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Abstra
t. Timetable graphs are used to analyze transportation net-

works. In their visualization, vertex 
oordinates are �xed to preserve the

underlying geography, but due to small angles and overlaps, not all edges

should be represented by geodesi
s (straight lines or great 
ir
les).

A previously introdu
ed algorithm represents a subset of the edges by

B�ezier 
urves, and pla
es 
ontrol points of these 
urves using a for
e-

dire
ted approa
h [5℄. While the results are of very good quality, the

running times make the approa
h impra
ti
al for intera
tive systems.

In this paper, we present a fast layout algorithm using an entirely dif-

ferent approa
h to edge routing, based on dire
tions of 
ontrol segments

rather than positions of 
ontrol points. We reveal an interesting theo-

reti
al 
onne
tion with Tutte's bary
entri
 layout method [18℄, and our


omputational studies show that this new approa
h yields satisfa
tory

layouts even for huge timetable graphs within se
onds.

1 Introdu
tion

We 
onsider timetables 
omprised of transportation s
hedules, whi
h may be

originating from , e.g., trains, 
ights, or produ
t shipments. A large amount of

su
h timetable data is provided to us by our industrial partner.

1

These are mostly

train s
hedules from 
ompanies all over Europe, but may 
ontain timetables from

other publi
 transport authorities (running busses, ferries, et
.) as well. Due to

the size of the data (e.g., more than 140,000 trains serving a 
ombined number

of 28,000 stations for s
hedules of trains in Europe), visualization has proven to

be a valuable tool for data inspe
tion and maintenan
e.

The main purpose of the analysis of su
h data is quality management, sin
e

s
hedules may vary between time periods, and are ex
hanged in a variety of

formats, in
luding hand-written. The basis for several aspe
ts of the analysis [19,

?
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TLC/EVA the IT subsidiary of Deuts
he Bahn AG that is, among other things,

responsible for 
olle
ting, analyzing, and publishing timetable information.
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Fig. 1. All edges represented by straight-line segments

17, 14℄ are graphs generated from the timetables. For the purpose of this paper,

we assume that ea
h station that any train stops at 
orresponds to a vertex, and

an undire
ted edge is introdu
ed for ea
h pair of stations for whi
h there is a non-

stop servi
e in either dire
tion. Consequently, the timetable graphs 
onsidered

here are undire
ted and simple.

The links between points of departure and arrival are tied to geographi


lo
ations, thus providing an intuitive vertex pla
ement for the 
orresponding


onne
tion graph, leaving us with the problem of routing its edges. In order for

the visualization to be e�e
tive, the edge routing algorithm has to produ
e 
lear

and helpful drawings, and do so qui
kly to make it usable in intera
tive tools.

In the most 
ommon form of geographi
 network visualization, edges are

shown as geodesi
s (straight lines or great 
ir
les, depending on whether the

graph is shown in the plane or on the sphere) [2, 16℄. While su
h drawings 
an

be produ
ed very qui
kly, small angles and overlap of edges often hinder their

unambiguous identi�
ation, as 
an be seen in Fig. 1.

A method to produ
e e�e
tive timetable graph visualizations is presented

in [5℄. It uses an automati
ally 
lassi�
ation of the edges into minimal and

transitive, where minimal edges are assumed to 
orrespond to railroads dire
tly


onne
ting pairs of stations, while transitive edges typi
ally 
orrespond to re-

gional or long-distan
e servi
es that do not stop at ea
h station they pass. Sin
e

railroads 
an be expe
ted to 
over a geographi
 region eÆ
iently, this method

represents minimal edges by straight lines. Transitive edges, by their very nature,

are bound to 
ause small angles and overlap. Therefore they are represented by


ubi
 B�ezier 
urves. An elaborate for
e-dire
ted model pla
es the 
ontrol points

of these 
urves. While a

ording to the data analysts, the output is very sat-

isfa
tory, running times are not a

eptable (in the range of several minutes for

graphs of realisti
 size). See Fig. 2 for an example.

Sin
e we plan to integrate visualization into an existing intera
tive query

engine that allows to generate timetable graphs from the 
omplete data set based



Fig. 2. For
e-dire
ted pla
ement of B�ezier 
ontrol points for transitive edges [5℄

on a variety of attributes (
oordinates, train 
lasses, traveling times, servi
e

frequen
ies, et
.), faster, yet still e�e
tive, layout methods are sought.

A re
ently introdu
ed alternative approa
h to automati
 routing of 
ubi


B�ezier 
urves is based on the angles between 
ontrol segments rather than the

positions of 
ontrol points (rotation approa
h [4℄). Though it is extremely fast,

its appli
ation to timetable graphs produ
es drawings with several de�
ien
ies,

su
h as ex
essive 
rossings and S-shaped 
urves.

Building on the underlying prin
iple of the general rotation approa
h, we

present a new edge routing model that yields better layouts without sa
ri�
ing

too mu
h of the running-time advantage. It uses properties of timetables to

prepro
ess the graph so as to make it more sus
eptible to a rotation-like method.

A new obje
tive fun
tion is introdu
ed, that 
ombines three 
riteria: angular

resolution, straightness, and roundness. A theoreti
ally interesting aspe
t of this

model is its 
lose relation to the bary
entri
 model of Tutte [18℄, even though it

is entirely based on angles rather than 
oordinates.

Though several other graph drawing te
hniques expli
itly 
onsider 
urved or

polyline edges, none of them seems appli
able in our 
ase, be
ause they either

position verti
es [12, 13, 7℄ or are mainly designed to route edges around obsta-


les [11, 9, 1, 10℄. Our goal here is to disentangle a straight-line drawing in the

simplest way possible without moving verti
es.

The main features of the angle-based approa
h for 
ubi
-
urve routing are

outlined in Se
t. 2. Our new model for timetable graphs is introdu
ed in Se
t. 3.

We 
on
lude with some real-world examples and running time experiments.

2 An Alternative Approa
h to Curved Edge Layout

In this se
tion, we outline some aspe
ts of a re
ently introdu
ed approa
h [4℄ for

edge layout, when a graph has �xed vertex positions.
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Fig. 3. Cubi
 B�ezier 
urves [3℄ de�ned by

rotation and length of initial segments

A 
ubi
 B�ezier 
urve [3℄ is de-

termined by its two endpoints,

b

0

; b

3

, and two inner 
ontrol points

b

1

; b

2

(see Fig. 3). Note that the

same 
urves are obtained when

the order of 
ontrol points is re-

versed, while other permutations

in general de�ne di�erent 
urves.

We thus 
all segments b

0

b

1

and

b

2

b

3

the initial 
ontrol segments,

while b

1

b

2

is 
alled the inner 
on-

trol segment. Two other impor-

tant properties of B�ezier 
urves

are i) that the entire 
urve is 
ontained in the 
onvex hull of its de�ning points,

and ii) that the tangents at its endpoints are 
ollinear with the �rst and last


ontrol segment. The se
ond property provides an immediate generalization of

angles between edges represented by straight lines to angles between edges rep-

resented by B�ezier 
urves. From now on, we will negle
t the distin
tion between

an edge or a vertex and its graphi
al representation.

Sin
e vertex positions are �xed, so are the endpoints of ea
h edge. Instead of

pla
ing 
ontrol points dire
tly, the layout 
an be divided into the following two

steps, also illustrated by Fig. 3:

1. determine a dire
tion for ea
h initial 
ontrol segment

2. determine a length for ea
h initial 
ontrol segment
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Fig. 4. Angles �

i

between straight-

line edges, and angular di�eren
es x

i

The (lo
al) angular resolution at some ver-

tex is de�ned as the smallest angle formed by

the edges in
ident to that vertex. The global

angular resolution of a drawing is the mini-

mum lo
al angular resolution. In the �rst of

the above steps, the angles between in
ident

edges are determined, and therefore the an-

gular resolution at all verti
es. The se
ond

step 
an be used to ensure additional prop-

erties of a 
urve, e.g. to redu
e its 
urva-

ture. For our purposes, however, the simple

heuristi
 of 
hoosing a �xed proportion of

the distan
e between the endpoints proved

suÆ
ient.

Cubi
 
urves are the simplest represen-

tation that allows to maximize the angular resolution for all verti
es. Note that

we 
an treat 
ontrol segments in
ident to one vertex independently from 
ontrol

segments in
ident to other verti
es. Therefore, let e

0

; : : : ; e

d

G

(v)�1

, be a 
ounter-


lo
kwise ordering of the edges around some v 2 V in the given drawing (with

ties broken arbitrarily), and denote by �

i

, i = 0; : : : ; d

G

(v)�1, the angle between

e

i

and its 
ounter
lo
kwise neighbor.



A

ordingly, we de�ne 


0

; : : : ; 


d

G

(v)�1

to be the 
orresponding ordering of


ontrol segments in
ident to v. The angles between neighboring 
ontrol segments

equal

2�

d

G

(v)

be
ause of the optimal angular resolution 
onstraint. Denote by x

i

the angle between e

i

and 


i

, i = 0; : : : ; d

G

(v) � 1, where x

i

> 0, if e

i


omes

before, and x

i

< 0, if e

i


omes after 


i

in the 
ounter
lo
kwise order around

v. We 
all these deviations from straight-line dire
tions the angular errors. See

Fig. 4 for an illustration and note that x

3

< 0.

Any set of 
ontrol segments satisfying the angle 
onstraints is 
alled a rotation

at v, but arbitrary rotations usually lead to unpleasant \spaghetti" drawings.

The straightness of a rotation is the degree to whi
h a rotation su

eeds in keep-

ing the angular errors small. Several penalty fun
tions 
an be used to quantify

straightness. In parti
ular, the rotation minimizing the squared angular errors

P

d

G

(v)�1

i=0

(x

i

)

2

is unique, and 
an be 
omputed in time O (d

G

(v)) simply by

averaging over the angular errors. It is 
alled balan
ed rotation, be
ause it sat-

is�es

P

d

G

(v)�1

i=0

x

i

= 0. Figure 5 shows that optimal lo
al angular resolution at

all verti
es is too strong a 
riterion. Note, however, that angles between 
on-

trol segments 
an be spe
i�ed arbitrarily. Mu
h better drawings are obtained,

when angles between 
ontrol segments at verti
es v with a dominant angle angle

�

i

� � are 
onstrained to � (for the dominant angle) and to

�

d

G

(v)�1

for the

other angles. This set of angle 
onstraints is 
alled the half-sided template. For

further details we refer to [4℄.

Fig. 5. Result of a standard planar graph drawing algorithm [8℄, and balan
ed rotations

with and without half-sided templates for dominant angles

The rotation approa
h applied to timetable graphs is very fast (see Se
t. 4).

Though an obvious improvement over straight-line drawings, the examples in

Fig. 6 also show that the results are not entirely satisfa
tory for our present

appli
ation. Despite optimal angular resolution and straightness, the drawings

in general display sharp turns, S-shaped 
urves and appear 
luttered.

3 A New Layout Model for Timetable Graphs

Though the rotation approa
h des
ribed in the previous se
tion yields drawings

that are mu
h more readable than straight-line representations, they are still far

from the quality obtained by the for
e-dire
ted layout approa
h. In this se
tion,

we present a new layout model based on the same strategy as the rotation

approa
h but tailored to timetable graphs.



Fig. 6. Balan
ed rotations with the half-sided template for verti
es with a dominant

angle. Note the unfortunate ordering on the left.

Edges of a timetable graph are routinely 
lassi�ed into minimal and transi-

tive. Sin
e minimal edges typi
ally 
orrespond to a
tual railways, they seldom


ause readability problems and 
an hen
e be drawn straight, both to redu
e the

size of the input and to visually emphasize their role as a support of the network.

We are going to 
ustomize the rotation approa
h to our spe
i�
 appli
ation

in several ways. Most importantly, we introdu
e a prepro
essing step that deter-

mines a good ordering of edges around a vertex, and our new obje
tive fun
tion

aims at rounding out S-shaped 
urves. In 
onsequen
e, angular resolution must

be relaxed from a 
onstraint to an optimization 
riterion. We show that there

still is a unique optimum solution, whi
h, however, is no longer 
omputed as

easily as in the rotation approa
h.

3.1 Prepro
essing

Sin
e minimal edges are represented by straight lines, the ordering of minimal

edges around a vertex is �xed. Transitive edges have an inherent tenden
y to

short-
ut paths of minimal edges. Small deviations in the 
ourse of the latter


ause the straight-line ordering of transitive edges to be somewhat arbitrary

(as was demonstrated in Fig. 6). To redu
e the 
rossing problem illustrated in

Fig. 6, an ordering of transitive edges is determined in two stages: in the �rst

stage, 
ontrol segments with similar target dire
tions are grouped together, and

in the se
ond stage, the 
ontrol segments of ea
h group are put in order.

Grouping. The initial 
ontrol segments in
ident to a vertex are grouped a
-


ording to the minimal edge their straight-line representation is 
losest to, and

a

ording to the side toward whi
h they depart (i.e. whether they are 
ounter-


lo
kwise before or after their 
losest minimal edge). As illustrated in Fig. 7(a),



ea
h initial 
ontrol segment of a transitive edge is assigned to the left or right

hand side of its 
losest minimal edge.

Crossing redu
tion. The assignment is then re�ned to redu
e the number of


rossings among transitive and minimal edges. If the two initial 
ontrol segments

of a single edge are both 
lassi�ed to lie on, say, the right hand side of their

respe
tive minimal edge, the assumption that these minimal edges are linked

by a path of minimal edges (the railroad that the long-distan
e trains indu
ing

this edge travel along) suggests that the inner 
ontrol segment of the transitive

edge will 
ross this path. We therefore reassign the 
ontrol segment in
ident to

the vertex of smaller degree (presumably a less important station), or, in 
ase of

equal degrees, to the one that deviates further from the straight-line 
onne
ting

the endpoints, to another group as depi
ted in Fig. 7(b).

(a) group by 
losest

minimal edge

(b) regroup to avoid


rossings

(
) sort by length

Fig. 7. Initial ordering of edges. Ar
s indi
ate the side of minimal edge a 
ontrol

segment is assigned to

Sorting. Within a group, 
ontrol segments are sorted a

ording to the length

of the straight-line representation of their 
orresponding edge, su
h that the

shortest ones are 
losest to their assigned minimal edge. See Fig. 7(
). This

order is likely to avoid 
rossing of adja
ent transitive edges.

Thus the initial 
ontrol segments of transitive edges in
ident to a 
ommon vertex

are grouped into a number of groups that is twi
e the number of minimal edges

in
ident to that vertex. Ea
h group is assigned a wedge that is an angle between

a minimal edge and a bise
tor of the angle between this edge and its 
lo
kwise

or 
ounter
lo
kwise minimal neighbor and spa
e out evenly. The overall running

time of the prepro
essing step is O

�

P

v2V

d

G

(V ) log d

G

(v)

�

= O (jEj log jEj) :

3.2 Layout Obje
tives

With this heuristi
 ordering, we are now able to state our obje
tive fun
tion

formally. It 
ombines the 
riteria of lo
al angular resolution, straightness, and

roundness, subje
t to straight-line representation of minimal edges. Consider-

ing the straight minimal edges to be 
ontrol segments with �xed dire
tion, let




0

; : : : ; 


d

G

(v)�1

be the dire
tions of 
ontrol segments in
ident to a vertex v, in

the order resulting from the prepro
essing.



Angular Resolution. The optimal angular di�eren
es a

i

, i = 0; : : : ; a

d

G

(v)�1

,

between 
onse
utive 
ontrol segments (whi
h have been a 
onstraint in the ro-

tation approa
h) are determined by equally dividing up the wedge assigned to

the group. Satisfa
tion of the angular resolution 
riterion 
an then be expressed

in terms of the squared angular error with respe
t to the target values,

A

v

(
) =

d

G

(v)�1

X

i=0

(


i+1

� 


i

� a

i

)

2

; (angular resolution 
riterion)

where indi
es are modulo d

G

(v), and pairs 


i

; 


i+1

of 
ontrol segments in di�erent

groups are omitted. Re
all that 
ontrol segments of minimal edges lie in two

groups.

Straightness. For reasons mentioned in the dis
ussion of the rotation approa
h,

the deviation of 
ontrol segments from straight edges should be penalized. We

use the squared angular errors with respe
t to straight-line dire
tions, i.e. the

obje
tive fun
tion of the balan
ed rotation approa
h,

S

v

(
) =

d

G

(v)�1

X

i=0

x

2

i

=

d

G

(v)�1

X

i=0

(


i

� e

i

)

2

: (straightness 
riterion)

Roundness. Mu
h of the 
larity in timetable graph layouts produ
ed with for
e-

dire
ted pla
ement stems from the prevailing symmetry, or roundness, of those

edges represented by B�ezier 
urves. We measure the roundness of a B�ezier 
urve

by the squared di�eren
e in deviation of the two initial 
ontrol segments from

the straight-line edges 
onne
ting the endpoints. Note that, for a highly desirable


urve, the magnitudes of deviation are the same at both ends, but with opposite

sign.

As a result of the prepro
essing, one initial 
ontrol segment of a transitive

edge is assigned to a group asso
iated with the right hand side of a minimal

edge, while the other is assigned to a group asso
iated with the left hand side of

a minimal edge. Reversing the sense of dire
tion within ea
h group asso
iated

with, say, a left hand side 
hanges the sign of all their angular di�eren
es, but

does not a�e
t the other two 
riteria (if the sign of optimal angular di�eren
es

a

i

is reversed as well). Non-roundness is thus de�ned as

R

v

(
) =

d

G

(v)�1

X

i=0

((


i

� e

i

)� (


0

i

� e

0

i

))

2

; (roundness 
riterion)

where 


0

i

is the dire
tion of the initial 
ontrol segment at the opposite end of e

i

,

and e

0

i

is the reverse straight-line dire
tion of the edge.

The obje
tive fun
tion for edge layout of prepro
essed timetable graphs is

now de�ned as a weighted sum of the above 
riteria, U(
) =

P

v2V

!

a

�A

v

(
) +

!

s

� S

v

(
) + !

r

� R

v

(
):



3.3 Optimizing the Obje
tive Fun
tion

Next we show that the layout obje
tive fun
tion U(
) de�ned in the previous

se
tion is a generalized version of the obje
tive fun
tion of the bary
entri
 layout

model, and has a unique minimum under equivalent assumptions.

Consider the following transformation of a prepro
essed timetable graph. We


onstru
t a new undire
ted graph G = (V;E) that has a vertex for ea
h of the

two initial 
ontrol segments, and for ea
h of the two dire
tions of a transitive

edge. Two verti
es in G are adja
ent, if one is a straight-line dire
tion and the

other is the 
orresponding 
ontrol segment (e

i

and 


i

of some vertex), if they are


onse
utive 
ontrol segments in some group (re
all that groups and order are

de�ned in the prepro
essing), or if they are initial 
ontrol segments of the same

transitive edge.

Assume that for ea
h edge e = fu; vg 2 E there are weights !

e

> 0 and

target di�eren
es �

uv

= ��

vu

. Then it is easy to see that our obje
tive fun
tion


an be restated as

U(
) =

X

e=fu;vg2E

!

e

� (


v

� 


u

� �

uv

)

2

:

Sin
e the essential properties of this fun
tion are the same as those of the

bary
entri
 layout model

P

e=fu;vg2E

(


v

� 


u

)

2

, the following parallels Tutte's

analysis [18℄. For a ve
tor 
 = (


v

)

v2V

minimizing this fun
tion, the partial

derivatives

�

�


v

U(
) =

X

u : e=fu;vg2E

2!

e

� (


v

� 


u

� �

uv

)

must equal zero for all v 2 V . Can
elling the 
onstant fa
tor of 2, this system of

linear equations 
an be reordered into the form

(D(G) �A(G)) � 
 = L(G) � 
 = b;

where D(G) is a diagonal matrix with weighted degrees d

vv

=

P

u : e=fu;vg2E

!

e

on the diagonal, A(G) is the weighted adja
en
y matrix with entries a

uv

= !

fu;vg

if fu; vg 2 E and a

uv

= 0 otherwise, and b is a ve
tor with 
onstant entries

b

v

=

P

u : e=fu;vg2E

!

e

�

uv

. The resulting matrix L(G) is 
alled the Lapla
ian of

the graph.

Lemma 1 ([6℄). The determinant of any submatrix of L(G) obtained by omit-

ting any pair of a row and a 
olumn 
orresponding to a vertex in G equals

X

T

Y

e2E(T )

!

e

where the sum is over all spanning trees of G, and E(T ) denotes the edge set of

a tree T .



Note that �xing any entry in 
 
orresponds to omitting its row and 
olumn

from L(G) and adjusting b. Fixing the entries of more than one vertex of G 
or-

responds to 
ontra
ting these verti
es, and then omitting the row and 
olumn

of this vertex and adjusting b. Consequently, the determinant of the resulting

submatrix is positive, if the value of at least one vertex in ea
h 
onne
ted 
om-

ponent of G is �xed. Sin
e, by de�nition, no station is in
ident only to transitive

edges, every 
omponent of G has at least one vertex that 
orresponds to a �xed


ontrol segment of a minimal edge.

Theorem 1. The timetable graph layout obje
tive fun
tion U(
) has a unique

minimum that 
an be determined by solving a system of linear equations with

twi
e as many unknowns as there are transitive edges.

Due to the size of typi
al systems (
f. Tab. 1), we 
annot a�ord to solve

it exa
tly in time still a

eptable for an intera
tive system. Sin
e the matrix

L(G) is weakly diagonally dominant, we instead use Gauss-Seidel iteration to

qui
kly approximate the optimal dire
tions. Note that this ni
ely 
orresponds to

a one-dimensional spring embedder, that does an optimal move at ea
h step.

Initial dire
tions are determined by equally dividing the angle formed by the

bounding pair of a minimal edge and an angle bise
tor for ea
h group. Clearly,

these layouts optimize the angular resolution 
riterion subje
t to the heuristi


ordering and grouping 
onstraint.

4 Results and Dis
ussion

Figure 8 gives the result of our new approa
h as applied to the running example.

The larger examples given in the appendix show that our new method 
learly

outperforms the general rotation approa
h in terms of visual quality, though it

still does not quite mat
h the quality of for
e-dire
ted pla
ements.

Fig. 8. Layout after 7 iterations (!

a

= 2, !

s

= 0, !

r

= 1)



By ne
essity, the angular error of 
ontrol segments with respe
t to straight

edges is usually mu
h larger than the angle between neighboring 
ontrol seg-

ments, so that !

s

should be 
hosen signi�
antly smaller than the other two

weights. Sin
e it turns out that straightness is suÆ
iently taken 
are of by

the prepro
essing step, we generally omit this 
riterion altogether. The rela-

tive 
hoi
e of angular resolution vs. roundness depends on personal preferen
es.

The examples in the appendix use !

a

= 2 � !

r

. We also found that the initial

dire
tions do fairly well for any reasonable 
hoi
e of weights, and sin
e the sys-

tem is rather sparse, the maximum rotation of a 
ontrol segment is below 0:01

radians after 3{10 iterations.

All three approa
hes (for
e-dire
ted layout, rotation approa
h, and the ap-

proa
h of this paper) have been implemented in C++ using LEDA [15℄. Sin
e

we 
ompare proof-of-
on
ept implementations, our running-time experiments

should be understood as qualitative. The indi
ation is nevertheless quite 
lear.

Though most of the time is spent on a prepro
essing step that determines the

\neighborhood" of ea
h 
ontrol point [5℄, the for
e-dire
ted approa
h is very

slow, and will probably remain so even with a sophisti
ated implementation.

While the rotation approa
h is the fastest, even our 
urrent implementation of

the approa
h presented in this paper performs at intera
tive speed,

2

but pro-

du
es drawings of mu
h better quality.

Table 1. Running times on a Sun Ultra 5 workstation (360 Mhz, 192 MBytes). Times

given in parentheses are without prepro
essing

instan
e nodes edges (transitive) for
e-dire
ted rotation new

switzerland 2218 3203 ( 536) 53 (10) se
 0.36 se
 1.31 (0.17) se


italy 2386 4370 (1849) 309 (42) se
 0.51 se
 2.21 (0.57) se


fran
e 4551 7793 (2408) 621 (54) se
 0.80 se
 3.44 (0.73) se


germany 7083 9713 (1956) 582 (38) se
 1.18 se
 4.21 (0.60) se


There are several avenues for future work. With respe
t to the present appli-


ation, we have yet no way of modeling the se
ond most e�e
tive feature after

roundness, i.e. binding. By introdu
ing dummy edges between a pair of 
ontrol

points when their initial segments are in
ident to the same vertex, the for
e-

dire
ted approa
h su

eeds in dragging 
onse
utive or nested transitive edges to

the same side of a path of minimal edges. Is there a way to integrate this feature

in the present approa
h?

Similar problems are en
ountered for geographi
 networks whose verti
es are

pla
ed on a globe. We are working on a three-dimensional interpretation in the

mold of [4℄ that would take into a

ount lengths of geodesi
s to better untangle

the edges.

We are also investigating useful strategies for 
ontrol segment length as-

signments that would satisfy 
ertain properties of the resulting 
urves, like low


urvature, but potentially also to preserve 
ertain features, like planarity.

2

Note that the runnings times 
ompare favorably with the time that LEDA's graph

editor needs to render the results.



We devised a fast and e�e
tive layout method for timetable graphs by taking

a di�erent view on edge routing and utilizing the underlying network stru
ture.

It will be interesting to devise similar extensions of the rotation approa
h for

other appli
ations like internet traÆ
, 
ight routes, or non-geographi
 networks.
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