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Abstra
t. In visualizations of large-s
ale transportation and 
ommu-

ni
ations networks, node 
oordinates are usually �xed to preserve the

underlying geography, while links are represented as geodesi
s for sim-

pli
ity. This often leads to severe readability problems due to poor an-

gular resolution, i.e. small angles formed by lines 
onverging in a node.

We present a new method using automati
ally routed 
ubi
 
urves that

both preserves node 
oordinates and eliminates the resolution problem.

The approa
h is applied to representations in the plane and on the sphere,

showing European train 
onne
tions and Internet traÆ
, respe
tively.

1 Introdu
tion

Sin
e nodes in large-s
ale transportation networks, su
h as airline 
ight plans,

train 
onne
tion maps, or extra
ts of the Internet, have a given geographi
 lo-


ation, we 
all these networks geographi
 networks. Typi
al visualizations use

given node 
oordinates either dire
tly, or only apply an appropriate proje
tion

(e.g., from the surfa
e of a sphere to a plane) to retain the viewers familiarity

with the underlying geometry [3℄. In general, the exa
t routing of 
onne
tions

is not important, so that links are often represented as geodesi
s (straight-lines

or great 
ir
les). While 
omputationally and visually simple, this approa
h does

not take into a

ount the per
eptual organization of the resulting visualization.

Prior work on improving the visual quality has fo
used on moderate re-

positioning of 
lose or overlapping nodes [17, 10℄, and re-routing of edges 
utting

through nodes or other features [1, 8℄. Sin
e we address a di�erent 
riterion

of layout quality, our work 
an be potentially used in 
onjun
tion with these

approa
hes.

Severe readability problems in visualizations of geographi
 networks stem

from small angles formed by lines 
onverging in a 
ommon node. Small angles


ause viewers to per
eive �lled-in areas between the lines , 
ausing \blob"-

e�e
ts and making it diÆ
ult to tell lines apart.
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We present a new method that modi�es a given visualization so that all

angles formed by in
ident lines are of suÆ
ient size. This is a
hieved by repla
-

ing straight-line and great-
ir
le 
onne
tions with 
ubi
 
urves. While visually

still simple, 
ubi
 
urves allow to pres
ribe angles between in
ident 
urves at

will. A 
omputationally fast and simple method is introdu
ed and demonstrated

working on two real-world data sets.

The remainder of this paper is organized as follows. In Se
t. 2, we provide

some terminology and ba
kground on properties of angles in network visualiza-

tions. Our approa
h is des
ribed in Se
t. 3 and some extensions are presented in

Se
t. 4. Finally, it is applied to visualizations in the plane and on the sphere in

Se
t. 5, using data from European train and ferry s
hedules, and the multi
ast

ba
kbone of the Internet, respe
tively.

2 Ba
kground on Angular Resolution

Networks are 
onveniently des
ribed as graphs G = (V;E), where v is a set of

verti
es (nodes), and E is a set of edges (links). Without loss of generality we


onsider only undire
ted graphs without loops and multiple edges, so that every

edge is an unordered pair of verti
es.

A network visualization is a drawing of the graph, i.e. a mapping of verti
es

to points in the plane or in spa
e together with a mapping of edges to 
urves 
on-

ne
ting the points of their respe
tive verti
es. We 
on�ne ourselves to drawings

that map verti
es into the plane or the surfa
e of a sphere.

Assume, we are given a drawing of a graph in the plane, su
h that every edge

is represented as a straight line. The lo
al angular resolution at vertex v 2 V is

the minimum angle between a pair of edges in
ident to v. The minimum angle

between any pair of edges in
ident to any v 2 V is 
alled the angular resolution

of the drawing and introdu
ed in [9℄.

A trivial upper bound on the lo
al angular resolution at vertex v 2 V is

2�

d

G

(v)

, where d

G

(v) is the degree of v, de�ned as the number of edges in
ident

to v. It is shown in [9℄ that every simple graph has a straight-line drawing with

angular resolution 
(

1

�(G)

), where �(G) is the maximum degree of any vertex in

G. For planar graphs, i.e. graphs that 
an be drawn in the plane without 
rossing

edges, it is shown how to 
onstru
t drawings with asymptoti
ally optimal angular

resolution. However, these drawings are in general not planar.

Every planar graph has a planar straight-line drawing with angular resolu-

tion 
(

1

�

�(G)

) for some 
onstant � > 1 [18℄, but there are planar graphs for

whi
h the angular resolution in any planar straight-line drawing is bounded by

O(

q

log�(G)

�(G)

3

) [12℄. Note that maximizing the angular resolution over all planar

straight-line drawings of a planar graph is NP-hard [11℄.

It is shown in [16℄ how to obtain planar drawings with asymptoti
ally optimal

angular resolution when edges may be represented as sequen
es of straight lines.

This result is improved in [13℄ and [14℄, where it is shown that only two bends

per edge are needed, so that edges 
an be drawn as 
ubi
 
urves.



Our setting di�ers from the above in that the mapping of verti
es to points

is already �xed. We do not know of other work on this parti
ular problem.

To alter the angular resolution, we 
learly must use polyline or 
urved edges

as well. We 
urrently use 
ubi
 B�ezier 
urves [4℄, partially for the pragmati


reason that they are built into PostS
ript and LEDA's [19℄ graph editor. They

are de�ned by a sequen
e of four 
ontrol points, b

0

; : : : ; b

3

(and thus three 
ontrol

segments b

0

b

1

, b

1

b

2

, and b

2

b

3

), and have several advantages over other types of


urves [5℄. In parti
ular, the tangents at b

0

and b

3

are 
ollinear with the �rst

and third 
ontrol segment. The de�nitions of lo
al and global angular resolution

are hen
e easily generalized to drawings with 
ubi
 B�ezier 
urves.

To repla
e a straight-line edge with a 
ubi
 B�ezier 
urve, we only have to

pla
e the inner 
ontrol points b

2

and b

3

, sin
e b

0

and b

3

must be assigned to the

positions given for the in
ident verti
es. The pla
ement is then divided into

1. determining dire
tions for the �rst and third 
ontrol segment, and

2. determining the lengths of the �rst and third 
ontrol segment.

Sin
e the resulting angular resolution is fully determined by the �rst step, we do

not 
onsider the se
ond step in the remainder of this paper. As a simple heuristi


the length of the �rst and third 
ontrol segment is 
hosen proportional to the

length of the straight-line edge. Future work should guarantee further desirable

properties [15℄ of, potentially higher-order, 
urves (e.g., to retain planarity of

a drawing). Figure 1 shows the prin
ipal 
ombinations of dire
tions of the �rst

and third 
ontrol segment and resulting 
ubi
 B�ezier 
urves. Note that all of

them are easy to tra
e for the human eye. Moreover, we will see later that our

approa
h avoids the four high-
urvature 
ases on the right hand side whenever

possible.

Fig. 1. Prin
ipal non-degenerate 
ombinations of 
ontrol segment orientations

3 Fixed Angular Resolution and Interesting Rotations

In this se
tion, we show how to improve the angular resolution of a given straight-

line drawing in the plane by 
hoosing dire
tions for the �rst and third 
ontrol

segment of B�ezier 
urves repla
ing the straight lines.



On the one hand, these dire
tions should yield good angular resolution. On

the other hand, we also want them to resemble the straight-line dire
tions as


lose as possible to avoid the high-
urvature 
ases of Fig. 1, whi
h also serves to

keep the drawing simple. Note that we 
an treat 
ontrol segments in
ident to one

vertex independently from 
ontrol segments in
ident to other verti
es. Therefore,

let e

0

; : : : ; e

d

G

(v)�1

, be a 
ounter
lo
kwise ordering of the edges around some

v 2 V in the given drawing (with ties broken arbitrarily), and denote by �

i

,

i = 0; : : : ; d

G

(v)� 1, the angle between e

i

and its 
ounter
lo
kwise neighbor.

A

ordingly, we de�ne 


0

; : : : ; 


d

G

(v)�1

to be the 
orresponding ordering of


ontrol segments in
ident to v. The angles between neighboring 
ontrol segments

are �xed to be

2�

d

G

(v)

, thus ensuring optimal lo
al, and hen
e global, angular res-

olution. Be
ause of the simpli
ity requirement, we want to penalize the deviation

of 
ontrol segments from straight-line edges. Denote by x

i

the angle between e

i

and 


i

, i = 0; : : : ; d

G

(v) � 1, where x

i

> 0, if e

i


omes before, and x

i

< 0, if e

i


omes after 


i

in the 
ounter
lo
kwise order around v. We 
all these quantities

the angular di�eren
es. See Fig. 2 for an illustration and note that x

3

< 0.
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Fig. 2. Angles �

i

between straight-line edges, and angular di�eren
es x

i

Any set of 
ontrol segments satisfying the angle 
onstraints is 
alled a ro-

tation at v. There are several ways to de�ne desirable rotations. Sin
e the

angles between 
ontrol segments are �xed. all angular di�eren
es of a vertex

are dependent. It is easily seen that x

1

= x

0

+

2�

d

G

(v)

� �

0

, and more gen-

eral x

i

= x

0

+ i �

2�

d

G

(v)

�

P

i�1

j=0

�

j

for i = 0; : : : ; d

G

(v) � 1. We frequently use

y

i

= i �

2�

d

G

(v)

�

P

i�1

j=0

�

j

to denote the angular o�set 
aused by 
hoosing x

0

as

the independent variable. A straightforward obje
tive is to minimize the largest

absolute angular di�eren
e,

max

i=0;:::;d

G

(v)�1

jx

i

j: (1)

We 
all this a minimum rotation.



Theorem 1. The minimum rotation is unique, and linear-time 
omputable.

Proof. Sin
e x

i

= x

0

+ y

i

, i = 0; : : : ; d

G

(v) � 1, the maximum absolute angular

di�eren
e is the maximum of jx

0

+min

i

y

i

j and jx

0

+max

i

y

i

j. This maximum

be
omes minimum for

x

0

= �

min

i

y

i

+max

i

y

i

2

;

sin
e both absolute values be
ome equal and every other x

0

in
reases either one.

We next observe that, if the distribution of angles between straight-line edges

in a given drawing is well-behaved, the maximum absolute angular di�eren
e will

be small.

Corollary 1. In a minimum rotation of a vertex v with degree at least two, the

maximum angular di�eren
e is max

i

jx

i

j = max

r<s

1

2

�

�

�

�

(s� r)

2�

d

G

(v)

�

P

s�1

j=r

�

j

�

�

�

< �:

Proof. The proof of Theorem 1 showed that max

i

jx

i

j = jx

0

+ min

i

y

i

j =

1

2

�

jmin

i

y

i

�max

i

y

i

j =

1

2

� jmax

i

y

i

�min

i

y

i

j. It follows that there are r; s 2

f0; : : : ; d

G

(v) � 1g su
h that max

i

jx

i

j =

1

2

jy

s

� y

r

j and r < s, and there is

no pair with a larger absolute di�eren
e. Sin
e y

s

�y

r

= (s�r)

2�

d

G

(v)

�

P

s�1

j=r

�

j

,

the equality holds. Clearly, 0 < (s � r)

2�

d

< 2� and 0 �

P

s�1

j=r

�

j

� 2� for all

pairs r < s 2 f0; : : : ; d

G

(v)� 1g.

Essentially, the 
orollary states that the angular di�eren
es are half as bad

as the given distortion in the straight-line edges. Re
all that angular di�eren
es

less than or equal to

�

2

ex
lude the high-
urvature 
ases of Fig. 1.

The 
orollary also indi
ates that the minimum rotation may be dominated by

one pair of straight-line edges. An alternative obje
tive is therefore to minimize

the sum of squared angular di�eren
es,

d

G

(v)�1

X

i=0

(x

i

)

2

; (2)

weighing 
ontributions more evenly. Su
h rotations are 
alled balan
ed.

Theorem 2. The balan
ed rotation is unique, and linear-time 
omputable.

Proof. Substituting for x

i

redu
es obje
tive fun
tion (2) to a positive fun
tion in

x

0

. Thus, any x

0

satisfying

�

�x

0

P

d

G

(v)�1

i=0

(x

0

+ y

i

)

2

=

P

d

G

(v)�1

i=0

2 �(x

0

+ y

i

) = 0

yields a minimum. Clearly, there is exa
tly one su
h x

0

, and it is obtained by

averaging over all o�sets, i.e.

x

0

=

�

P

d

G

(v)�1

i=0

y

i

d

G

(v)

=

1

d

G

(v)

d

G

(v)�1

X

i=0

0

�

i�1

X

j=0

�

j

� i �

2�

d

G

(v)

1

A

:

An immediate 
onsequen
e of the proof explains the name of this rotation.



Corollary 2. In a balan
ed rotation,

d

G

(v)�1

P

i=0

x

i

= 0.

See Fig. 3 for a 
omparison of minimum and balan
ed rotation. For 
omplete-

ness we note that the seemingly less interesting absolute rotation, suggested by

this 
orollary, minimizing

P

d

G

(v)�1

i=0

jx

i

j is also unique, and that all angular dif-

feren
es for verti
es with already optimal lo
al angular resolution equal zero in

any of these rotations.


ontrol segments B�ezier 
urves

minimum rotation

balan
ed rotation

Fig. 3. Comparison of minimum and balan
ed rotation

4 Extensions

The following are some of several possible extensions that may be useful when a

parti
ular appli
ation yields additional requirements on the quality of a drawing.

Arbitrary angle 
onstraints. From Corollary 1 we see that angular di�eren
es


an grow quite big, when the given straight-line drawing has large angles, whi
h

typi
ally results in edges with high 
urvature. In su
h situations it may be ad-

vantageous not to optimize lo
al angular resolution exa
tly, but only up to a


onstant. For example, if there is an angle of at least �, all angles between 
on-

trol segments 
an be set to

�

d

G

(v)�1

, ex
ept for one whi
h is �xed to �. Note that

we 
an impose any 
onstraint on the angles between 
ontrol segments, provided

they add up to 2�, without a�e
ting Theorems 1 and 2. Figure 4 shows some

potentially useful templates for angles between 
ontrol segments. The middle

one is applied to verti
es on the 
onvex hull in Fig. 5.

Weighted angular di�eren
es. In an appli
ation with di�erent types of edges,

angular di�eren
es of some edges may be more important than those of others.

If this importan
e 
an be quanti�ed, the obje
tive fun
tions for rotations 
an

be modi�ed to a

ommodate weights, and analog theorems hold. Weights may

be parti
ularly useful when the straight-line edges in
ident to a vertex are of

signi�
antly di�erent length.



Fig. 4. Example templates for 
onstraints on 
ontrol segment angles

(a)

(b)

(
)

Fig. 5. A straight-line triangulation (a) and 
urved edges in a balan
ed rotation (b).

Using the half-sided templates of Fig. 4 for verti
es on the 
onvex hull signi�
antly

improves the drawing (
)

Cy
li
 ordering. The order of 
ontrol segments of a vertex need not the same

as for the straight-line edges. Figure 6 depi
ts a situation in whi
h a di�erent

ordering would be better. Allowing negative angles �

i

, 
ontrol segments 
an be

put in any order.

Crossings. While there is no 
ontrol over whether 
urved edges 
ross ea
h other

when a rotation is determined, 
rossings already existing in the straight-line

drawing 
an be maintained by repla
ing them with a dummy vertex. Sin
e angle


onstraints are arbitrary, we 
an thus 
onstrain 
urves to 
ross, e.g., at a right

angle or at the same angle as in the given drawing.

5 Appli
ation Examples

5.1 Train Conne
tions

To analyze time table data of a number of European publi
 transport systems

(mostly trains), a graph is 
onstru
ted in the following way [6℄: Ea
h station is

represented by a vertex, and there is an edge between two verti
es if there is at

least one non-stop servi
e between them at any time. This graph is analyzed,

e.g., with respe
t to 
ompleteness, 
onsisten
y, or 
hanges between s
hedules,

serving, e.g., quality 
ontrol, international 
oordination, and pri
ing.

Ea
h vertex has a geographi
 lo
ation, thus providing geographi
al 
ontext

for visual data exploration. Part of the analysis is an automati
 
lassi�
ation



into minimal and transitive edges, 
orresponding to tra
ks and high-speed 
on-

ne
tions passing by minor stations, respe
tively. By their very nature, many

edges run almost in parallel when drawn as straight-lines. In parti
ular, tran-

sitive edges overlap ea
h other, and minimal edges (see Fig. 6(a)). Figure 6(b)

shows a balan
ed rotation with the spe
ial half-sided template for verti
es with

an angle of at least �. The unne
essary detour of one minimal edge is due to

the unfortunate ordering of straight-line edges. The system we are building will

order edges based on their length and 
lassi�
ation.

An elaborate algorithm for appli
ation-spe
i�
 
urved layout of transitive

edges is presented in [6℄. Users are very satis�ed with the output, but running

times are painful (7{45 minutes for the networks 
ompared in Tab. 1). Using the

approa
h des
ribed in this paper, we 
an easily a�ord to 
ompute a new layout

every time a network is displayed and thus support intera
tive querying. In fa
t,

optimal rotations are 
omputed faster than the editor (LEDA's [19℄ GraphWin


lass) renders the network. See also the larger example in Fig. 7.

instan
e nodes edges minimum balan
ed

switzerland 2218 3203 0.36 se
 0.36 se


italy 2386 4370 0.51 se
 0.51 se


fran
e 4551 7793 0.81 se
 0.80 se


germany 7083 9713 1.19 se
 1.18 se


Table 1. Computation times for rotations (Sun UltraSpar
, 440 Mhz, 256 MBytes)

Allensbach

PSfrag repla
ements

Konstanz

Radolfzell

(a) straight lines

Allensbach

Allensbach

PSfrag repla
ements

Konstanz

Radolfzell

(b) balan
ed rotation

Allensbach

Fig. 6. Small network in southern Germany with one undesirable edge ordering

5.2 Internet Multi
ast Ba
kbone

Internet 
onne
tions represent another example of an organi
ally grown, and

growing, geographi
 network. To support their analysis, whi
h is 
ru
ial for



maintenan
e and development, advan
ed systems su
h as [7, 20℄ provide e�e
tive

intera
tive visualizations of network topologies. The environment of [20℄ is pub-

li
ly available,

1

and generates a geometri
 s
ene des
ription that 
an be explored

in an intera
tive browser su
h as Geomview [2℄. We repla
ed the generation of

geometri
 output to demonstrate how to improve the angular resolution, and

thus the per
eptual quality, of the resulting visualizations.

The original system visualizes the topology of the MBone, the Internet's

multi
ast ba
kbone, by representing it as a geographi
 network on the globe,

where 
onne
tions (MBone tunnels) are shown as great 
ir
le segments elevated

into spa
e (Fig. 8(a)). The angles between great 
ir
les 
orrespond to the angles

between their proje
tions into the plane tangent to their interse
tion. Our ap-

proa
h of orienting 
ontrol segments is therefore easily generalized to deal with

great 
ir
les on a sphere rather than lines in the plane. On
e the inner 
ontrol

points of a 
urved edge are pla
ed on the sphere, the a
tual 
urve is determined

as follows. Assume the globe is represented as a sphere with unit radius, and

B(t) : [0; 1℄! IR

3

is a 
ubi
 B�ezier 
urve in spa
e 
onne
ting points b

0

and b

3

.

The 
urve is proje
ted onto the sphere and elevated into spa
e a

ording to

B(t)

kB(t)k

� (1 + 
 � ar

os(b

0

� b

3

) � sin(t�)):

where 
 is an elevation 
onstant. The resulting 
urves have essentially the same

height as those in [7℄. See Fig. 8(b).

6 Con
lusions

We presented a simple and extremely fast approa
h to improve the per
eptual

quality of visualizations of networks with underlying geography. The approa
h

is novel in that it fo
uses on angular resolution rather than vertex positioning,

and we expe
t many potential appli
ations other than the two des
ribed.

There are, however, several interesting topi
s that need further resear
h.

First of all, our 
urrent formulation does not allow to 
ontrol the introdu
tion

of new edge 
rossings. It would be ni
e to guarantee that an improved drawing

has the same number of 
rossings as the input drawing, espe
ially if the latter

has no 
rossings at all. The small time table data example already showed that

our approa
h is sensitive to the ordering of edges around a vertex. Is there a

generally appli
able rule to determine an ordering other than the one in the

straight-line drawing? Sin
e rotations are determined independently for ea
h

vertex, an optimal rotation may introdu
e unne
essarily many S-shaped 
urves,

whereas a di�erent rotation may be more pleasing. Can we introdu
e some form

of dependen
y to make angular di�eren
es at both ends of an edge similar?

Finally, we would like to improve the heuristi
 used to determine the length of

a 
ontrol segment. It may be advantageous to have 
ontrol segments of similar

length at a vertex, or at both ends of an edge.

1

http://o
eana.nlanr.net/PlanetMulti
ast/
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