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Abstrat. In visualizations of large-sale transportation and ommu-

niations networks, node oordinates are usually �xed to preserve the

underlying geography, while links are represented as geodesis for sim-

pliity. This often leads to severe readability problems due to poor an-

gular resolution, i.e. small angles formed by lines onverging in a node.

We present a new method using automatially routed ubi urves that

both preserves node oordinates and eliminates the resolution problem.

The approah is applied to representations in the plane and on the sphere,

showing European train onnetions and Internet traÆ, respetively.

1 Introdution

Sine nodes in large-sale transportation networks, suh as airline ight plans,

train onnetion maps, or extrats of the Internet, have a given geographi lo-

ation, we all these networks geographi networks. Typial visualizations use

given node oordinates either diretly, or only apply an appropriate projetion

(e.g., from the surfae of a sphere to a plane) to retain the viewers familiarity

with the underlying geometry [3℄. In general, the exat routing of onnetions

is not important, so that links are often represented as geodesis (straight-lines

or great irles). While omputationally and visually simple, this approah does

not take into aount the pereptual organization of the resulting visualization.

Prior work on improving the visual quality has foused on moderate re-

positioning of lose or overlapping nodes [17, 10℄, and re-routing of edges utting

through nodes or other features [1, 8℄. Sine we address a di�erent riterion

of layout quality, our work an be potentially used in onjuntion with these

approahes.

Severe readability problems in visualizations of geographi networks stem

from small angles formed by lines onverging in a ommon node. Small angles

ause viewers to pereive �lled-in areas between the lines , ausing \blob"-

e�ets and making it diÆult to tell lines apart.
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We present a new method that modi�es a given visualization so that all

angles formed by inident lines are of suÆient size. This is ahieved by repla-

ing straight-line and great-irle onnetions with ubi urves. While visually

still simple, ubi urves allow to presribe angles between inident urves at

will. A omputationally fast and simple method is introdued and demonstrated

working on two real-world data sets.

The remainder of this paper is organized as follows. In Set. 2, we provide

some terminology and bakground on properties of angles in network visualiza-

tions. Our approah is desribed in Set. 3 and some extensions are presented in

Set. 4. Finally, it is applied to visualizations in the plane and on the sphere in

Set. 5, using data from European train and ferry shedules, and the multiast

bakbone of the Internet, respetively.

2 Bakground on Angular Resolution

Networks are onveniently desribed as graphs G = (V;E), where v is a set of

verties (nodes), and E is a set of edges (links). Without loss of generality we

onsider only undireted graphs without loops and multiple edges, so that every

edge is an unordered pair of verties.

A network visualization is a drawing of the graph, i.e. a mapping of verties

to points in the plane or in spae together with a mapping of edges to urves on-

neting the points of their respetive verties. We on�ne ourselves to drawings

that map verties into the plane or the surfae of a sphere.

Assume, we are given a drawing of a graph in the plane, suh that every edge

is represented as a straight line. The loal angular resolution at vertex v 2 V is

the minimum angle between a pair of edges inident to v. The minimum angle

between any pair of edges inident to any v 2 V is alled the angular resolution

of the drawing and introdued in [9℄.

A trivial upper bound on the loal angular resolution at vertex v 2 V is

2�

d

G

(v)

, where d

G

(v) is the degree of v, de�ned as the number of edges inident

to v. It is shown in [9℄ that every simple graph has a straight-line drawing with

angular resolution 
(

1

�(G)

), where �(G) is the maximum degree of any vertex in

G. For planar graphs, i.e. graphs that an be drawn in the plane without rossing

edges, it is shown how to onstrut drawings with asymptotially optimal angular

resolution. However, these drawings are in general not planar.

Every planar graph has a planar straight-line drawing with angular resolu-

tion 
(

1

�

�(G)

) for some onstant � > 1 [18℄, but there are planar graphs for

whih the angular resolution in any planar straight-line drawing is bounded by

O(

q

log�(G)

�(G)

3

) [12℄. Note that maximizing the angular resolution over all planar

straight-line drawings of a planar graph is NP-hard [11℄.

It is shown in [16℄ how to obtain planar drawings with asymptotially optimal

angular resolution when edges may be represented as sequenes of straight lines.

This result is improved in [13℄ and [14℄, where it is shown that only two bends

per edge are needed, so that edges an be drawn as ubi urves.



Our setting di�ers from the above in that the mapping of verties to points

is already �xed. We do not know of other work on this partiular problem.

To alter the angular resolution, we learly must use polyline or urved edges

as well. We urrently use ubi B�ezier urves [4℄, partially for the pragmati

reason that they are built into PostSript and LEDA's [19℄ graph editor. They

are de�ned by a sequene of four ontrol points, b

0

; : : : ; b

3

(and thus three ontrol

segments b

0

b

1

, b

1

b

2

, and b

2

b

3

), and have several advantages over other types of

urves [5℄. In partiular, the tangents at b

0

and b

3

are ollinear with the �rst

and third ontrol segment. The de�nitions of loal and global angular resolution

are hene easily generalized to drawings with ubi B�ezier urves.

To replae a straight-line edge with a ubi B�ezier urve, we only have to

plae the inner ontrol points b

2

and b

3

, sine b

0

and b

3

must be assigned to the

positions given for the inident verties. The plaement is then divided into

1. determining diretions for the �rst and third ontrol segment, and

2. determining the lengths of the �rst and third ontrol segment.

Sine the resulting angular resolution is fully determined by the �rst step, we do

not onsider the seond step in the remainder of this paper. As a simple heuristi

the length of the �rst and third ontrol segment is hosen proportional to the

length of the straight-line edge. Future work should guarantee further desirable

properties [15℄ of, potentially higher-order, urves (e.g., to retain planarity of

a drawing). Figure 1 shows the prinipal ombinations of diretions of the �rst

and third ontrol segment and resulting ubi B�ezier urves. Note that all of

them are easy to trae for the human eye. Moreover, we will see later that our

approah avoids the four high-urvature ases on the right hand side whenever

possible.

Fig. 1. Prinipal non-degenerate ombinations of ontrol segment orientations

3 Fixed Angular Resolution and Interesting Rotations

In this setion, we show how to improve the angular resolution of a given straight-

line drawing in the plane by hoosing diretions for the �rst and third ontrol

segment of B�ezier urves replaing the straight lines.



On the one hand, these diretions should yield good angular resolution. On

the other hand, we also want them to resemble the straight-line diretions as

lose as possible to avoid the high-urvature ases of Fig. 1, whih also serves to

keep the drawing simple. Note that we an treat ontrol segments inident to one

vertex independently from ontrol segments inident to other verties. Therefore,

let e

0

; : : : ; e

d

G

(v)�1

, be a ounterlokwise ordering of the edges around some

v 2 V in the given drawing (with ties broken arbitrarily), and denote by �

i

,

i = 0; : : : ; d

G

(v)� 1, the angle between e

i

and its ounterlokwise neighbor.

Aordingly, we de�ne 

0

; : : : ; 

d

G

(v)�1

to be the orresponding ordering of

ontrol segments inident to v. The angles between neighboring ontrol segments

are �xed to be

2�

d

G

(v)

, thus ensuring optimal loal, and hene global, angular res-

olution. Beause of the simpliity requirement, we want to penalize the deviation

of ontrol segments from straight-line edges. Denote by x

i

the angle between e

i

and 

i

, i = 0; : : : ; d

G

(v) � 1, where x

i

> 0, if e

i

omes before, and x

i

< 0, if e

i

omes after 

i

in the ounterlokwise order around v. We all these quantities

the angular di�erenes. See Fig. 2 for an illustration and note that x

3

< 0.
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Fig. 2. Angles �

i

between straight-line edges, and angular di�erenes x

i

Any set of ontrol segments satisfying the angle onstraints is alled a ro-

tation at v. There are several ways to de�ne desirable rotations. Sine the

angles between ontrol segments are �xed. all angular di�erenes of a vertex

are dependent. It is easily seen that x

1

= x

0

+

2�

d

G

(v)

� �

0

, and more gen-

eral x

i

= x

0

+ i �

2�

d

G

(v)

�

P

i�1

j=0

�

j

for i = 0; : : : ; d

G

(v) � 1. We frequently use

y

i

= i �

2�

d

G

(v)

�

P

i�1

j=0

�

j

to denote the angular o�set aused by hoosing x

0

as

the independent variable. A straightforward objetive is to minimize the largest

absolute angular di�erene,

max

i=0;:::;d

G

(v)�1

jx

i

j: (1)

We all this a minimum rotation.



Theorem 1. The minimum rotation is unique, and linear-time omputable.

Proof. Sine x

i

= x

0

+ y

i

, i = 0; : : : ; d

G

(v) � 1, the maximum absolute angular

di�erene is the maximum of jx

0

+min

i

y

i

j and jx

0

+max

i

y

i

j. This maximum

beomes minimum for

x

0

= �

min

i

y

i

+max

i

y

i

2

;

sine both absolute values beome equal and every other x

0

inreases either one.

We next observe that, if the distribution of angles between straight-line edges

in a given drawing is well-behaved, the maximum absolute angular di�erene will

be small.

Corollary 1. In a minimum rotation of a vertex v with degree at least two, the

maximum angular di�erene is max

i

jx

i

j = max

r<s

1

2

�

�

�

�

(s� r)

2�

d

G

(v)

�

P

s�1

j=r

�

j

�

�

�

< �:

Proof. The proof of Theorem 1 showed that max

i

jx

i

j = jx

0

+ min

i

y

i

j =

1

2

�

jmin

i

y

i

�max

i

y

i

j =

1

2

� jmax

i

y

i

�min

i

y

i

j. It follows that there are r; s 2

f0; : : : ; d

G

(v) � 1g suh that max

i

jx

i

j =

1

2

jy

s

� y

r

j and r < s, and there is

no pair with a larger absolute di�erene. Sine y

s

�y

r

= (s�r)

2�

d

G

(v)

�

P

s�1

j=r

�

j

,

the equality holds. Clearly, 0 < (s � r)

2�

d

< 2� and 0 �

P

s�1

j=r

�

j

� 2� for all

pairs r < s 2 f0; : : : ; d

G

(v)� 1g.

Essentially, the orollary states that the angular di�erenes are half as bad

as the given distortion in the straight-line edges. Reall that angular di�erenes

less than or equal to

�

2

exlude the high-urvature ases of Fig. 1.

The orollary also indiates that the minimum rotation may be dominated by

one pair of straight-line edges. An alternative objetive is therefore to minimize

the sum of squared angular di�erenes,

d

G

(v)�1

X

i=0

(x

i

)

2

; (2)

weighing ontributions more evenly. Suh rotations are alled balaned.

Theorem 2. The balaned rotation is unique, and linear-time omputable.

Proof. Substituting for x

i

redues objetive funtion (2) to a positive funtion in

x

0

. Thus, any x

0

satisfying

�

�x

0

P

d

G

(v)�1

i=0

(x

0

+ y

i

)

2

=

P

d

G

(v)�1

i=0

2 �(x

0

+ y

i

) = 0

yields a minimum. Clearly, there is exatly one suh x

0

, and it is obtained by

averaging over all o�sets, i.e.

x

0

=

�

P

d

G

(v)�1

i=0

y

i

d

G

(v)

=

1

d

G

(v)

d

G

(v)�1

X

i=0

0

�

i�1

X

j=0

�

j

� i �

2�

d

G

(v)

1

A

:

An immediate onsequene of the proof explains the name of this rotation.



Corollary 2. In a balaned rotation,

d

G

(v)�1

P

i=0

x

i

= 0.

See Fig. 3 for a omparison of minimum and balaned rotation. For omplete-

ness we note that the seemingly less interesting absolute rotation, suggested by

this orollary, minimizing

P

d

G

(v)�1

i=0

jx

i

j is also unique, and that all angular dif-

ferenes for verties with already optimal loal angular resolution equal zero in

any of these rotations.

ontrol segments B�ezier urves

minimum rotation

balaned rotation

Fig. 3. Comparison of minimum and balaned rotation

4 Extensions

The following are some of several possible extensions that may be useful when a

partiular appliation yields additional requirements on the quality of a drawing.

Arbitrary angle onstraints. From Corollary 1 we see that angular di�erenes

an grow quite big, when the given straight-line drawing has large angles, whih

typially results in edges with high urvature. In suh situations it may be ad-

vantageous not to optimize loal angular resolution exatly, but only up to a

onstant. For example, if there is an angle of at least �, all angles between on-

trol segments an be set to

�

d

G

(v)�1

, exept for one whih is �xed to �. Note that

we an impose any onstraint on the angles between ontrol segments, provided

they add up to 2�, without a�eting Theorems 1 and 2. Figure 4 shows some

potentially useful templates for angles between ontrol segments. The middle

one is applied to verties on the onvex hull in Fig. 5.

Weighted angular di�erenes. In an appliation with di�erent types of edges,

angular di�erenes of some edges may be more important than those of others.

If this importane an be quanti�ed, the objetive funtions for rotations an

be modi�ed to aommodate weights, and analog theorems hold. Weights may

be partiularly useful when the straight-line edges inident to a vertex are of

signi�antly di�erent length.



Fig. 4. Example templates for onstraints on ontrol segment angles

(a)

(b)

()

Fig. 5. A straight-line triangulation (a) and urved edges in a balaned rotation (b).

Using the half-sided templates of Fig. 4 for verties on the onvex hull signi�antly

improves the drawing ()

Cyli ordering. The order of ontrol segments of a vertex need not the same

as for the straight-line edges. Figure 6 depits a situation in whih a di�erent

ordering would be better. Allowing negative angles �

i

, ontrol segments an be

put in any order.

Crossings. While there is no ontrol over whether urved edges ross eah other

when a rotation is determined, rossings already existing in the straight-line

drawing an be maintained by replaing them with a dummy vertex. Sine angle

onstraints are arbitrary, we an thus onstrain urves to ross, e.g., at a right

angle or at the same angle as in the given drawing.

5 Appliation Examples

5.1 Train Connetions

To analyze time table data of a number of European publi transport systems

(mostly trains), a graph is onstruted in the following way [6℄: Eah station is

represented by a vertex, and there is an edge between two verties if there is at

least one non-stop servie between them at any time. This graph is analyzed,

e.g., with respet to ompleteness, onsisteny, or hanges between shedules,

serving, e.g., quality ontrol, international oordination, and priing.

Eah vertex has a geographi loation, thus providing geographial ontext

for visual data exploration. Part of the analysis is an automati lassi�ation



into minimal and transitive edges, orresponding to traks and high-speed on-

netions passing by minor stations, respetively. By their very nature, many

edges run almost in parallel when drawn as straight-lines. In partiular, tran-

sitive edges overlap eah other, and minimal edges (see Fig. 6(a)). Figure 6(b)

shows a balaned rotation with the speial half-sided template for verties with

an angle of at least �. The unneessary detour of one minimal edge is due to

the unfortunate ordering of straight-line edges. The system we are building will

order edges based on their length and lassi�ation.

An elaborate algorithm for appliation-spei� urved layout of transitive

edges is presented in [6℄. Users are very satis�ed with the output, but running

times are painful (7{45 minutes for the networks ompared in Tab. 1). Using the

approah desribed in this paper, we an easily a�ord to ompute a new layout

every time a network is displayed and thus support interative querying. In fat,

optimal rotations are omputed faster than the editor (LEDA's [19℄ GraphWin

lass) renders the network. See also the larger example in Fig. 7.

instane nodes edges minimum balaned

switzerland 2218 3203 0.36 se 0.36 se

italy 2386 4370 0.51 se 0.51 se

frane 4551 7793 0.81 se 0.80 se

germany 7083 9713 1.19 se 1.18 se

Table 1. Computation times for rotations (Sun UltraSpar, 440 Mhz, 256 MBytes)

Allensbach
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(a) straight lines
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Allensbach
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Radolfzell

(b) balaned rotation

Allensbach

Fig. 6. Small network in southern Germany with one undesirable edge ordering

5.2 Internet Multiast Bakbone

Internet onnetions represent another example of an organially grown, and

growing, geographi network. To support their analysis, whih is ruial for



maintenane and development, advaned systems suh as [7, 20℄ provide e�etive

interative visualizations of network topologies. The environment of [20℄ is pub-

lily available,

1

and generates a geometri sene desription that an be explored

in an interative browser suh as Geomview [2℄. We replaed the generation of

geometri output to demonstrate how to improve the angular resolution, and

thus the pereptual quality, of the resulting visualizations.

The original system visualizes the topology of the MBone, the Internet's

multiast bakbone, by representing it as a geographi network on the globe,

where onnetions (MBone tunnels) are shown as great irle segments elevated

into spae (Fig. 8(a)). The angles between great irles orrespond to the angles

between their projetions into the plane tangent to their intersetion. Our ap-

proah of orienting ontrol segments is therefore easily generalized to deal with

great irles on a sphere rather than lines in the plane. One the inner ontrol

points of a urved edge are plaed on the sphere, the atual urve is determined

as follows. Assume the globe is represented as a sphere with unit radius, and

B(t) : [0; 1℄! IR

3

is a ubi B�ezier urve in spae onneting points b

0

and b

3

.

The urve is projeted onto the sphere and elevated into spae aording to

B(t)

kB(t)k

� (1 +  � aros(b

0

� b

3

) � sin(t�)):

where  is an elevation onstant. The resulting urves have essentially the same

height as those in [7℄. See Fig. 8(b).

6 Conlusions

We presented a simple and extremely fast approah to improve the pereptual

quality of visualizations of networks with underlying geography. The approah

is novel in that it fouses on angular resolution rather than vertex positioning,

and we expet many potential appliations other than the two desribed.

There are, however, several interesting topis that need further researh.

First of all, our urrent formulation does not allow to ontrol the introdution

of new edge rossings. It would be nie to guarantee that an improved drawing

has the same number of rossings as the input drawing, espeially if the latter

has no rossings at all. The small time table data example already showed that

our approah is sensitive to the ordering of edges around a vertex. Is there a

generally appliable rule to determine an ordering other than the one in the

straight-line drawing? Sine rotations are determined independently for eah

vertex, an optimal rotation may introdue unneessarily many S-shaped urves,

whereas a di�erent rotation may be more pleasing. Can we introdue some form

of dependeny to make angular di�erenes at both ends of an edge similar?

Finally, we would like to improve the heuristi used to determine the length of

a ontrol segment. It may be advantageous to have ontrol segments of similar

length at a vertex, or at both ends of an edge.

1

http://oeana.nlanr.net/PlanetMultiast/
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(a) straight lines (b) balaned rotation

Fig. 7. Medium size time table graph: surroundings of Venie

(a) elevated great irles (b) balaned rotation

Fig. 8. Part of the Internet's multiast bakbone: Korea/Japan


