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1 Introduction

We describe visone, a tool that facilitates the visual exploration of social
networks. Social network analysis is a methodological approach in the social
sciences using graph-theoretic concepts to describe, understand and explain
social structure. The visone software is an attempt to integrate analysis and
visualization of social networks and is intended to be used in research and
teaching. While we are primarily focussing on users in the social sciences,
several features provided in the tool will be useful in other fields as well.
In contrast to more conventional mathematical software in the social sci-

ences that aim at providing a comprehensive suite of analytical options, our
emphasis is on complementing every option we provide with tailored means of
graphical interaction. We attempt to make complicated types of analysis and
data handling transparent, intuitive, and more readily accessible. User feed-
back indicates that many who usually regard data exploration and analysis
complicated and unnerving enjoy the playful nature of visual interaction.
Consequently, much of the tool is about graph drawing methods specifi-

cally adapted to facilitate visual data exploration. The origins of visone lie in
an interdisciplinary cooperation with researchers from political science which
resulted in innovative uses of graph drawing methods for social network vi-
sualization, and prototypical implementations thereof. With the growing de-
mand for access to these methods, we started implementing an integrated tool
for public use. It should be stressed, however, that visone remains a research
platform and testbed for innovative methods, and is not intended to become
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a standard tool with all due consequences such as extensive user-support
and product marketing. Essentially all components are in development and
therefore subject to change. In a nutshell, visone is a

• tool for interactive analysis and visualization of networks, in which
• originality is preferred over comprehensiveness, and that
• caters especially to social scientists.

The organization of the subsequent sections follows the common structure of
all chapters in this book. In particular, we start with background information
on the main area of application for visone, and give application examples in
Section 5. While other interesting algorithms have been implemented, Sec-
tion 3 focusses on those for graph drawing.

2 Applications

The main application area of visone is a methodological approach in the social
sciences: Social Network Analysis uses graph-theoretic concepts to describe,
understand and explain, sometimes even predict or design, social structure.
The objects of interest are emergent patterns of relationships and their in-
terplay with entity attributes.
To motivate the decisions made in the design of visone, we describe the

data model on which we operate, types of analysis provided, and visualization
principles governing our choice of graph drawing algorithms.

2.1 Model

A social network consists of nodes (often referred to as actors), i.e. entities
such as persons, organizations, or simply objects that are linked by binary
relations such as social relations, dependencies, or exchange. Both nodes and
links may have additional attributes.
Relations constituting a social network may be directed, undirected, or

mixed. Attributes can be of any type, and numerical link attributes may
strengthen or weaken the tie between two nodes. Since data is often gathered
by means of questionnaires, even the existence of a link is subject to interpre-
tation because two respondents may have different perceptions regarding the
presence of a specific type of tie between them, i.e. the link may be confirmed
or unconfirmed. Rather typical examples of the kind of structures studied are
given in Section 5.
To simplify usage, implementation, and documentation, visone operates on

a single, unified network model (in essence, a labeled digraph) that is general
enough to capture the essential features of a broad range of conceivable cases.
Since the tool is interactive, objects may be selected to alter the subgraph to
which an operation is applied. The rules on how particular network features
are mapped to the uniform model are described in Section 6.
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Definition 1 (visone network model). A social network is a labeled di-
rected graph G = (V,E = EC∪EU ; δ, ω),

1 where EC and EU are disjoint sets
of confirmed and unconfirmed edges, δ : E → IR≥0 is a non-negative edge
length, and ω : E → IR≥0 a non-negative edge strength.
A vertex or edge attribute is a (partial) function assigning values to ver-

tices or edges. The values assigned by a nominal attribute are strings, while
those of a numerical attribute are non-negative real numbers.

A crucial feature in many studies is the interrelation between structural
properties of a social network and its attributes. We hence provide convenient
mechanisms to handle an arbitrary number of vertex and edge attributes.
These can be mapped to the visual appearance of the graph, or used to define
length and strength labels and thus influence the outcome of an analysis.
Although there is no restriction on the class of graphs that constitute

a social network, instances from social science projects tend to be sparse
but locally dense, and to exhibit small average distances between vertices.
Moreover, these graphs are frequently small to medium in size. We thus
assume that, roughly, n+m ≤ 1000 and consider algorithms running in time
O(nm) (for reasonable constants) to be acceptable. For significantly larger
graphs, we recommend to try Pajek, a tool for the analysis of large networks
also described in this book.

2.2 Analysis

The purpose of social network analysis is to identify important actors, crucial
links, subgroups, roles, network characteristics, and so on, to answer substan-
tive questions about structures.
There are three main levels of interest: the element, group, and network

level. On the element level, one is interested in properties (both absolute and
relative) of single actors, links, or incidences. Examples for this type of analy-
ses are bottleneck identification and structural ranking of network items. On
the group level, one is interested in classifying the elements of a network and
properties of subnetworks. Examples are actor equivalence classes and cluster
identification. Finally, on the network level, one is interested in properties of
the overall network such as connectivity or balance.
Currently, the types of analyses provided in visone are almost exclu-

sively on the element level (with corresponding network level statistics). More
specifically, we have focussed on indices measuring structural importance of
vertices. While there is no universally accepted definition of what makes a
vertex important, a small collection of indices forms the basis of most studies.
Several of these originally do not apply to our rather general network model
(e.g., some only apply to connected undirected graphs), but we were able

1 Recall that the definition in Section 2 of the Technical Foundations Chapter
allows for multiple edges and self-loops.
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to generalize and unify them. The complete list of currently implemented
indices is given in Figure 1.

index definition reference

local measures

degree cv =
∑

e∈instar(v)∪outstar(v)

ω(e) –

indegree cv =
∑

e∈instar(v)

ω(e) –

outdegree cv =
∑

e∈outstar(v)

ω(e) –

distance measures

betweenness cv =
∑

s6=v 6=t∈V

σG(s, t|v)

σG(s, t)
[2,19,9]

where σG(s, t) and σG(s, t|v) are the number of
all shortest st-paths and those passing through v

closeness cv =
1

∑

t∈V

δ(v, t)
[7,32]

eccentricity cv =
1

max
t∈V

δ(v, t)
[21]

radiality cv =

∑

t∈V

(diam(G) + 1− δ(v, t))

(n− 1) · diam(G)
[35]

feedback measures

status cv = α ·
∑

(u,v)∈instar(v)

(1 + cu) [24]

where α = min{max
v∈V

indeg(v), max
v∈V

outdeg(v)}−1

eigenvector cv = µ
−1

∑

(u,v)∈instar(v)

ω(u, v) · cu [8]

where µ is the largest eigenvalue of A(G)

pagerank cv = γ ·
1

n
+ (1− γ)

∑

(u,v)∈instar(v)

cu [15]

where 0 < γ < 1 is a free parameter

authority cv = µ
−1 ·

∑

(u,v)∈instar(v)

ω(u, v) ·
∑

(u,w)∈outstar(u)

ω(u,w)cw [26]

where µ is the largest eigenvalue of A(G)TA(G)

hub cv = µ
−1 ·

∑

(v,w)∈outstar(v)

ω(v, w) ·
∑

(u,w)∈instar(w)

ω(u,w)cu [26]

where µ is the largest eigenvalue of A(G)A(G)T

Fig. 1. Available vertex centralities. Note that most indices have been generalized
with respect to the original references, and all are rescaled to percentages.
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One particular consequence of our unification is that all vertex indices
are non-negative and have unit sums, i.e. they can be viewed as probability
distributions on the vertex set and interpreted as the share of importance a
node assumes in its network.
Since the theory for edge indices is even less developed, we are currently

investigating extensions to edges along the same lines. Moreover, support for
graphic comparison of different vertex or edge indices and for some types of
group level analysis is intended to be added in the future, but will require en-
tirely different forms of visualization (cf. next subsection). A comprehensive,
though non-visual, tool for social network analysis is UCINET [1].
Note that it is a long-standing debate whether unconfirmed edges should

be considered for analysis. Typically, researchers decide to either treat all un-
confirmed edges/indexedge!unconfirmed as if confirmed, or to exclude them
completely. We leave this decision with the researcher, but add the freedom
to make it on a per-edge basis (cf. Section 6). This way, the user has full con-
trol over the assumptions made, and the ability to experiment with different
hypotheses and compare their consequences.

2.3 Visualization

Visualized information must neither be misleading nor hard to read. Hence
there are two obvious criteria for the quality of social network visualizations:

1. Is the information manifest in the network represented accurately?
2. Is this information conveyed efficiently?

With these criteria in mind, the following three aspects should be carefully
thought through when creating network visualizations [11]:

• the substantive aspect the viewer is interested in,
• the design (i.e. the mapping of data to graphical variables), and
• the algorithm employed to realize the design (artifacts, efficiency, etc.).

In addition to algorithms that try to produce what is often termed an “aes-
thetic” drawing of a graph (and thus are oblivious to the first aspect) we
developed the following two types of visualization specifically for the vertex
index analyses currently available in visone.
Depending on the context, actors of high structural importance are in-

terpreted as a being central or as having high status. With this substantive
aspect in mind, we designed visualizations that represent vertex indices by
constraining vertex positions to fixed distances from the center or from the
bottom of the drawing, in either case depending linearly on the vertex in-
dex. See Figure 2 for illustration and note that relative scores are difficult to
determine from the straightforward representation based on vertex size.
The information can thus be represented accurately, and it is up to the

(constrained) graph layout algorithm to optimize readability. To avoid user
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FRA

GER
ITA

GBR

ESP

(a) vertex index represented by vertex size

FRA

GER

ITA

GBR
ESP

(b) interpreted as centrality

FRA

GER

ITA

GBR

ESP

(c) interpreted as status

Fig. 2. Different means of visualizing a vertex index: most prestigious football
leagues based on which ones the participants of the 1998 World Cup Final played in
(network data courtesy of Lothar Krempel). Thickness of edges indicates number of
players in foreign league. Like graph paper, background lines support determination
and comparison of scores.
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dissatisfaction with suboptimal drawings, we strive to find at least locally
optimal layouts that are not obvious for users to improve. The algorithms
used for status and centrality drawings are described in Sections 3.3 and 3.4.

3 Algorithms

From the computer science point of view, one of the main aspects of the
visone project and software is that of a stimulus and testbed for algorithmic
research. Indeed, new and more efficient algorithms have been developed for
many components of the tool.
For example, more efficient generators have been implemented to create

graphs according to popular stochastic models such as random graphs [20],
small worlds [36], and evolving graphs with preferential attachment [3]. Time
and space complexity of these generators is linear in the size of the graph
generated [4].
For vertex indices, not only unified definitions and normalizations, but

also unified algorithms are introduced in visone. While all feedback mea-
sures are computed using variants of sparse-matrix power iteration, all dis-
tance measures are determined by solving an augmented single-source short-
est path problem from each vertex. For betweenness centrality, in particular,
this yields a substantial improvement over previous algorithms [9].
Though we are facing many more interesting algorithmic challenges during

the course of this project, we focus here on some that arise in the context
of visualization, the main topic of this book. In the subsections below we
describe our approaches for the more involved types of layouts provided.

3.1 Uniform layouts

When exploring a network, spring embedder layouts are useful to catch a
first glimpse of the overall structure of the graph. However, the algorithms’
performance and layout quality tend to worsen significantly with increasing
size of the graph.
A related, yet more reliable approach to draw very large graphs is intro-

duced in [23], but limited to undirected graphs without tree-like substruc-
tures. We first describe the original approach and then sketch extensions we
are currently implementing to take edge directions into account and alleviate
the problems caused by low connectivity.

A high-dimensional embedding approach. Let G = (V,E) be a simple
and connected undirected graph with vertices V = {v1, . . . , vn}. Similar to
the spring embedder variant of Kamada and Kawai, the basic goal is to
place every pair of vertices at a distance proportional to its graph-theoretic
distance. Rather than placing vertices directly in two dimensions, first an
n-dimensional layout is determined in which each dimension is contingent
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on a different vertex. In the dimension of a vertex v ∈ V , the coordinate of

each vertex is its centered distance from v in the graph, p
(i)
v = dG(v, vi) −

1
n

∑

w∈V dG(w, vi). This high-dimensional drawing is projected down into
two dimensions using principal component analysis. That is, a projection
with maximum variance is determined from two eigenvectors associated with
the largest eigenvalues of the covariance matrix Σ = (σij)1≤i,j≤n, where

σij = p(i)T · p(j) .

With eigenvectors e(1), e(2), which can be computed using power iteration,
the location pv = (xv, yv) of v ∈ V is obtained from

xv =

n
∑

i=1

e
(1)
i · p(i)

v and yv =

n
∑

i=1

e
(2)
i · p(i)

v .

Note that, because of the size of the covariance matrix, the overall algorithm
has running time Ω(d2n), where d is the number of dimensions of the high-
dimensional embedding. Thus, if the number n of vertices is large, only a
sample is used to determine the initial embedding. A simple heuristic for the
k-center problem serves well to select that sample [23].

Modifications. The above approach cannot take into account the direction
of edges. Likewise, it is not suitable for large graphs of low connectivity.
Consider the block-cutpoint tree of a non-biconnected graph. If a subtree
contains none of the sample vertices, all vertices in the subtree will be placed
at the same relative positions in every dimension, and thus in the projection.
We are therefore modifying the high-dimensional embedding approach in

several ways: mainly, we reserve some of the dimensions of the initial embed-
ding to display edge directions, and introduce dependencies between others
to avoid strong correlations between substructure layouts. We also consider
edge lengths in the computation of distances. Finally, we add dimensions in
which only the subgraph induced by confirmed edges is considered to make
it visually more dominant.

3.2 Spectral layouts

Let G = (V,E;ω) be an undirected graph with positive edge weights, e.g.
obtained from the underlying undirected graph of a social network and its
strength label ω. Consider the following weighted version of the minimization
objective of Tutte’s barycentric layout model (cf. Section 4.5 of the Technical
Foundations Chapter)

∑

{v,w}∈E

ω(e) · ‖pv − pw‖
2 =

∑

{v,w}∈E

ω(e) ·
(

(xv − xw)
2 + (yv − yw)

2
)

(1)
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where pv = (xv, yy) ∈ IR
2 is the location of vertex v ∈ V . Recall that optimum

solutions place all vertices in the same location. In spectral graph layout, first
introduced by Hall [22], these undesirable solutions are avoided not by fixing
the location of select vertices, but by putting more uniform constraints on
the location vector p = (pv)v ∈ V as follows.
In matrix notation, Tutte’s objective (1) can be expressed as pTL(G)p,

where
L(G) = D(G)−A(G)

is called the Laplacian matrix of G, with D(G) the diagonal matrix of ver-
tex degrees and A(G) the weighted adjacency matrix. To eliminate the de-
pendency on the scale of p we divide this quadratic form by pT p = ‖p‖2.
Now observe that, if p is an eigenvector of L(G), the associated eigenvalue

is pTL(G)p
pT p

, and that the trivial optima of (1) are multiples of p = 1, i.e. the
vector with all components equal to one, and associated with eigenvalue 0.
The eigenvalues of the Laplacian are non-negative real numbers, and their

eigenvectors are pairwise orthogonal. Two eigenvectors associated with the
smallest non-zero eigenvalues of L(G) therefore minimize

∑

{v,w}∈E

ω(e) · (xv − xw)
2 =

xTL(G)x

xTx
subject to 0 6= x ⊥ 1

and

∑

{v,w}∈E

ω(e) · (yv − yw)
2 =

yTL(G)y

yT y
subject to 0 6= y ⊥ 1 and y ⊥ x .

As a consequence of orthogonalization with 1, the resulting layouts are cen-
tered around the origin.
Symmetries are displayed well in spectral layouts, and structurally equiv-

alent vertices (i.e. vertices with identical neighborhoods) are placed in the
same location. If a graph is not balanced, however, most vertices are clus-
tered in the center of the drawing, and only some loosely connected vertices
are placed far away. To counter this effect, a slightly modified Laplacian
Lρ(G) = (1 − ρ)D(G) − A(G) in which the diagonal is weakened by a con-
stant factor ρ, 0 ≤ ρ ≤ 1, is used. This can be viewed as pushing vertices
out of the center by applying a radial force that depends on the degree of a
vertex and is illustrated in Figure 3.
Since the graphs we deal with are of medium size, no sophisticated algo-

rithm is needed. The eigenvalues are simply reversed using an upper bound Λ
on the largest one, so that power iteration with re-orthogonalization yields
the two desired eigenvectors. The current positions on the screen are used
for initialization, and the residual, i.e. the squared distance of a vector from
being an eigenvector, serves as convergence criterion. The entire layout algo-
rithm is given in Alg. 1. Note that ρ = 0 yields the standard spectral layout,
whereas ρ = 1 yields two eigenvectors of the adjacency matrix.
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Fig. 3. Spectral layouts with modified Laplacian Lρ. The graph in the lower row
is from Figure 21 of the Technical Foundations Chapter.

Algorithm 1: Spectral layout with a modified Laplacian matrix

Input: undirected graph G = (V,E;ω) with edge strengths, n = |V |
initial layout pv = (xv, yv), v ∈ V
parameter 0 ≤ ρ ≤ 1

Output: layout pv = (xv, yv), v ∈ V

r ← 2
while r > 1 do

x′ ← (Λ · I − Lρ(G)) · x; y′ ← (Λ · I − Lρ(G)) · y

x′ ← x′ − (
∑

v∈V

x′

v

n
) · 1; y′ ← y′ − (

∑

v∈V

y′
v

n
) · 1

y′ ← y′ − y′
T
x′

x′T x′

r ← max{‖x′ − xT x′

xT x
x‖2, ‖y′ − yT y′

yT y
y‖2}

x← n
max
v∈V

x′
v

x′; y ← n
max
v∈V

y′
v

y′

od

With an additional fixed upper bound on the number of iterations, Alg. 1
runs in time O(n + m). Since the current positions on the screen are used
for initialization, more iterations can be performed simply by calling spectral
layout again. Note that, using more elaborate multi-scale methods, spectral
layouts can be computed efficiently even for very large graphs [27].

3.3 Layered layouts

To visually support status analyses of networks as described in Section 2,
an algorithm for layered graph layouts is provided. The algorithm is a par-
ticular instance of the Sugiyama framework (cf. Section 4.2 of the Technical
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Foundations Chapter), with some rather unusual modifications induced by
our special setting.
In particular, our layered layout algorithm does not modify relative verti-

cal positions of vertices. This is because our visualization criteria demand that
the vertex index be represented precisely. The purpose of the layout algorithm
is therefore to make the drawing as readable as possible without changing
y-coordinates. The algorithm is described along the three main phases of the
Sugiyama framework and a refinement of what is outlined in [14]. Note that
we treat each connected component separately.

Layer assignment. Fixed y-coordinates immediately induce a layering in
which vertices with equal vertical position are placed in the same layer. How-
ever, typical status indices then yield layerings with many singleton layers
and pairs of layers with tiny vertical distance so that edges running between
them are almost indistinguishable.
Instead, we run a one-dimensional clustering algorithm on the set of y-

coordinates assumed by vertices, and treat each cluster as a layer.

Crossing minimization. It is particularly difficult for crossing reduction
procedures to untangle sparsely connected subgraphs. Since we strive for
layouts that appear difficult to improve, we start by removing all dangling
trees. Note that a layered tree is trivially ordered to have no crossing.
For crossing reduction we apply the barycenter heuristic, followed by a

weighted variant of sifting [29]. While the barycenter heuristic is fast and good
at separating biconnected components, a few rounds of subsequent sifting
ensure that we end up with a layout that cannot be improved by moving a
single vertex.
In our weighted variant, each crossing contributes the product of the two

edge weights involved, where edges are weighted according to their thickness
on the screen. Recall that a social network has two types of edges, confirmed
and unconfirmed. Confirmed edges are considered to be more important, and
it should be possible to recognize the subgraph induced by confirmed edges in
the drawing of the overall graph. To discourage crossings between confirmed
edges, their weight is doubled in the algorithm.
After vertex orderings have been determined for the reduced components,

the temporarily removed dangling trees are re-inserted into the ordering.
Finally, we make sure that pairs of long edges do not cross at inner seg-

ments, so that they can be drawn with only two bends (at their extreme
dummy vertices). Note that crossings can be moved up or down by swapping
the order of dummy vertices on one layer. We move crossings downward, be-
cause the more important part of the drawing is the top – i.e. where the high
status actors are (cf. Figure 2).
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Coordinate assignment. Using the linear-time algorithm of [13] we obtain
integer horizontal coordinates that are subsequently scaled to fit the entire
graph on the screen.

3.4 Radial layouts

We provide an algorithm for radial graph layouts to support centrality visu-
alizations as described in Section 2.3.

A radial layout is described in polar coordinates pv = (rv, ϕv), v ∈ V ,
but since we use them to convey a structural vertex centrality index c, the
first coordinate of vertices v ∈ V with cv > 0 is fixed at rv =

cv−c
c−c , where c

and c are the maximum and the minimum non-zero score. If the two highest
centrality scores differ only marginally, the range of radii is reduced by a fixed
offset to avoid vertex overlap in the center. Vertices with zero centrality are
placed on an outer orbit.

Similar to computing x-coordinates in layered layouts, the angular ϕ-
coordinates are determined so as to increase the readability of the diagram.
The main layout objectives are uniform distribution of vertices, and few edge
crossings. While the three-stage force-directed method of [12] yields the most
appealing layouts to date, it is too slow for an interactive tool. A faster,
purely combinatorial algorithm is therefore used.

Note that, different from the layered case, the (cyclic) ordering of vertices
in (circular) layers does not even determine the number of edge crossings.
Instead of the radial layout problem we therefore restrict our attention to
circular layouts, i.e. to the case rv = rw > 0 for all v, w ∈ V . Nevertheless,
crossing minimization is NP-hard even for circular layouts [28].

Similar to the approach taken for layered layouts in the previous sub-
section, we split the graph into its connected components and treat them
individually. In fact, it is split into its biconnected components, because their
layouts can be combined without introducing any additional crossings (see
Figure 4).

Fig. 4. Utilizing the tree of blocks and cut-vertices to avoid crossings between
edges that belong to different blocks.
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An efficient algorithm for circular layouts of biconnected graphs is intro-
duced in [34,33] and experimentally shown to produce fewer crossings than
previous approaches. A simpler algorithm [6] based on circular sifting yields
even fewer crossings. Starting from the cyclic ordering given by current posi-
tions on the screen, the idea is to iteratively place a single vertex in its locally
optimal position, i.e. where the number of crossings in which its incident edges
are involved is minimized. To find this position, the vertex is moved around
the circle, and each time the change in the number of crossings is recorded.

v

w v

w

Fig. 5. After swapping two neighboring vertices v and w, an edge of v crosses
exactly those edges of w that it didn’t cross before.

Assume that all adjacency lists are cyclic and ordered according to the
current cyclic ordering of vertices. This can be achieved using bucket sort
in time O(m). The vertex v to be placed optimally is moved clockwise, one
position at a time. When swapping the vertex with a neighbor w, the resulting
difference in the number of crossings is determined by merging the two sorted
adjacency lists. For each edge incident to v, the change in crossings is the
difference between the length of the prefix and suffix of the current position
in the adjacency list of w. See Figure 5 for an illustration.
A single swap takes time O(deg(v)+deg(w)). Locally optimal positioning

once for each vertex therefore takes amortized time O(nm). Experimental
evidence indicates that a few such rounds suffice, and that this algorithm
consistently outperforms other heuristics.

4 Implementation

The visone software is implemented in C++ using LEDA, the Library of
Efficient Data Types and Algorithms [30]. While the user interface is a cus-
tomized version of LEDA’s GraphWin class, all graph generation, analysis,
and layout algorithms (except for LEDA’s force-directed layout routine) have
been implemented from scratch.
Starting with version 1.1, the main data format used in visone will be

the XML sublanguage GraphML (Graph Markup Language) [10]. GraphML
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support is implemented in a LEDA extension package which will be made
available for public use. It will hence be possible to administer project files
with several social networks and any number of attributes. Figure 6 shows a
self-explanatory fragment of a social network represented in GraphML. Data
attributes can be mapped freely to graphical attributes like color, shape, and
so on.

...

<key id="k0" for="edge"

attr.name="visone:confirmed" attr.type="boolean">

<default>true</default>

</key>

<key id="k1" for="edge"

attr.name="frequency" attr.type="int">

<desc>frequency of contact in times per week</desc>

<default>1</default>

</key>

...

<graph edgedefault="directed">

...

<edge id="e7" source="v0" target="v1"/>

<edge id="e11" source="v0" target="v2">

<data key="k0">false</data>

<data key="k1">7</data>

</edge>

...

Fig. 6. GraphML fragment representing two edges, one confirmed with a unit value
and the other unconfirmed with a value of seven. The first edge label is a standard
attribute stored by visone, the other is user-defined.

Besides GraphML, import and export in a number of simple formats and
some formats customary in social network analysis and graph drawing are
supported. To communicate results, visualizations can be exported in Scalable
Vector Graphics (SVG) or PostScript format. Many conversion tools exist for
both. The SVG export routine has been adopted into the core LEDA package.
There is neither a macro language nor an interface for third-party exten-

sions, but limited support of command-line options for batch-mode operations
is planned in the future.

5 Examples

We illustrate the intended usage of visone by three exemplary studies in which
predecessors of the system have been used to explore and analyze network
data.
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Drug policy. This project [25] studies the presence of HIV-preventive mea-
sures for IV-drug users in nine selected German municipalities. The substan-
tive question underlying this research is, why municipalities with comparable
problem pressure differ significantly in the provision of HIV-preventive mea-
sures such as methadone substitution or needle exchange.

The policy networks under scrutiny comprise all local organizations di-
rectly or indirectly involved in the provision of such measures. In each of
the nine municipalities, the 22–38 actors included in the study were queried
about relations such as strategic collaboration, common activities, or infor-
mal communication with other organizations in the same municipality. None
of the networks has more than 120 edges of the same type, and typically more
than 50% of them are unconfirmed.

Figure 7 is a typical example of such a network visualized with visone. Note
that centrality indices provide insight into the social and political structure
of policy making and help understanding the policy outcomes produced.

25 %

1.56 %

15.63 %

6.25 %

15.63 % 34.38 %

Fig. 7. Organizations involved in drug policy making. Radial visualization of be-
tweenness centrality in network of informal communication. Organizations either
have a supportive (yellow) or a repressive (red) attitude towards drug users, and
they are public (rectangles) or private (ellipses). Height, width, and area indicate
indegree, outdegree, and degree when unconfirmed edges are counted as directed
along the claim of existence.
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Industry privatization. The second study [31] deals with networks of pub-
lic, societal and private organizations that developed during the privatization
of industrial conglomerates in East Germany as part of the economic trans-
formation after German unification in 1990. Their privatization is understood
as political bargaining processes between actors that are connected by ties
such as exchange of resources, command, or consideration of interest.

The privatization was foreseen to be carried out by the Treuhandanstalt,
a public agency of the federal government. Due to its institutional position
and its ownership of all companies, it was generally assumed to be one of the
most powerful actors in the transformation of East Germany.

As part of the analysis, status indices are used as indicators for the
power or influence of actors. Since the specific index considered for these
networks [16, p. 35ff] is not yet provided in visone, it was imported from
another software tool (STRUCTURE [17]). Figure 8 gives a visualization
example showing whose interests actors involved in the privatization of the
ship-building industry claim that they considered.

EC

Treuhandanstalt

Fig. 8. Interest consideration among actors involved in privatization of the East
German ship-building industry after German unification (redrawn from [14], for
clarity black and red code edge directions up and down, while green edges are
bidirected). Vertex color and shape code additional attributes.
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Topic identification. Our third example illustrates the use of methods from
social network analysis in another domain, namely topic identification in texts
by centering resonance analysis [18]. The structure of texts is represented by
graphs that have a vertex for each word occurring in a noun phrase and an
edge for each pair of words that appear together in the same noun phrase or
consecutively in the same sentence. It is argued that words corresponding to
nodes with high betweenness centrality in such a graph are important for the
structure of the text and thus a proxy for its topic.
This method was applied to Reuters news dealing with the terrorist at-

tacks of September 11, 2001 [5] to identify, among other things, the main
topics, topic changes, side stories, etc. in the news. Figure 9 shows the main
topics identified for the very first day of media coverage.

   smoke

terrorist

fire

nation

           world=trade=ctr

pentagon
office

tower

american

buildng

washington

plane

new=york

tuesday

pres=bush

city

   people

attack

united=states

Fig. 9. Text structure in Reuters press releases following the 9/11 terrorist attacks.
The news body of more than 46,000 words on the first day leads to a graph with
more than 2,400 vertices, of which the 42 most central are shown. Thickness of lines
indicates the number of co-occurrences (minimum of two).

6 Software

The visone software is provided as a standalone executable for systems run-
ning Linux, Solaris, or Windows, and is free for academic purposes.
Technically, the user interface inherits from LEDA’s graph editor class

GraphWin, though several internal modifications were necessary to address
the needs of researchers and students in the social sciences. With application-
specific terminology it comprises the usual drawing canvas with pull-down
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and context (pop-up) menus. Therefore, network data can be imported from
a file but also input or edited graphically.

Aside from the analytic and layout procedures described above, we pro-
vide some non-standard user interaction facilities as shown in Figure 10. Most
importantly, extensive attribute-based selection mechanisms facilitate explo-
ration of data by hiding, adding, or altering objects. For example, users can
select vertices based on labels, attributes, graphical attributes, or the selec-
tion status of incident edges. These criteria can be combined with an existing
selection in various ways. Moreover, the attributes interpreted as strengths
and lengths in our unified network model can be switched and modified in-
teractively.

Analytic routines are always applied to the data currently seen by the user,
except for unconfirmed edges which are shown for context, but disregarded
in the analysis unless they are selected. More precisely, if ES ⊆ E is the set
of selected edges, the social network instance analyzed has edges EC ∪ ES

with lengths or strengths according to the currently displayed edge label.
The decision which edges are considered to constitute actual ties and which
edges are labeled is thus left to the researcher and can be made on a per-edge
basis. Undirected edges displayed in the user interface are internally treated
like two oppositely directed edges.

Analysis and layered or radial layout apply to different coordinates of
vertex locations, so that it is possible to manually fine-tune the representation
of a vertex index or to compare different indices using similar layouts.

Since this is an ongoing project, essentially all components are in develop-
ment and therefore subject to change. While the layout algorithms currently
implemented offer substantial room for further improvement, our long-term

Fig. 10. visone user interface with convenient selection options.
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goal is to extend visone with additional visualization modes facilitating, e.g.,
the comparison of different vertex or edge indices.
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