
Angle and Distance Constraints on Tree Drawings

Ulrik Brandes and Barbara Schlieper�

Department of Computer & Information Science, University of Konstanz

Abstract. We consider planar drawings of trees that must satisfy con-
straints on the angles between edges incident to a common vertex and on
the distances between adjacent vertices. These requirements arise natu-
rally in many applications such as drawing phylogenetic trees or route
maps. For straight-line drawings, either class of constraints is always
realizable, whereas their combination is not in general. We show that
straight-line realizability can be tested in linear time, and give an algo-
rithm that produces drawing satisfying both groups of constraints to-
gether in a model where edges are represented as polylines with at most
two bends per edge or as continuously differentiable curves.

1 Angle and Distance Constraints

We are interested in planar drawings of simple undirected graphs G = (V, E).
Throughout this paper, we assume that G is planar and let n = |V | denote the
number of vertices and m = |E| the number of edges. We are particularly inter-
ested in drawing trees T = (V, E), i. e. graphs that are connected and acyclic.
Denote by T (e, v) the tree obtained from splitting T by removing e ∈ E and
choosing the component that contains v ∈ V . For any r ∈ V let Tr be the tree
rooted at r, and Tr(v) the subtree of all descendants of v (including v itself).
Clearly, Tr(r) = T and Tr(v) = T (v, e) if v �= r and e is the unique first edge on
the path from v to r. With {v, w} we refer to the undirected edge incident to v
and w.

The implications of the following two types of constraints on drawings of a
graph G are investigated.

Distance constraints: A drawing of a graph G = (V, E) satisfies distance
constraints δ : E → R

+, if all pairs of adjacent vertices {v, w} ∈ E are
exactly at distance δ(v, w).

Angle constraints: A graph is said to be embedded (combinatorially), if the,
say, counterclockwise cyclic ordering of edges incident to the same vertex
is prescribed. For an embedded graph G = (V, E), let A ⊆ E × E be the
angle set, where (e1, e2) ∈ A iff both edges share a vertex v and e2 is the
counterclockwise next edge after e1 around v.

� To whom correspondence should be directed: schliepe@inf.uni-konstanz.de.
This author gratefully acknowledges financial support from the state of Baden-
Württemberg (Landesgraduiertenförderungsgesetz scholarship).

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 54–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Angle and Distance Constraints on Tree Drawings 55

A drawing of an embedded graph G = (V, E) satisfies angle constraints
α : A → (0, 2π], if the angle between all pairs (e1, e2) ∈ A is exactly α(e1, e2).
Note that α is frequently called an angle assignment.
A necessary requirement for angle constraints to be satisfiable is that they
sum to 2π around every vertex, and to (dG(f) − 2)π around every inner
face f with dG(f) vertices. Such a set of angle constraints is called locally
consistent, and we assume that all given angle constraints are.

A graph with angle and/or distance constraints is called realizable in the
straight-line model (or straight-line realizable for short), if there exists a planar
straight-line drawing in the plane, such that all constraints are satisfied.

2 Straight-Line Realizability

Testing straight-line realizability is known to be NP-complete for both distance-
constrained graphs (even if all edges are constrained to have unit length) [5] and
angle-constrained graphs [7]. For trees, arbitrary distance and angle constraints
can be satisfied, though not necessarily in the same drawing.

Theorem 1. For any tree T = (V, E) with locally consistent angle constraints
α (or distance constraints δ), a planar straight-line drawing satisfying α (or δ)
can be determined in linear time.

Proof. A drawing of T satisfying any locally consistent angle constraints, can be
determined in linear time using a simple postorder traversal to create a balloon
layout [9]: starting with an empty circle of arbitrary radius around each leaf,
parent edges are stretched such that the enclosing circles of subtrees rooted at
siblings do not intersect when satisfying the angle constraints.

An algorithm for drawing any distance-constrained tree in linear time is given
in [1]. ��

Note that straight-line drawings of trees with both angle and distance constraints
are completely determined (up to translation and rotation).

Theorem 2. Straight-line realizability of trees with both angle and distance con-
straints can be tested in linear time.

Proof. We show that straight-line realizability testing is equivalent to testing
simplicity of polygonal chains, which can be done in linear time [3].

Since a polygonal chain can be viewed as a tree with angle and distance con-
straints, trees cannot be tested faster than polygonal chains. On the other hand,
an embedded tree with l leaves can be covered by l paths p1, . . . , pl connecting
each leaf with the first leaf encountered in a right-first search. Due to the given
constraints, each path corresponds to a polygonal chain, and the tree is realiz-
able if and only if all pi, 1 ≤ i ≤ l are simple. Since the union of these paths
corresponds to an Euler tour around the tree, the total size of the polygonal
chains is 2m = 2n − 2. ��

56 U. Brandes and B. Schlieper

3 Polyline Representation

If an angle and distance constrained tree is not straight-line realizable, it can
still be drawn without edge intersections by allowing polylines. In the remainder
of the section, we will prove the following theorem.

Theorem 3. For a tree, a planar polyline drawing that satisfies locally consis-
tent angle and distance constraints and has at most two bends per edges can be
determined in linear time.

In the first step we calculate an initial layout of Tr for an arbitrary root r ∈ V
with the length-preserving algorithm of [1] and given edge lengths δ. We exploit
an invariant characteristic of the layouts computed.

Theorem 4. For a tree with given vertex positions a planar polyline drawing
that satisfies locally consistent angle constraints and has at most two bends per
edge can be determined in linear time, if the given vertex positions are such that
disjoint subtrees are contained in disjoint wedges.

This is a special case of the problem to find a drawing of a planar graph with
fixed vertices and pre-specified angles between the edges incident to the same
vertex [2]. A related problem is embedding a planar graph on a fixed set of points
in the plane. The graph can be drawn without edge intersections using at most
two bends per edge in polynomial time, if the mapping between the vertices V
and the points P is not fixed [8]. However, if the mapping is fixed i. e., each
vertex has a fixed position such that the straight-line drawing is not necessarily
planar, up to O(n) bends per edge can be needed to guarantee planarity and
this bound is known to be asymptotically optimal in the worst case [10]. Note
that these strategies do not yield drawings that satisfy angle constraints. Angle
constraints have to be satisfied for example when drawing graphs with good
angular resolution. A planar graph can be embedded and drawn planar with
at most one bend per edge, such that for each (e1, e2) ∈ A sharing a vertex
v ∈ V it is α(e1, e2) ≥ 1

d(v) where d(v) denotes the degree of v [4]. For not
necessarily planar graphs angular resolution and the number of edge crossings
can be improved modifying a force-directed graph drawing algorithm into an
algorithm for drawing graphs with curved edges [6]. Note that for these drawings
no distances constraints are to be satisfied.

In our drawings edges will be represented as polylines. The polyline of an edge
{v, w} will be determined by the endpoints of two control segments incident to
v and w.

We guarantee the planarity in two steps: For a vertex v ∈ V

– we determine the direction of each initial control segment.
– we determine the length for each initial control segment.

In Sect. 3.1 we define a rotation angle β to guarantee certain situations
regarding the angles of the initial control segments incident to a vertex v and
those of the straight lines from v to the corresponding neighbors. In Sect. 3.2

Angle and Distance Constraints on Tree Drawings 57

Fig. 1. Rotating the angle template

we determine the control segment lengths to avoid intersections in the remaining
situations.

We will focus on each vertex a constant number of times and look at all
incident edges so the overall running time is linear.

Let v be a vertex we focus on with k incident control segments s0 . . . sk−1 (in
counterclockwise order) belonging to the k polylines of edges e0 . . . ek−1 to the k
neighbors w0 . . . wk−1 of v. We refer to the absolute angle of a control segment si

with γi = γ0 +
∑k−1

t=0 αt and li its length. Further, let s′i be the control segment
for ei incident to wi with angle γ′

i and length l′i. Let pi denote the target point
of si and p′i the target point of s′i, λi the angle of the line from v to wi and λ′

i

the angle of the same line, but from wi to v.

3.1 Control Segment Angles

Since only the relative angles between consecutive control segments incident to
v are given, to determine the final layout we have to choose the absolute angle
for one of the control segments. We start with γ0 = λ0 and then rotate the whole
angle template by an angle β i. e., update each angle γi = γi +β. For a neighbor
wi of v the angular deviation is θ(i) = (γi − λi) mod 2π. We say that wj lies
between si and wi, if (γi − λj) mod 2π < (γi − λi) mod 2π.

We assume that for each neighbor wi the endpoint p′i of the control segment
incident to wi lies on the same side of the line (v, pi) and will assure this when
determining the control segment lengths (see (7),(8)). The following two situ-
ations will cause intersections in the starting configuration, because ei will be
intersecting with e0 (see Fig. 2 for illustration). For a pair si, wi we say that

i and 0 are clockwise crossing if
θ(i) ≤ π and w0,s0 lie between si and wi,

(1)

i and 0 are counterclockwise crossing if
θ(i) ≥ π and w0,s0 lie between wi and si.

(2)

58 U. Brandes and B. Schlieper

(a) clockwise crossing (b) counterclockwise crossing

Fig. 2. Two cases in the start situation

Lemma 1. At any vertex v ∈ V , there are either clockwise or counterclockwise
crossings, if any.

Proof. Assume i1 fulfills Equation (1) and i2 Equation (2), then s0 lies between
si1 and si2 and w0 lies between wi2 and wi1 . The orders of the control segments
and of the neighbors are fixed, hence i1 < i2 and i1 > i2, which is a contradiction.

��

If a vertex v has a neighbor wi such that i and 0 are clockwise crossing we rotate
v’s angle template counterclockwise. If i and 0 are counterclockwise crossing for
an 0 ≤ i ≤ k−1 this is the mirrored case and can be solved by rotating clockwise.
After rotating the angle template we will have (see Fig. 3):

Lemma 2 (counterclockwise sheering). For 0 ≤ i, j ≤ k−1, wj lies between
wi and si with angular deviation θ(i) > π, if and only if also si lies between wj

and sj with θ(j) > π.

Lemma 3 (clockwise sheering). For 0 ≤ i, j ≤ k − 1, wj lies between si and
wi with angular deviation θ(i) < π, if and only if also si lies between sj and wj

with θ(j) < π.

In these two situations we can avoid intersections by determining the control
segment lengths.

We say sj is pulled between si and wi, if it was (λi − γj) mod 2π < π before
rotation, but is (λi−γj) mod 2π > π and sj lies between si and wi after rotation.
We say si is pushed over wj , if it was (λj − γi) mod 2π < π before rotation, but
is (λj − γi) mod 2π > π and wj lies between si and wi after rotation.

Of all pairs si, wi for which i and 0 are clockwise crossing let imin be the one
for which the angular deviation θ(i) is minimal and of all pairs si, wi for which i
and 0 are not clockwise crossing but θ(i) < π let imax be the one for which θ(i)
is maximal.

We rotate the angle template counterclockwise by an angle β with

0 ≤ π − θ(imin) < β < π − θ(imax) ≤ π (3)

Lemma 4. For every vertex v there is a feasible rotation β, i. e. θ(imin) >
θ(imax).

Angle and Distance Constraints on Tree Drawings 59

(a) counterclockwise sheering (b) clockwise sheering

Fig. 3. Two solvable situations

Proof. For imax > imin the vertex wimax lies between w0 and wimin because the
order of neighbors is fixed. imax and 0 are not clockwise crossing, hence simax

lies between w0 and wimax . So it must be θ(imin) > θ(imax) because both simax

and wimax lie between simin and wimin with θ(imax) < π. The proof for the case
imax > imin is analogous. ��

Lemma 5. These bounds are sharp.

Proof. For β ≤ π − θ(imin) it would still be θ(imin) ≤ π after rotation and
both w0 and s0 would still lie between simin and wimin , hence eimin would be
intersecting with e0.

For β ≥ π − θ(imax) it would be θ(imax) ≥ π after rotation and both wimin

and simin would lie between wimax and simax , hence eimin would be intersecting
with eimax . ��

Within these bounds we can now optimize any objective function, for example
the sum over all squared angular deviations θ(i)2 for 0 ≤ i ≤ k − 1. See [2] for
other reasonable objective functions.

To proof Lemma 2 and Lemma 3 we first proof the following:

Lemma 6. If θ(i) > π after rotation for 0 ≤ i ≤ k−1, before and after rotation
neither w0 nor s0 can lie between wi and si.

Proof. If θ(i) > π before rotation, w0 and s0 cannot have lain between wi and
si, because i and 0 would have been counterclockwise crossing. We rotate coun-
terclockwise by an angle β < π, hence they cannot after rotation as well.

If θ(i) ≤ π before rotation but θ(i) > π after, i and 0 must have been
clockwise crossing before rotation, so w0 and s0 cannot lie between wi and si

after rotation. ��

Lemma 7. If θ(i) < π after rotation for 0 ≤ i ≤ k − 1, not both w0 and s0 can
lie between si and wi.

Proof. Before rotation i and 0 cannot have been clockwise crossing, so by ro-
tating counterclockwise by an angle β < π from the start situation λ0 = γ0,
it can only happen that either si is pushed over w0 or s0 is pulled between si

and wi. ��

60 U. Brandes and B. Schlieper

Corollary 1. For the angular deviation of a vertex wi, θ(i) = π is impossible
for any 0 ≤ i ≤ k − 1.

Proof. of Lemma 2 (Lemma 3 can be proven with the same ideas)

“⇒” Neither s0 nor w0 can lie between wi and si (Lemma 6) so w0 cannot lie
between wi and wj and we have j < i. Because the order of control segments
is fixed s0 cannot lie between si and sj , hence s0 must lie between sj and wi

and s0 lies between sj and wj . If it was θ(j) ≤ π s0 must have been pulled
between sj and wj (Lemma 7) so s0 must have lain between wi and si which
is a contradiction to Lemma 6.

“⇐” Neither s0 nor w0 can lie between wj and sj (Lemma 6) so s0 cannot lie
between si and sj and we have j < i. Because the order of neighbors is fixed
w0 cannot lie between wi and wj , hence w0 must lie between sj and wi and
w0 lies between si and wi. If it was θ(i) ≤ π si must have pushed over w0
(Lemma 7), so also sj must have pushed over w0, hence w0 must have lain
between wj and sj which is a contradiction to Lemma 6.

��

3.2 Control Segment Lengths

In the remaining situations we can avoid intersections by determining first the
radius rv of the circle containing all control segments incident to a vertex v and
then the lengths l and l′ of an edge e’s control segments. We have to make sure
that none of the three segments of an edge e’s polyline can intersect with any
segment of another polyline. The maximal possible radius rv is determined such
that:

– control segments incident to different neighbors of v can not intersect
– the control segments incident to v can not intersect with a control segment

incident to any of v’s neighbors

For an edge e = {v, w} the maximal possible length of e’s control segment s
incident to v is determined such that:

– neither the middle segment of e nor the control segment s can intersect with
a control segment incident to another neighbor

– neither the middle segment of e nor the control segment s can intersect with
the middle segment of another edge

When we computed the initial layout of Tr a wedge with size ωv was assigned
to each vertex v in which v’s subtree T (v) was lying and that was divided among
the children. The children’s wedges are rooted in v. We now look at the unrooted
tree T and all the wedges of v’s neighbors are rooted in v. The vertex w0, that had
been v’s parent in Tr, is now lying in an opposed wedge with size ωw0 = 2π −ωv

Angle and Distance Constraints on Tree Drawings 61

(a) wedges for vertex v (b) line (v, pi) (c) range of wi

Fig. 4.

(see Fig. 4(a)). To guarantee that the control segments incident to one neighbor
are not intersecting with the control segments of another neighbor, we determine
for 0 ≤ i ≤ k − 1:

rwi <

{
sin ωwi

2 · ‖ wi − v ‖2 if ωwi < π

sin(π − ωwi

2)· ‖ wi − v ‖2 otherwise
(4)

We also have to guarantee that the control segments incident to v are not
intersecting with the control segments incident to one of v’s neighbors:

rv ≤ 1
2
min{δ{ei}}0≤i≤k−1 (5)

The computations in (4) and (5) will be done first for each vertex v ∈ V to
determine rv, which we will need in the following.

A neighbor wi cannot be involved both in a clockwise and a counterclockwise
sheering. Let i and (i + 1) mod k (we will write i + 1 in the remainder) be
counterclockwise sheering. We have to further determine the length li+1 of the
control segment si+1.

The polyline of an edge ei+1 might intersect with ei or another edge incident to
wi if a line through p′i+1 and pi+1 would be intersecting with the circle containing
all control segments incident to wi. We can avoid this by choosing li+1 such that
si+1 is not intersecting with a tangent line to wi’s circle through p′i+1. Further,
si+1 must not intersect with the line gi = (pi, p

′
i). We use the maximal length

rwi here to determine possible coordinates of p′i. If we focus on wi later, s′i might
have to be shortened, hence si+1 must not intersect with the line (pi, wi) and
the tangent line to wi’s circle through wi+1. See Figure 5(a) for illustration.

The computations for a length li+1 such that si+1 is not intersecting with one
of these lines, are all very similar. We show the computation here for the line

62 U. Brandes and B. Schlieper

(a) Lines (b) length of si+1

Fig. 5. Bounding control segments

gi = (pi, p
′
i) (note that the length li has to be fixed already) with absolute angle

ηi and φi the angle between gi and si in (6) (see Figure 5(b) for illustration):

li+1 <
sin φi · li

sin(π − φi − γi+1 + γi)
(6)

In Sect. 3.1 we assumed that the neighbor wi and the endpoint p′i of the
control segment incident to wi lie on the same side of the line (v, pi). We assure
this by choosing l′i, the length of s′i, such that s′i does not intersect with the line
(v, pi) (see Fig. 4(b)):

If (γ′
i − λ′

i) mod 2π > π and θ(i) > π:

l′i <
sin(γi + π − λi) · δ(ei)
sin(−γi + λi − λ′

i + γ′
i)

(7)

If (γ′
i − λ′

i) mod 2π < π and θ < π:

l′i <
sin(λi − γi − π) · δ(ei)
sin(−λi + γi − γ′

i + λ′
i)

(8)

Let wi be one neighbor of v. We call the (smallest) sector of wi’s wedge, in
which the control segment s′i incident to wi is lying, the range of wi. If another
control segment sj incident to v is lying within this range, the polylines of ei and
ej can be intersecting without i and j clockwise or counterclockwise sheering.
We avoid this by choosing the length l′i of s′i such that s′i is not intersecting with
the line (v, pj) (see Fig. 4(c)), the computation is analog to (7) and (8).

With these control segments lengths we can draw the edges’ polylines without
intersections (see also Lemma 9). In Fig. 7(a) a tree after determining the
vertex positions in displayed with an arbitrary rotation angle for each vertex v
and control segment lengths smaller than rv. In Fig. 7(b) the rotation angle
is determined like shown in Sect. 3.1 and the control segment lengths like in
Sect. 3.2.

Angle and Distance Constraints on Tree Drawings 63

4 Curve Representation

Instead of using polylines we can also represent the edges as smooth curves. A
cubic Bézier curve is determined by two endpoints b0, b3 and two inner control
points b1, b2. We call the segments b0b1 and b3b2 the (initial) control segments,
while b1b2 is called inner segment. A Bézier curve is contained in the convex hull
of its defining points, and the tangents at its endpoints are collinear with the
initial control segments, so the outgoing angle of a Bézier curve is the angle of
its control segment. For the Bézier curve of an edge we use the control segments
of the corresponding polyline as initial control segments. We refer to the Bézier
curve from v to wi for 0 ≤ i ≤ k −1 with ci and Hi the convex hull of its control
points. In the remainder of this section we will proof the following theorem.

Theorem 5. For a tree, a planar drawing that satisfies locally consistent angle
and distance constraints while representing edges as continuously differentiable
curves consisting of at most two cubic Bézier curves and a straight line segment
can be determined in linear time.

Even if the polylines of two edges are not intersecting, the hulls of the corre-
sponding Bézier curves can intersect. Three borders of a curve’s hull are the
line segments of the corresponding polyline, and when determining the control
segment lengths we avoided most intersections, but in case of a clockwise or
counterclockwise sheering we have to split an edge’s curve by adding control
segments.

Let i and i + 1 be counterclockwise sheering. When all the control segment
lengths in the tree are determined, we split a curve ci. Let qi be the intersection
point of the lines (v, pi+1) and gi. The splitting point mi must lie on gi between
the point qi and pi. Rooted at mi we add two diametral opposed control segments
sm1

i and sm2
i on gi, with sm1

i pointing to pi and sm2
i pointing to p′i. (See Fig. 6

for illustration.) Now we can describe ci by two Bézier curves smoothly attached
(continuously differentiable, because the angle at mi has size π) one by si and
sm1

i and one by s′i and sm2
i . When we later focus on wi, we might have to split

ci to avoid intersections with curves incident to wi. If then the splitting point
cannot lie between qi and pi, we will add a second splitting point on gi, otherwise
one splitting point will be sufficient.

This procedure induces that li has to be calculated first. Therefore we create
a vertex list L+ sorted by increasing index and θ(i) < π for each wi ∈ L+.

If for v there is a pair i and (i−1) mod k clockwise sheering this is symmetri-
cally the same situation and will be solved with the same strategy. We will need
a vertex list L− sorted by decreasing index and θ(i) > π for each wi ∈ L−. We
can create both types of vertex lists testing all neighbors wi for 0 ≤ i ≤ k − 1 in
counterclockwise order.

Lemma 8. Neither the vertex list L+ nor L− will contain all neighbors of v.

Proof. We start with the angular deviation θ(0) = 0. If we do not have to
rotate v’s angle template the neighbor w0 will be in none of the vertex lists. Iff

64 U. Brandes and B. Schlieper

Fig. 6. Splitting a curve

there is a neighbor wi of v such that i and 0 are clockwise crossing we rotate
counterclockwise by an angle β < π until θ(i) > π. After rotation it will be
θ(0) < π, hence w0 and wi will be in different vertex lists. Rotating clockwise is
the mirrored case. ��

Lemma 9. The resulting tree layout is planar.

Proof. For any vertex v the curve or polyline of an edge ei+1 incident to v
can cause problems, if the hull Hi+1 is intersecting with the wedge of another
neighbor of v. With the strategy presented previously we made sure, that Hi

and Hi+1 are not intersecting.
By determining the length of si+1 in (6) we also made it impossible for Hi+1

to intersect with any wedge or control segment of one of wi’s neighbors different
from v. With this, Hi+1 can not intersect with any line from a point in wi’s circle
to a point in the wedge of one of wi’s neighbors different from v, thus Hj cannot
intersect with any hull of a curve incident to wi or any vertex in the subtree
T (wi, {wi, v}).

Hull Hi+1 intersecting with the wedge of the neighbor wi+2 is the mirrored
case. ��

5 Discussion

We presented efficient algorithms for drawing trees with constraints on distances
between adjacent vertices and angles between incident edges. There is plenty of
opportunity for further work. For instance, we would like to address angle and
distance constraints together to improve both vertex placements and angle ro-
tations, and enlarge the class of graphs on which our methods work. A major
challenge is to implement the rotation method of [2] so that planarity is main-
tained always.

Angle and Distance Constraints on Tree Drawings 65

(a) random rotation (b) polylines (c) curves

Fig. 7. Drawings of a tree with fixed vertices and angles

References

[1] C. Bachmaier, U. Brandes, and B. Schlieper. Drawing phylogenetic trees. In
Proc. 16th Intl. Symp. Algorithms and Computation (ISAAC ’05), volume 3827
of LNCS, pages 1110–1121. Springer, 2005.

[2] U. Brandes, G. Shubina, and R. Tamassia. Improving angular resolution in visu-
alizations of geographic networks. In Data Visualization: Proc. 2nd Joint EU-
ROGRAPHICS and IEEE TCVG Symp. Visualization, VisSym, pages 23–33.
Springer, 29–30 2000.

[3] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6(5):485–524, 1991.

[4] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing planar
graphs with circular arcs. In Proc. Graph Drawing 1999, volume 1731 of LNCS,
pages 117–126. Springer, 1999.

[5] P. Eades and N. C. Wormald. Fixed edge-length graph drawing is NP-hard.
Discrete Applied Mathematics, 28:111–134, 1990.

[6] B. Finkel and R. Tamassia. Curvilinear Graph Drawing Using the Force-Directed
Method. In Proc. Graph Drawing 2004, volume 3383 of LNCS, pages 448–453.
Springer, 2004.

[7] A. Garg. On drawing angle graphs. In Proc. Graph Drawing 1994, volume 894 of
LNCS, pages 84–95. Springer, 1994.

[8] M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. Journal of Graph Algorithms and Applications, 6(1):115–129, 2002.

[9] G. Melançon and I. Hermann. Circular drawing of rooted trees. Technical report
9817, Reports of the Center for Mathematics and Computer Science, 1998.

[10] J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. In
Proc. Graph Drawing 1998, volume 1547 of LNCS, pages 263–274. Springer, 1998.

	Angle and Distance Constraints
	Straight-Line Realizability
	Polyline Representation
	Control Segment Angles
	Control Segment Lengths

	Curve Representation
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

