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Abstrat. Timetable graphs are used to analyze transportation net-

works. In their visualization, vertex oordinates are �xed to preserve the

underlying geography, but due to small angles and overlaps, not all edges

should be represented by geodesis (straight lines or great irles).

A previously introdued algorithm represents a subset of the edges by

B�ezier urves, and plaes ontrol points of these urves using a fore-

direted approah [5℄. While the results are of very good quality, the

running times make the approah impratial for interative systems.

In this paper, we present a fast layout algorithm using an entirely dif-

ferent approah to edge routing, based on diretions of ontrol segments

rather than positions of ontrol points. We reveal an interesting theo-

retial onnetion with Tutte's baryentri layout method [18℄, and our

omputational studies show that this new approah yields satisfatory

layouts even for huge timetable graphs within seonds.

1 Introdution

We onsider timetables omprised of transportation shedules, whih may be

originating from , e.g., trains, ights, or produt shipments. A large amount of

suh timetable data is provided to us by our industrial partner.

1

These are mostly

train shedules from ompanies all over Europe, but may ontain timetables from

other publi transport authorities (running busses, ferries, et.) as well. Due to

the size of the data (e.g., more than 140,000 trains serving a ombined number

of 28,000 stations for shedules of trains in Europe), visualization has proven to

be a valuable tool for data inspetion and maintenane.

The main purpose of the analysis of suh data is quality management, sine

shedules may vary between time periods, and are exhanged in a variety of

formats, inluding hand-written. The basis for several aspets of the analysis [19,

?
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Fig. 1. All edges represented by straight-line segments

17, 14℄ are graphs generated from the timetables. For the purpose of this paper,

we assume that eah station that any train stops at orresponds to a vertex, and

an undireted edge is introdued for eah pair of stations for whih there is a non-

stop servie in either diretion. Consequently, the timetable graphs onsidered

here are undireted and simple.

The links between points of departure and arrival are tied to geographi

loations, thus providing an intuitive vertex plaement for the orresponding

onnetion graph, leaving us with the problem of routing its edges. In order for

the visualization to be e�etive, the edge routing algorithm has to produe lear

and helpful drawings, and do so quikly to make it usable in interative tools.

In the most ommon form of geographi network visualization, edges are

shown as geodesis (straight lines or great irles, depending on whether the

graph is shown in the plane or on the sphere) [2, 16℄. While suh drawings an

be produed very quikly, small angles and overlap of edges often hinder their

unambiguous identi�ation, as an be seen in Fig. 1.

A method to produe e�etive timetable graph visualizations is presented

in [5℄. It uses an automatially lassi�ation of the edges into minimal and

transitive, where minimal edges are assumed to orrespond to railroads diretly

onneting pairs of stations, while transitive edges typially orrespond to re-

gional or long-distane servies that do not stop at eah station they pass. Sine

railroads an be expeted to over a geographi region eÆiently, this method

represents minimal edges by straight lines. Transitive edges, by their very nature,

are bound to ause small angles and overlap. Therefore they are represented by

ubi B�ezier urves. An elaborate fore-direted model plaes the ontrol points

of these urves. While aording to the data analysts, the output is very sat-

isfatory, running times are not aeptable (in the range of several minutes for

graphs of realisti size). See Fig. 2 for an example.

Sine we plan to integrate visualization into an existing interative query

engine that allows to generate timetable graphs from the omplete data set based



Fig. 2. Fore-direted plaement of B�ezier ontrol points for transitive edges [5℄

on a variety of attributes (oordinates, train lasses, traveling times, servie

frequenies, et.), faster, yet still e�etive, layout methods are sought.

A reently introdued alternative approah to automati routing of ubi

B�ezier urves is based on the angles between ontrol segments rather than the

positions of ontrol points (rotation approah [4℄). Though it is extremely fast,

its appliation to timetable graphs produes drawings with several de�ienies,

suh as exessive rossings and S-shaped urves.

Building on the underlying priniple of the general rotation approah, we

present a new edge routing model that yields better layouts without sari�ing

too muh of the running-time advantage. It uses properties of timetables to

preproess the graph so as to make it more suseptible to a rotation-like method.

A new objetive funtion is introdued, that ombines three riteria: angular

resolution, straightness, and roundness. A theoretially interesting aspet of this

model is its lose relation to the baryentri model of Tutte [18℄, even though it

is entirely based on angles rather than oordinates.

Though several other graph drawing tehniques expliitly onsider urved or

polyline edges, none of them seems appliable in our ase, beause they either

position verties [12, 13, 7℄ or are mainly designed to route edges around obsta-

les [11, 9, 1, 10℄. Our goal here is to disentangle a straight-line drawing in the

simplest way possible without moving verties.

The main features of the angle-based approah for ubi-urve routing are

outlined in Set. 2. Our new model for timetable graphs is introdued in Set. 3.

We onlude with some real-world examples and running time experiments.

2 An Alternative Approah to Curved Edge Layout

In this setion, we outline some aspets of a reently introdued approah [4℄ for

edge layout, when a graph has �xed vertex positions.



PSfrag replaements

b

0

b

1

b

0

1

b

2

b

0

2

b

3

Fig. 3. Cubi B�ezier urves [3℄ de�ned by

rotation and length of initial segments

A ubi B�ezier urve [3℄ is de-

termined by its two endpoints,

b

0

; b

3

, and two inner ontrol points

b

1

; b

2

(see Fig. 3). Note that the

same urves are obtained when

the order of ontrol points is re-

versed, while other permutations

in general de�ne di�erent urves.

We thus all segments b

0

b

1

and

b

2

b

3

the initial ontrol segments,

while b

1

b

2

is alled the inner on-

trol segment. Two other impor-

tant properties of B�ezier urves

are i) that the entire urve is ontained in the onvex hull of its de�ning points,

and ii) that the tangents at its endpoints are ollinear with the �rst and last

ontrol segment. The seond property provides an immediate generalization of

angles between edges represented by straight lines to angles between edges rep-

resented by B�ezier urves. From now on, we will neglet the distintion between

an edge or a vertex and its graphial representation.

Sine vertex positions are �xed, so are the endpoints of eah edge. Instead of

plaing ontrol points diretly, the layout an be divided into the following two

steps, also illustrated by Fig. 3:

1. determine a diretion for eah initial ontrol segment

2. determine a length for eah initial ontrol segment
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Fig. 4. Angles �

i

between straight-

line edges, and angular di�erenes x

i

The (loal) angular resolution at some ver-

tex is de�ned as the smallest angle formed by

the edges inident to that vertex. The global

angular resolution of a drawing is the mini-

mum loal angular resolution. In the �rst of

the above steps, the angles between inident

edges are determined, and therefore the an-

gular resolution at all verties. The seond

step an be used to ensure additional prop-

erties of a urve, e.g. to redue its urva-

ture. For our purposes, however, the simple

heuristi of hoosing a �xed proportion of

the distane between the endpoints proved

suÆient.

Cubi urves are the simplest represen-

tation that allows to maximize the angular resolution for all verties. Note that

we an treat ontrol segments inident to one vertex independently from ontrol

segments inident to other verties. Therefore, let e

0

; : : : ; e

d

G

(v)�1

, be a ounter-

lokwise ordering of the edges around some v 2 V in the given drawing (with

ties broken arbitrarily), and denote by �

i

, i = 0; : : : ; d

G

(v)�1, the angle between

e

i

and its ounterlokwise neighbor.



Aordingly, we de�ne 

0

; : : : ; 

d

G

(v)�1

to be the orresponding ordering of

ontrol segments inident to v. The angles between neighboring ontrol segments

equal

2�

d

G

(v)

beause of the optimal angular resolution onstraint. Denote by x

i

the angle between e

i

and 

i

, i = 0; : : : ; d

G

(v) � 1, where x

i

> 0, if e

i

omes

before, and x

i

< 0, if e

i

omes after 

i

in the ounterlokwise order around

v. We all these deviations from straight-line diretions the angular errors. See

Fig. 4 for an illustration and note that x

3

< 0.

Any set of ontrol segments satisfying the angle onstraints is alled a rotation

at v, but arbitrary rotations usually lead to unpleasant \spaghetti" drawings.

The straightness of a rotation is the degree to whih a rotation sueeds in keep-

ing the angular errors small. Several penalty funtions an be used to quantify

straightness. In partiular, the rotation minimizing the squared angular errors

P

d

G

(v)�1

i=0

(x

i

)

2

is unique, and an be omputed in time O (d

G

(v)) simply by

averaging over the angular errors. It is alled balaned rotation, beause it sat-

is�es

P

d

G

(v)�1

i=0

x

i

= 0. Figure 5 shows that optimal loal angular resolution at

all verties is too strong a riterion. Note, however, that angles between on-

trol segments an be spei�ed arbitrarily. Muh better drawings are obtained,

when angles between ontrol segments at verties v with a dominant angle angle

�

i

� � are onstrained to � (for the dominant angle) and to

�

d

G

(v)�1

for the

other angles. This set of angle onstraints is alled the half-sided template. For

further details we refer to [4℄.

Fig. 5. Result of a standard planar graph drawing algorithm [8℄, and balaned rotations

with and without half-sided templates for dominant angles

The rotation approah applied to timetable graphs is very fast (see Set. 4).

Though an obvious improvement over straight-line drawings, the examples in

Fig. 6 also show that the results are not entirely satisfatory for our present

appliation. Despite optimal angular resolution and straightness, the drawings

in general display sharp turns, S-shaped urves and appear luttered.

3 A New Layout Model for Timetable Graphs

Though the rotation approah desribed in the previous setion yields drawings

that are muh more readable than straight-line representations, they are still far

from the quality obtained by the fore-direted layout approah. In this setion,

we present a new layout model based on the same strategy as the rotation

approah but tailored to timetable graphs.



Fig. 6. Balaned rotations with the half-sided template for verties with a dominant

angle. Note the unfortunate ordering on the left.

Edges of a timetable graph are routinely lassi�ed into minimal and transi-

tive. Sine minimal edges typially orrespond to atual railways, they seldom

ause readability problems and an hene be drawn straight, both to redue the

size of the input and to visually emphasize their role as a support of the network.

We are going to ustomize the rotation approah to our spei� appliation

in several ways. Most importantly, we introdue a preproessing step that deter-

mines a good ordering of edges around a vertex, and our new objetive funtion

aims at rounding out S-shaped urves. In onsequene, angular resolution must

be relaxed from a onstraint to an optimization riterion. We show that there

still is a unique optimum solution, whih, however, is no longer omputed as

easily as in the rotation approah.

3.1 Preproessing

Sine minimal edges are represented by straight lines, the ordering of minimal

edges around a vertex is �xed. Transitive edges have an inherent tendeny to

short-ut paths of minimal edges. Small deviations in the ourse of the latter

ause the straight-line ordering of transitive edges to be somewhat arbitrary

(as was demonstrated in Fig. 6). To redue the rossing problem illustrated in

Fig. 6, an ordering of transitive edges is determined in two stages: in the �rst

stage, ontrol segments with similar target diretions are grouped together, and

in the seond stage, the ontrol segments of eah group are put in order.

Grouping. The initial ontrol segments inident to a vertex are grouped a-

ording to the minimal edge their straight-line representation is losest to, and

aording to the side toward whih they depart (i.e. whether they are ounter-

lokwise before or after their losest minimal edge). As illustrated in Fig. 7(a),



eah initial ontrol segment of a transitive edge is assigned to the left or right

hand side of its losest minimal edge.

Crossing redution. The assignment is then re�ned to redue the number of

rossings among transitive and minimal edges. If the two initial ontrol segments

of a single edge are both lassi�ed to lie on, say, the right hand side of their

respetive minimal edge, the assumption that these minimal edges are linked

by a path of minimal edges (the railroad that the long-distane trains induing

this edge travel along) suggests that the inner ontrol segment of the transitive

edge will ross this path. We therefore reassign the ontrol segment inident to

the vertex of smaller degree (presumably a less important station), or, in ase of

equal degrees, to the one that deviates further from the straight-line onneting

the endpoints, to another group as depited in Fig. 7(b).

(a) group by losest

minimal edge

(b) regroup to avoid

rossings

() sort by length

Fig. 7. Initial ordering of edges. Ars indiate the side of minimal edge a ontrol

segment is assigned to

Sorting. Within a group, ontrol segments are sorted aording to the length

of the straight-line representation of their orresponding edge, suh that the

shortest ones are losest to their assigned minimal edge. See Fig. 7(). This

order is likely to avoid rossing of adjaent transitive edges.

Thus the initial ontrol segments of transitive edges inident to a ommon vertex

are grouped into a number of groups that is twie the number of minimal edges

inident to that vertex. Eah group is assigned a wedge that is an angle between

a minimal edge and a bisetor of the angle between this edge and its lokwise

or ounterlokwise minimal neighbor and spae out evenly. The overall running

time of the preproessing step is O

�

P

v2V

d

G

(V ) log d

G

(v)

�

= O (jEj log jEj) :

3.2 Layout Objetives

With this heuristi ordering, we are now able to state our objetive funtion

formally. It ombines the riteria of loal angular resolution, straightness, and

roundness, subjet to straight-line representation of minimal edges. Consider-

ing the straight minimal edges to be ontrol segments with �xed diretion, let



0

; : : : ; 

d

G

(v)�1

be the diretions of ontrol segments inident to a vertex v, in

the order resulting from the preproessing.



Angular Resolution. The optimal angular di�erenes a

i

, i = 0; : : : ; a

d

G

(v)�1

,

between onseutive ontrol segments (whih have been a onstraint in the ro-

tation approah) are determined by equally dividing up the wedge assigned to

the group. Satisfation of the angular resolution riterion an then be expressed

in terms of the squared angular error with respet to the target values,

A

v

() =

d

G

(v)�1

X

i=0

(

i+1

� 

i

� a

i

)

2

; (angular resolution riterion)

where indies are modulo d

G

(v), and pairs 

i

; 

i+1

of ontrol segments in di�erent

groups are omitted. Reall that ontrol segments of minimal edges lie in two

groups.

Straightness. For reasons mentioned in the disussion of the rotation approah,

the deviation of ontrol segments from straight edges should be penalized. We

use the squared angular errors with respet to straight-line diretions, i.e. the

objetive funtion of the balaned rotation approah,

S

v

() =

d

G

(v)�1

X

i=0

x

2

i

=

d

G

(v)�1

X

i=0

(

i

� e

i

)

2

: (straightness riterion)

Roundness. Muh of the larity in timetable graph layouts produed with fore-

direted plaement stems from the prevailing symmetry, or roundness, of those

edges represented by B�ezier urves. We measure the roundness of a B�ezier urve

by the squared di�erene in deviation of the two initial ontrol segments from

the straight-line edges onneting the endpoints. Note that, for a highly desirable

urve, the magnitudes of deviation are the same at both ends, but with opposite

sign.

As a result of the preproessing, one initial ontrol segment of a transitive

edge is assigned to a group assoiated with the right hand side of a minimal

edge, while the other is assigned to a group assoiated with the left hand side of

a minimal edge. Reversing the sense of diretion within eah group assoiated

with, say, a left hand side hanges the sign of all their angular di�erenes, but

does not a�et the other two riteria (if the sign of optimal angular di�erenes

a

i

is reversed as well). Non-roundness is thus de�ned as

R

v

() =

d

G

(v)�1

X

i=0

((

i

� e

i

)� (

0

i

� e

0

i

))

2

; (roundness riterion)

where 

0

i

is the diretion of the initial ontrol segment at the opposite end of e

i

,

and e

0

i

is the reverse straight-line diretion of the edge.

The objetive funtion for edge layout of preproessed timetable graphs is

now de�ned as a weighted sum of the above riteria, U() =

P

v2V

!

a

�A

v

() +

!

s

� S

v

() + !

r

� R

v

():



3.3 Optimizing the Objetive Funtion

Next we show that the layout objetive funtion U() de�ned in the previous

setion is a generalized version of the objetive funtion of the baryentri layout

model, and has a unique minimum under equivalent assumptions.

Consider the following transformation of a preproessed timetable graph. We

onstrut a new undireted graph G = (V;E) that has a vertex for eah of the

two initial ontrol segments, and for eah of the two diretions of a transitive

edge. Two verties in G are adjaent, if one is a straight-line diretion and the

other is the orresponding ontrol segment (e

i

and 

i

of some vertex), if they are

onseutive ontrol segments in some group (reall that groups and order are

de�ned in the preproessing), or if they are initial ontrol segments of the same

transitive edge.

Assume that for eah edge e = fu; vg 2 E there are weights !

e

> 0 and

target di�erenes �

uv

= ��

vu

. Then it is easy to see that our objetive funtion

an be restated as

U() =

X

e=fu;vg2E

!

e

� (

v

� 

u

� �

uv

)

2

:

Sine the essential properties of this funtion are the same as those of the

baryentri layout model

P

e=fu;vg2E

(

v

� 

u

)

2

, the following parallels Tutte's

analysis [18℄. For a vetor  = (

v

)

v2V

minimizing this funtion, the partial

derivatives

�

�

v

U() =

X

u : e=fu;vg2E

2!

e

� (

v

� 

u

� �

uv

)

must equal zero for all v 2 V . Canelling the onstant fator of 2, this system of

linear equations an be reordered into the form

(D(G) �A(G)) �  = L(G) �  = b;

where D(G) is a diagonal matrix with weighted degrees d

vv

=

P

u : e=fu;vg2E

!

e

on the diagonal, A(G) is the weighted adjaeny matrix with entries a

uv

= !

fu;vg

if fu; vg 2 E and a

uv

= 0 otherwise, and b is a vetor with onstant entries

b

v

=

P

u : e=fu;vg2E

!

e

�

uv

. The resulting matrix L(G) is alled the Laplaian of

the graph.

Lemma 1 ([6℄). The determinant of any submatrix of L(G) obtained by omit-

ting any pair of a row and a olumn orresponding to a vertex in G equals

X

T

Y

e2E(T )

!

e

where the sum is over all spanning trees of G, and E(T ) denotes the edge set of

a tree T .



Note that �xing any entry in  orresponds to omitting its row and olumn

from L(G) and adjusting b. Fixing the entries of more than one vertex of G or-

responds to ontrating these verties, and then omitting the row and olumn

of this vertex and adjusting b. Consequently, the determinant of the resulting

submatrix is positive, if the value of at least one vertex in eah onneted om-

ponent of G is �xed. Sine, by de�nition, no station is inident only to transitive

edges, every omponent of G has at least one vertex that orresponds to a �xed

ontrol segment of a minimal edge.

Theorem 1. The timetable graph layout objetive funtion U() has a unique

minimum that an be determined by solving a system of linear equations with

twie as many unknowns as there are transitive edges.

Due to the size of typial systems (f. Tab. 1), we annot a�ord to solve

it exatly in time still aeptable for an interative system. Sine the matrix

L(G) is weakly diagonally dominant, we instead use Gauss-Seidel iteration to

quikly approximate the optimal diretions. Note that this niely orresponds to

a one-dimensional spring embedder, that does an optimal move at eah step.

Initial diretions are determined by equally dividing the angle formed by the

bounding pair of a minimal edge and an angle bisetor for eah group. Clearly,

these layouts optimize the angular resolution riterion subjet to the heuristi

ordering and grouping onstraint.

4 Results and Disussion

Figure 8 gives the result of our new approah as applied to the running example.

The larger examples given in the appendix show that our new method learly

outperforms the general rotation approah in terms of visual quality, though it

still does not quite math the quality of fore-direted plaements.

Fig. 8. Layout after 7 iterations (!

a

= 2, !

s

= 0, !

r

= 1)



By neessity, the angular error of ontrol segments with respet to straight

edges is usually muh larger than the angle between neighboring ontrol seg-

ments, so that !

s

should be hosen signi�antly smaller than the other two

weights. Sine it turns out that straightness is suÆiently taken are of by

the preproessing step, we generally omit this riterion altogether. The rela-

tive hoie of angular resolution vs. roundness depends on personal preferenes.

The examples in the appendix use !

a

= 2 � !

r

. We also found that the initial

diretions do fairly well for any reasonable hoie of weights, and sine the sys-

tem is rather sparse, the maximum rotation of a ontrol segment is below 0:01

radians after 3{10 iterations.

All three approahes (fore-direted layout, rotation approah, and the ap-

proah of this paper) have been implemented in C++ using LEDA [15℄. Sine

we ompare proof-of-onept implementations, our running-time experiments

should be understood as qualitative. The indiation is nevertheless quite lear.

Though most of the time is spent on a preproessing step that determines the

\neighborhood" of eah ontrol point [5℄, the fore-direted approah is very

slow, and will probably remain so even with a sophistiated implementation.

While the rotation approah is the fastest, even our urrent implementation of

the approah presented in this paper performs at interative speed,

2

but pro-

dues drawings of muh better quality.

Table 1. Running times on a Sun Ultra 5 workstation (360 Mhz, 192 MBytes). Times

given in parentheses are without preproessing

instane nodes edges (transitive) fore-direted rotation new

switzerland 2218 3203 ( 536) 53 (10) se 0.36 se 1.31 (0.17) se

italy 2386 4370 (1849) 309 (42) se 0.51 se 2.21 (0.57) se

frane 4551 7793 (2408) 621 (54) se 0.80 se 3.44 (0.73) se

germany 7083 9713 (1956) 582 (38) se 1.18 se 4.21 (0.60) se

There are several avenues for future work. With respet to the present appli-

ation, we have yet no way of modeling the seond most e�etive feature after

roundness, i.e. binding. By introduing dummy edges between a pair of ontrol

points when their initial segments are inident to the same vertex, the fore-

direted approah sueeds in dragging onseutive or nested transitive edges to

the same side of a path of minimal edges. Is there a way to integrate this feature

in the present approah?

Similar problems are enountered for geographi networks whose verties are

plaed on a globe. We are working on a three-dimensional interpretation in the

mold of [4℄ that would take into aount lengths of geodesis to better untangle

the edges.

We are also investigating useful strategies for ontrol segment length as-

signments that would satisfy ertain properties of the resulting urves, like low

urvature, but potentially also to preserve ertain features, like planarity.

2

Note that the runnings times ompare favorably with the time that LEDA's graph

editor needs to render the results.



We devised a fast and e�etive layout method for timetable graphs by taking

a di�erent view on edge routing and utilizing the underlying network struture.

It will be interesting to devise similar extensions of the rotation approah for

other appliations like internet traÆ, ight routes, or non-geographi networks.
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