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Abstract. Timetable graphs are used to analyze transportation net-
works. In their visualization, vertex coordinates are fixed to preserve the
underlying geography, but due to small angles and overlaps, not all edges
should be represented by geodesics (straight lines or great circles).

A previously introduced algorithm represents a subset of the edges by
Bézier curves, and places control points of these curves using a force-
directed approach [5]. While the results are of very good quality, the
running times make the approach impractical for interactive systems.
In this paper, we present a fast layout algorithm using an entirely dif-
ferent approach to edge routing, based on directions of control segments
rather than positions of control points. We reveal an interesting theo-
retical connection with Tutte’s barycentric layout method [18], and our
computational studies show that this new approach yields satisfactory
layouts even for huge timetable graphs within seconds.

1 Introduction

We consider timetables comprised of transportation schedules, which may be
originating from , e.g., trains, flights, or product shipments. A large amount of
such timetable data is provided to us by our industrial partner.! These are mostly
train schedules from companies all over Europe, but may contain timetables from
other public transport authorities (running busses, ferries, etc.) as well. Due to
the size of the data (e.g., more than 140,000 trains serving a combined number
of 28,000 stations for schedules of trains in Europe), visualization has proven to
be a valuable tool for data inspection and maintenance.

The main purpose of the analysis of such data is quality management, since
schedules may vary between time periods, and are exchanged in a variety of
formats, including hand-written. The basis for several aspects of the analysis [19,
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Fig. 1. All edges represented by straight-line segments

17,14] are graphs generated from the timetables. For the purpose of this paper,
we assume that each station that any train stops at corresponds to a vertex, and
an undirected edge is introduced for each pair of stations for which there is a non-
stop service in either direction. Consequently, the timetable graphs considered
here are undirected and simple.

The links between points of departure and arrival are tied to geographic
locations, thus providing an intuitive vertex placement for the corresponding
connection graph, leaving us with the problem of routing its edges. In order for
the visualization to be effective, the edge routing algorithm has to produce clear
and helpful drawings, and do so quickly to make it usable in interactive tools.

In the most common form of geographic network visualization, edges are
shown as geodesics (straight lines or great circles, depending on whether the
graph is shown in the plane or on the sphere) [2,16]. While such drawings can
be produced very quickly, small angles and overlap of edges often hinder their
unambiguous identification, as can be seen in Fig. 1.

A method to produce effective timetable graph visualizations is presented
in [5]. It uses an automatically classification of the edges into minimal and
transitive, where minimal edges are assumed to correspond to railroads directly
connecting pairs of stations, while transitive edges typically correspond to re-
gional or long-distance services that do not stop at each station they pass. Since
railroads can be expected to cover a geographic region efficiently, this method
represents minimal edges by straight lines. Transitive edges, by their very nature,
are bound to cause small angles and overlap. Therefore they are represented by
cubic Bézier curves. An elaborate force-directed model places the control points
of these curves. While according to the data analysts, the output is very sat-
isfactory, running times are not acceptable (in the range of several minutes for
graphs of realistic size). See Fig. 2 for an example.

Since we plan to integrate visualization into an existing interactive query
engine that allows to generate timetable graphs from the complete data set based



Fig. 2. Force-directed placement of Bézier control points for transitive edges [5]

on a variety of attributes (coordinates, train classes, traveling times, service
frequencies, etc.), faster, yet still effective, layout methods are sought.

A recently introduced alternative approach to automatic routing of cubic
Bézier curves is based on the angles between control segments rather than the
positions of control points (rotation approach [4]). Though it is extremely fast,
its application to timetable graphs produces drawings with several deficiencies,
such as excessive crossings and S-shaped curves.

Building on the underlying principle of the general rotation approach, we
present a new edge routing model that yields better layouts without sacrificing
too much of the running-time advantage. It uses properties of timetables to
preprocess the graph so as to make it more susceptible to a rotation-like method.
A new objective function is introduced, that combines three criteria: angular
resolution, straightness, and roundness. A theoretically interesting aspect of this
model is its close relation to the barycentric model of Tutte [18], even though it
is entirely based on angles rather than coordinates.

Though several other graph drawing techniques explicitly consider curved or
polyline edges, none of them seems applicable in our case, because they either
position vertices [12,13,7] or are mainly designed to route edges around obsta-
cles [11,9,1,10]. Our goal here is to disentangle a straight-line drawing in the
simplest way possible without moving vertices.

The main features of the angle-based approach for cubic-curve routing are
outlined in Sect. 2. Our new model for timetable graphs is introduced in Sect. 3.
We conclude with some real-world examples and running time experiments.

2 An Alternative Approach to Curved Edge Layout

In this section, we outline some aspects of a recently introduced approach [4] for
edge layout, when a graph has fixed vertex positions.



A cubic Bézier curve [3] is de-
termined by its two endpoints, b, v
bo, b3, and two inner control points ‘
b1,bs (see Fig. 3). Note that the
same curves are obtained when
the order of control points is re-
versed, while other permutations
in general define different curves.
We thus call segments bob; and
bobg the initial control segments,

while 10, is called the inner con-  Fig.3. Cubic Bézier curves [3] defined by
trol segment. Two other impor- rotation and length of initial segments
tant properties of Bézier curves

are i) that the entire curve is contained in the convex hull of its defining points,
and 4i) that the tangents at its endpoints are collinear with the first and last
control segment. The second property provides an immediate generalization of
angles between edges represented by straight lines to angles between edges rep-
resented by Bézier curves. From now on, we will neglect the distinction between
an edge or a vertex and its graphical representation.

Since vertex positions are fixed, so are the endpoints of each edge. Instead of
placing control points directly, the layout can be divided into the following two
steps, also illustrated by Fig. 3:

1. determine a direction for each initial control segment
2. determine a length for each initial control segment

The (local) angular resolution at some ver-
tex is defined as the smallest angle formed by
the edges incident to that vertex. The global
angular resolution of a drawing is the mini-
mum local angular resolution. In the first of
the above steps, the angles between incident
edges are determined, and therefore the an-
gular resolution at all vertices. The second
step can be used to ensure additional prop-
erties of a curve, e.g. to reduce its curva-
ture. For our purposes, however, the simple
heuristic of choosing a fixed proportion of
the distance between the endpoints proved Fig.4. Angles a; between straight-

C3

sufficient. line edges, and angular differences z;
Cubic curves are the simplest represen-

tation that allows to maximize the angular resolution for all vertices. Note that
we can treat control segments incident to one vertex independently from control
segments incident to other vertices. Therefore, let eo, ..., €4, (»)—1, be a counter-
clockwise ordering of the edges around some v € V' in the given drawing (with
ties broken arbitrarily), and denote by a;, i = 0, ..., de(v) —1, the angle between
e; and its counterclockwise neighbor.



Accordingly, we define co,...,cq,(»)—1 to be the corresponding ordering of
control segments incident to v. The angles between neighboring control segments

equal #@)) because of the optimal angular resolution constraint. Denote by x;
the angle between e; and ¢;, i = 0,...,dg(v) — 1, where x; > 0, if e; comes

before, and x; < 0, if e; comes after ¢; in the counterclockwise order around
v. We call these deviations from straight-line directions the angular errors. See
Fig. 4 for an illustration and note that xz3 < 0.

Any set of control segments satisfying the angle constraints is called a rotation
at v, but arbitrary rotations usually lead to unpleasant “spaghetti” drawings.
The straightness of a rotation is the degree to which a rotation succeeds in keep-
ing the angular errors small. Several penalty functions can be used to quantify
straightness. In particular, the rotation minimizing the squared angular errors
Z?gé”)fl(xiﬁ is unique, and can be computed in time O (dg(v)) simply by
averaging over the angular errors. It is called balanced rotation, because it sat-
isfies Z?jé”fl x; = 0. Figure 5 shows that optimal local angular resolution at
all vertices is too strong a criterion. Note, however, that angles between con-
trol segments can be specified arbitrarily. Much better drawings are obtained,
when angles between control segments at vertices v with a dominant angle angle
a; > m are constrained to m (for the dominant angle) and to Wﬂ)q for the
other angles. This set of angle constraints is called the half-sided template. For
further details we refer to [4].

Fig. 5. Result of a standard planar graph drawing algorithm [8], and balanced rotations
with and without half-sided templates for dominant angles

The rotation approach applied to timetable graphs is very fast (see Sect. 4).
Though an obvious improvement over straight-line drawings, the examples in
Fig. 6 also show that the results are not entirely satisfactory for our present
application. Despite optimal angular resolution and straightness, the drawings
in general display sharp turns, S-shaped curves and appear cluttered.

3 A New Layout Model for Timetable Graphs

Though the rotation approach described in the previous section yields drawings
that are much more readable than straight-line representations, they are still far
from the quality obtained by the force-directed layout approach. In this section,
we present a new layout model based on the same strategy as the rotation
approach but tailored to timetable graphs.



Fig. 6. Balanced rotations with the half-sided template for vertices with a dominant
angle. Note the unfortunate ordering on the left.

Edges of a timetable graph are routinely classified into minimal and transi-
tive. Since minimal edges typically correspond to actual railways, they seldom
cause readability problems and can hence be drawn straight, both to reduce the
size of the input and to visually emphasize their role as a support of the network.

We are going to customize the rotation approach to our specific application
in several ways. Most importantly, we introduce a preprocessing step that deter-
mines a good ordering of edges around a vertex, and our new objective function
aims at rounding out S-shaped curves. In consequence, angular resolution must
be relaxed from a constraint to an optimization criterion. We show that there
still is a unique optimum solution, which, however, is no longer computed as
easily as in the rotation approach.

3.1 Preprocessing

Since minimal edges are represented by straight lines, the ordering of minimal
edges around a vertex is fixed. Transitive edges have an inherent tendency to
short-cut paths of minimal edges. Small deviations in the course of the latter
cause the straight-line ordering of transitive edges to be somewhat arbitrary
(as was demonstrated in Fig. 6). To reduce the crossing problem illustrated in
Fig. 6, an ordering of transitive edges is determined in two stages: in the first
stage, control segments with similar target directions are grouped together, and
in the second stage, the control segments of each group are put in order.

Grouping. The initial control segments incident to a vertex are grouped ac-
cording to the minimal edge their straight-line representation is closest to, and
according to the side toward which they depart (i.e. whether they are counter-
clockwise before or after their closest minimal edge). As illustrated in Fig. 7(a),



each initial control segment of a transitive edge is assigned to the left or right
hand side of its closest minimal edge.

Crossing reduction. The assignment is then refined to reduce the number of
crossings among transitive and minimal edges. If the two initial control segments
of a single edge are both classified to lie on, say, the right hand side of their
respective minimal edge, the assumption that these minimal edges are linked
by a path of minimal edges (the railroad that the long-distance trains inducing
this edge travel along) suggests that the inner control segment of the transitive
edge will cross this path. We therefore reassign the control segment incident to
the vertex of smaller degree (presumably a less important station), or, in case of
equal degrees, to the one that deviates further from the straight-line connecting
the endpoints, to another group as depicted in Fig. 7(b).

(a) group by closest (b) regroup to avoid (c) sort by length
minimal edge crossings

Fig. 7. Initial ordering of edges. Arcs indicate the side of minimal edge a control
segment is assigned to

Sorting. Within a group, control segments are sorted according to the length
of the straight-line representation of their corresponding edge, such that the
shortest ones are closest to their assigned minimal edge. See Fig. 7(c). This
order is likely to avoid crossing of adjacent transitive edges.

Thus the initial control segments of transitive edges incident to a common vertex
are grouped into a number of groups that is twice the number of minimal edges
incident to that vertex. Each group is assigned a wedge that is an angle between
a minimal edge and a bisector of the angle between this edge and its clockwise
or counterclockwise minimal neighbor and space out evenly. The overall running
time of the preprocessing step is O (3, oy da(V)logda(v)) = O (|E|log|E]) .

3.2 Layout Objectives

With this heuristic ordering, we are now able to state our objective function
formally. It combines the criteria of local angular resolution, straightness, and
roundness, subject to straight-line representation of minimal edges. Consider-
ing the straight minimal edges to be control segments with fixed direction, let
Co, -+ Cdg(v)—1 be the directions of control segments incident to a vertex v, in
the order resulting from the preprocessing.



Angular Resolution. The optimal angular differences a;, i = 0,...,aq5(v)—1,
between consecutive control segments (which have been a constraint in the ro-
tation approach) are determined by equally dividing up the wedge assigned to
the group. Satisfaction of the angular resolution criterion can then be expressed
in terms of the squared angular error with respect to the target values,

dc(v)fl
Ay(e) = Z (cip1 — ci —a;)?, (angular resolution criterion)
i=0

where indices are modulo dg(v), and pairs ¢;, ¢; 11 of control segments in different
groups are omitted. Recall that control segments of minimal edges lie in two
groups.

Straightness. For reasons mentioned in the discussion of the rotation approach,
the deviation of control segments from straight edges should be penalized. We
use the squared angular errors with respect to straight-line directions, i.e. the
objective function of the balanced rotation approach,

dc(v)fl dc(v)fl
Sy(c) = Z r7 = Z (ci —ei)?. (straightness criterion)
=0 i=0

Roundness. Much of the clarity in timetable graph layouts produced with force-
directed placement stems from the prevailing symmetry, or roundness, of those
edges represented by Bézier curves. We measure the roundness of a Bézier curve
by the squared difference in deviation of the two initial control segments from
the straight-line edges connecting the endpoints. Note that, for a highly desirable
curve, the magnitudes of deviation are the same at both ends, but with opposite
sign.

As a result of the preprocessing, one initial control segment of a transitive
edge is assigned to a group associated with the right hand side of a minimal
edge, while the other is assigned to a group associated with the left hand side of
a minimal edge. Reversing the sense of direction within each group associated
with, say, a left hand side changes the sign of all their angular differences, but
does not affect the other two criteria (if the sign of optimal angular differences
a; is reversed as well). Non-roundness is thus defined as

da ('U)—l
R,(c) = Z ((c; — e) — (c, —e))?, (roundness criterion)

i=0

where ¢} is the direction of the initial control segment at the opposite end of e;,
and e} is the reverse straight-line direction of the edge.

The objective function for edge layout of preprocessed timetable graphs is
now defined as a weighted sum of the above criteria, U(c) = }_ ¢y wa - Ay(c) +
ws + Sy(€) + wy - Ry(e).



3.3 Optimizing the Objective Function

Next we show that the layout objective function U(c) defined in the previous
section is a generalized version of the objective function of the barycentric layout
model, and has a unique minimum under equivalent assumptions.

Consider the following transformation of a preprocessed timetable graph. We
construct a new undirected graph G = (V, E) that has a vertex for each of the
two initial control segments, and for each of the two directions of a transitive
edge. Two vertices in G are adjacent, if one is a straight-line direction and the
other is the corresponding control segment (e; and ¢; of some vertex), if they are
consecutive control segments in some group (recall that groups and order are
defined in the preprocessing), or if they are initial control segments of the same
transitive edge.

Assume that for each edge e = {u,v} € E there are weights w, > 0 and
target differences 6, = —0,,. Then it is easy to see that our objective function
can be restated as

Ule) = Z We - (Cy = oy = Bu)?.

e={u,v}EFE

Since the essential properties of this function are the same as those of the
barycentric layout model 30 _r, .1cp(co — cu)?, the following parallels Tutte’s
analysis [18]. For a vector ¢ = (cy),y minimizing this function, the partial
derivatives

0 U(C) = Z 2w, - (Cv — Cy — euv)

oc
v u:e={u,v}eF

must equal zero for all v € V. Cancelling the constant factor of 2, this system of
linear equations can be reordered into the form

(D(G) - A(@)) e = L(G) -c = b,

where D(G) is a diagonal matrix with weighted degrees d,, = Zu:e:{u,v}eE We
on the diagonal, A(G) is the weighted adjacency matrix with entries a,, = wy,v}
if {u,v} € E and ay, = 0 otherwise, and b is a vector with constant entries
bo = 3. e=f{u,vrer Webluy- The resulting matrix L(G) is called the Laplacian of
the graph.

Lemma 1 ([6]). The determinant of any submatriz of L(G) obtained by omit-
ting any pair of a row and a column corresponding to a vertex in G equals

2 I «

T ecE(T)

where the sum is over all spanning trees of G, and E(T) denotes the edge set of
a tree T'.



Note that fixing any entry in ¢ corresponds to omitting its row and column
from L(G) and adjusting b. Fixing the entries of more than one vertex of G cor-
responds to contracting these vertices, and then omitting the row and column
of this vertex and adjusting b. Consequently, the determinant of the resulting
submatrix is positive, if the value of at least one vertex in each connected com-
ponent of G is fixed. Since, by definition, no station is incident only to transitive
edges, every component of G has at least one vertex that corresponds to a fixed
control segment of a minimal edge.

Theorem 1. The timetable graph layout objective function U(c) has a unique
minimum that can be determined by solving a system of linear equations with
twice as many unknowns as there are transitive edges.

Due to the size of typical systems (cf. Tab. 1), we cannot afford to solve
it exactly in time still acceptable for an interactive system. Since the matrix
L(G) is weakly diagonally dominant, we instead use Gauss-Seidel iteration to
quickly approximate the optimal directions. Note that this nicely corresponds to
a one-dimensional spring embedder, that does an optimal move at each step.

Initial directions are determined by equally dividing the angle formed by the
bounding pair of a minimal edge and an angle bisector for each group. Clearly,
these layouts optimize the angular resolution criterion subject to the heuristic
ordering and grouping constraint.

4 Results and Discussion

Figure 8 gives the result of our new approach as applied to the running example.
The larger examples given in the appendix show that our new method clearly
outperforms the general rotation approach in terms of visual quality, though it
still does not quite match the quality of force-directed placements.

Fig. 8. Layout after 7 iterations (w, = 2, ws = 0, w, = 1)



By necessity, the angular error of control segments with respect to straight
edges is usually much larger than the angle between neighboring control seg-
ments, so that ws should be chosen significantly smaller than the other two
weights. Since it turns out that straightness is sufficiently taken care of by
the preprocessing step, we generally omit this criterion altogether. The rela-
tive choice of angular resolution vs. roundness depends on personal preferences.
The examples in the appendix use w, = 2 - w,. We also found that the initial
directions do fairly well for any reasonable choice of weights, and since the sys-
tem is rather sparse, the maximum rotation of a control segment is below 0.01
radians after 3-10 iterations.

All three approaches (force-directed layout, rotation approach, and the ap-
proach of this paper) have been implemented in C++ using LEDA [15]. Since
we compare proof-of-concept implementations, our running-time experiments
should be understood as qualitative. The indication is nevertheless quite clear.
Though most of the time is spent on a preprocessing step that determines the
“neighborhood” of each control point [5], the force-directed approach is very
slow, and will probably remain so even with a sophisticated implementation.
While the rotation approach is the fastest, even our current implementation of
the approach presented in this paper performs at interactive speed,? but pro-
duces drawings of much better quality.

Table 1. Running times on a Sun Ultra 5 workstation (360 Mhz, 192 MBytes). Times
given in parentheses are without preprocessing

instance nodes|edges (transitive)|force-directed|rotation new
switzerland| 2218 3203 ( 536) 53 (10) sec| 0.36 sec|1.31 (0.17) sec
italy 2386 4370 (1849) 309 (42) sec| 0.51 sec|2.21 (0.57) sec
france 4551 7793 (2408)| 621 (54) sec| 0.80 sec|3.44 (0.73) sec
germany 7083 9713 (1956) 582 (38) sec| 1.18 sec|4.21 (0.60) sec

There are several avenues for future work. With respect to the present appli-
cation, we have yet no way of modeling the second most effective feature after
roundness, i.e. binding. By introducing dummy edges between a pair of control
points when their initial segments are incident to the same vertex, the force-
directed approach succeeds in dragging consecutive or nested transitive edges to
the same side of a path of minimal edges. Is there a way to integrate this feature
in the present approach?

Similar problems are encountered for geographic networks whose vertices are
placed on a globe. We are working on a three-dimensional interpretation in the
mold of [4] that would take into account lengths of geodesics to better untangle
the edges.

We are also investigating useful strategies for control segment length as-
signments that would satisfy certain properties of the resulting curves, like low
curvature, but potentially also to preserve certain features, like planarity.

2 Note that the runnings times compare favorably with the time that LEDA’s graph
editor needs to render the results.



We devised a fast and effective layout method for timetable graphs by taking
a different view on edge routing and utilizing the underlying network structure.
It will be interesting to devise similar extensions of the rotation approach for
other applications like internet traffic, flight routes, or non-geographic networks.
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