the sur-
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face. This triangulation may be restricted to include edges
and grid lines.

It remains to determinez-coordinates for allp ∈ P such
that the surface covers the three-dimensional graph layout
like a table cloth. Ideally, points created from vertices of the
graph are placed at thez-coordinate of that vertex. On the
other hand, for the surface to be smooth, points that are close
in the xy-plane should also be close inz-direction. Hence
consider the objective function

∑
p∈P

∑
q∈P

ωpq · ‖zp−zq‖2

whereωpq is a nonnegative weight measuring the influence
of q on p, which will depend on the relative distance between
them. We setωpq = 0, if p = q or p and q are not adja-
cent in the triangulation. Inspired by recent work on terrain
modeling,2, 1 we compute the remaining influence weights
from Sibson’s interpolant,18 i.e. by temporarily removingp
from the Voronoi diagram and settingωpq to the share ofp’s
Voronoi cell that its Delaunay neighbor acquires throughp’s
removal.

Minimization of the above objective function is straight-
forward. Note that it constitutes the quadratic form associ-
ated with a Laplacian matrix, though this time of the tri-
angulation graph with Sibson weights. Moreover, since the
surface should cover the three-dimensional shape of the net-
work, we have natural candidates for thez-coordinates of
points stemming from a vertex or the intersection of an edge
and use them as a lower bound for the elevation. Points on
the convex hull (the border of the grid) are fixed to havez-
coordinate equal to zero, i.e. at ground level. Subject to these
constraints, the remaining coordinates are determined so as
to minimize the above objective.

Since some points are already fixed, the minimization
amounts to placing all other points in the weighted one-
dimensional barycenter of their neighbors. The resulting sys-
tem of linear equations has a unique solution,21 which can
be approximated quickly using an iterative equation solver.
Let F be the edges of the Delaunay triangulation, then we
iterate

z(k+1)
p ← ∑

q:{p,q}∈F

ωpq

∑
q′ :{p,q′}∈F

ωp,q′
·z(k)

q

for eachp∈ P whose coordinate has not been fixed. These
are once again sparse matrix computations, and since the
matrix is weakly diagonally dominant, convergence is rapid.

5. Example

For proof of concept, we have implemented our approach
in C++ using the Library of Efficient Data Types and Algo-
rithms (LEDA)16 and OpenGL, and tested it on a data set
taken from the 2001 Graph Drawing Contest.3 It consists of
all papers published in proceedings of Graph Drawing Sym-
posia 1994–2000 together with their mutual citations. The

largest connected component is formed by 249 papers and
642 citations. It should be noted that this data cannot form
the basis for valid conclusions about the relative importance
of papers in the field of graph drawing as such. It was chosen
simply because we are most familiar with the document cor-
pus and could therefore evaluate much better the adequate-
ness of our visualizations (relative to the given data set).

Using our reshaped landscape metaphor, the citation net-
work suggests several hypotheses about the nature of cita-
tions in the area of graph drawing that are readily confirmed
by inspection of the underlying data (see Figs.3–6 in the
color section). Peaks indeed indicate authoritative papers,
and villages correspond to themes in graph drawing.

Consider, for instance, the mountain ridge stretching
across the far end in Fig.3. It is made up of subject areas,
and peaks correspond to highly relevant papers within these
subjects. A clear example are the two peaks on the right,
where papers dealing with three-dimensional and orthogonal
graph drawing cluster. At the Graph Drawing Symposium,
many papers on three-dimensional layout deal with orthog-
onal representations.

Another interesting observation is the village formed by
reports on the graph drawing contest itself (Fig.4) which is
hidden behind mainstream subjects.

Improved graphical design (e.g., richer glyphs), more so-
phisticated rendering (e.g., increased realism), and compre-
hensive means of user interaction (e.g., mouse-over labels,
levels of detail) would certainly be useful for an actual sys-
tem, but are beyond the scope of our work. The landscape
visualization might further be extended by introducing topi-
cal area boundaries (based on implicit surface techniques20)
or citation tracks (based on main path analysis13).
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Figure 3: Simultaneous visualization of prominence (au-
thority) and clustering (co-citation similarity) for Graph
Drawing Proceedings citation network. Peaks correspond to
landmark papers.

Figure 4: Graph-Drawing Contest Reports form a village
hidden behind the mainstream ridge.

Figure 5: Similar citation patterns lead to close positions
(citation edges shown, semi-transparent surface). Height
and width of house depict the number of citations received
and made.

Figure 6: Restricted triangulation refining the layout in
Fig. 2(c)
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