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While 2 befriends popular 17
only late, 16 17 seems to stand
no chance at that. In fact, 16 is un-
successful in entering the tightly
knit group of 17, 12, and 7.
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The relationships between 7 14,
3 15, or 10 15 are rather
more complicated. The latter is no
surprise as 10 is fairly unpopular

with many.

Fig. 1. The emotional seesaws of a liking relationship (extent and balance, dyads to be read bottom to top).

Abstract—In modeling and analysis of longitudinal social networks, visual exploration is used in particular to complement and in-
form other methods. The most common graphical representations for this purpose appear to be animations and small multiples of
intermediate states, depending on the type of media available. We present an alternative approach based on matrix representation
of gestaltlines (a combination of Tufte’s sparklines with glyphs based on gestalt theory). As a result, we obtain static, compact, yet
data-rich diagrams that support specifically the exploration of evolving dyadic relations and persistent group structure, although at the
expense of cross-sectional network views and indirect linkages.

Index Terms—Network Visualization, Social Networks, Time Series Data, Visual Knowledge Discovery and Representation, Glyph-
based Techniques.

1 INTRODUCTION

Social networks are constructs capturing interdependencies among the
states and actions of seemingly autonomous social actors [3]. The two
principle aims in the study of social networks are understanding their
formation (networks as consequences, dependent variables) and their
effects (networks as antecedents, explanatory variables) [2]. For em-
pirically observed associations between network structure and actor
behavior, however, there are often competing explanations with op-
posite directions of causality. Longitudinal social network data, i.e.,
network data over time, are thus crucial to assess whether the social
embedding of an actor influenced the actor’s actions (social influence),
or whether an actor’s actions prompted a change of relations (social
selection).

Visualization is an essential tool in both the exploration of social
networks and the communication of findings [20, 5, 12]. While cross-
sectional network data pose many challenges already, longitudinal data
increase the level of complexity significantly [35]. Because of this
complexity and the multitude of interests that analysts may have, it is
unlikely that there are general visualization schemes serving the ma-
jority of needs. Instead, social network visualizations should be tai-
lored to the specific type of data and analytical interest at hand.

Here we are interested in such a specific scenario, assuming a net-
work of asymmetric relations and an interest in the evolution of dyadic
(i.e., pairwise) relations along with their embedding in the structure at
large. This scenario is rather typical for empirical studies of longitu-
dinal social networks.

In the visualization method we propose for this scenario, specifi-
cally designed gestaltlines (cf. Section 3.1) – the gestalt-based use of
glyphs in sparklines [54] for multivariate sequences – are integrated
with a matrix representation of all dyads in the network. The resulting
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diagrams share the overall strengths and weaknesses of matrix repre-
sentations [22], but in addition allow for the simultaneous represen-
tation of all evolving dyads in a single, static image suitable for print
publication.

The remainder is organized as follows. We start with some back-
ground on longitudinal social networks and their visualization in the
next section. The cornerstone of our approach is a static representa-
tion of the evolution of certain types of dyadic data and derived in
Section 3. In Section 4, these elements are combined into a repre-
sentation of entire longitudinal networks. The approach is illustrated
by a case study on a well-researched data set presented in Section 5,
and initial feedback from domain experts reported in Section 6. We
conclude with a brief discussion including directions for future work.

2 BACKGROUND

In this section, we delineate the scope of our method by spelling out
in detail the type of data assumed and by reviewing related work on its
visualization.

2.1 Social Network Data
The most common type of data in empirical social network studies
consists of a set of actors such as individuals or organizations, and
one or more types of relations between them. Examples are friend-
ship networks among pupils and the trading of goods between nations.
Relations may be symmetric (as is often assumed in the former ex-
ample) or asymmetric (as in the latter example). Often, relations are
valued, i.e., a numerical value associated with each tie indicates a spe-
cific quality of the relation. See [25, 34, 37] for background on social
network data and data collection.

We here assume networks of a single valued asymmetric relation.
These are modeled by an edge-weighted directed graph G = (V,E;d),
consisting of a set of vertices V representing the actors, a set of di-
rected edges E ⊂ V ×V \ {(v,v) : v ∈ V} representing the ties, and a
real value d : E → [0,M] in the range from zero to a maximum value
M associated with each edge. We will use di j = d((i, j)) to denote the
value associated with edge (i, j) ∈ E, and do not distinguish di j = 0
and (i, j) /∈ E.

Note that we do not assume actor attributes, because their number
and type is much more application-specific. Note also that the majority
of empirical studies deals with networks of 10–100 actors.



2.2 Longitudinal Networks

We have argued in the introduction that longitudinal data is essential in
assessing causality. The addition of (forms of) time-variability, how-
ever, leads to a combinatorial explosion of data types and problems.

Here, we assume panel data (waves of network observations rather
than, e.g., dyadic events) on a fixed set of actors. This is the standard
scenario for the form of analysis that is most common in the social
sciences and based on stochastic actor-oriented models [46].

The data thus consists of a sequence of weighted directed graphs
G1 = (V,E1;d1), . . . ,GT = (V,ET ;dT ) sharing the same vertex set V ,
but with potentially varying edge sets and edge weights. Typical val-
ues for T are in the range of 2–30 observations, with a bias toward the
lower end.

2.3 Network Visualization

Traditional graphical representations of social networks are the com-
mon sociogram (node-link representations as in Figure 3(d)) and the
less common sociomatrix (a matrix representation as in Figure 7(a)).
See [36] for some of the earliest examples.

The crucial algorithmic challenges for node-link diagrams are
placement of nodes and routing of edges. Such layout problems are
the main focus in graph drawing [1, 31], where many fundamental
techniques have been developed that can be adapted for specific sce-
narios. Exemplary designs are proposed, e.g., in [7, 6, 43]. A sub-
category of node-link diagrams is formed by attribute-based designs
as exemplified in PivotGraphs [56].

Similarly, the main algorithmic challenge for matrix representations
is the ordering of rows and columns [13]. In combination with spe-
cific interaction concepts they have re-gained some popularity in sys-
tems for exploring large network data such as [16]. A hybrid approach
combining node-link diagrams and matrix representations for dense
subgraphs is presented in [29].

2.4 Time-Varying Network Visualization

A straightforward solution is the use of animation. Since animation is
a mapping of empirical time to display time it requires special media.
For node-link representations, the layout problem is made more se-
vere by the additional coherence constraints required to ensure smooth
transitions between high-quality layouts of G1, . . . ,GT . A common
technique is the anchoring approach of [8, 21], and a review is given
in [35].

An alternative to plain animation is interaction, in which time and
focus are chosen explicitly as in the matrix-based system of [59]. See
also [50] for a systematic treatment of this approach.

If dynamic media are not available or simultaneous cross-time com-
parisons are of importance, snapshots of an animation are often dis-
played in small multiples [53]. The example in Figure 3 is based on
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Fig. 2. Example for small multiples of aggregate summary views on
network panel data. Link prominence according to cumulated top 3
friendship nominations in the Newcomb Fraternity Data. Node color-
ing according to overall popularity; compare gestaltmatrix representa-
tion below.

an aggregation approach, in which all nodes remain in the same posi-
tion determined from a network aggregated over all time points. Such
aggregate networks can be used for representation themselves as in
Figure 2. Animation and small-multiples are treated in depth in [4].

We are interested in static representations suitable for traditional
publication media, but instead of aggregating observations into a sum-
mary network, they will be integrated in a single view without infor-
mation loss.

3 DYAD EVOLUTION

As motivated above, we are looking for an intuitive way to commu-
nicate entire dyadic evolution clearly and effectively through simple
graphical means. In a second step, then, such a representation shall
be incorporated into a matrix view, conveying the entirety of dyadic
time-series in network panel data in a single diagram to allow for vi-
sual exploration of patterns, trends, and outliers.

3.1 Concept: Gestaltlines
The proposed design is a prototypical application of what we termed
gestaltlines. It is, hence, inspired by a combination of three powerful
concepts from information visualization:

Tufte’s Sparklines are “data-intense, design-simple, word-sized
graphics” [54]. These datawords are conventionally used for univari-
ate time-series data – potentially enriched with additional annotation
to convey, e.g., normal ranges and individual data points, such as

[54, p. 47] – but applicable in other scenarios
such as in [24] as well. On simple (high-resolution, colored) printouts,
sparkline-like diagrams allow for the display of huge amounts of data
within eyespan. The latter is useful especially for exploration, when it
is not clear from the start which quantities to compare.

Gestalt theory deals mainly qualitatively with human biases to-
wards perceiving general forms, meaning that “the whole is different
from the sum of its parts”. According to Wertheimer [57], the Law of
Prägnanz causes the mind to organize originally disparate visual stim-
uli into the simplest stable and coherent form (see, e.g., [48]), such
as grouping together similarly looking , spatially close

, uniformly connected , and symmetrical [ ] < { } >

elements, or layering elements according to prominence (law of
figure and ground). These principles guide design choices, e.g., in vi-
sual screen design [10], human-computer interaction [18], information
dashboard design [17] or animated visualizations of network data [39].

Multivariate Glyphs originate from systematic mappings of mul-
tiple data attributes onto graphical concepts (see, e.g., [55]). A popular
example are star plots [9], in which line segments that radiate out from
a common origin represent different data dimensions. Connecting
their outer endpoints and filling the center creates a holistic gestalt
that is more easily memorized and compared than the data tuple.

Obviously, glyph-based techniques allow to extend classical
sparklines to multivariate datawords. Dense, data-rich diagrams, how-
ever, do not necessarily lend themselves to visual promotion of any
kind of pattern. Therefore, gestaltlines shall be combinations of glyphs
and sparklines that are directly inspired by gestalt principles: If pat-
terns in the data are bound to invoke gestalt laws, a dataword is capital-
izing on the holistic capabilities of human vision by conveying trends,
transitions, outliers, or other sequence patterns.

The derivation of corresponding representations for asym-
metric relations in longitudinal networks is illustrated below.
The following textbook example involving univariate sequences,
however, should make the idea obvious: Sedgewick [44] il-
lustrates the procedure of bottom-up mergesort by depicting
an initial , an interme-
diate and the final sorted

sequence using sloped lines that
indicate numerical values. Their gradually changing slopes prompt
us to perceive sorted subsequences as a whole, in which outliers are
detected easily.
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Fig. 3. Small multiples of network panel data with uniform outdegree. Red/blue color scale represents lower/higher-than-expected indegree.

3.2 Basic Design

A simple design, exploiting the impact of gestalt principles and map-
ping relational/dyadic (ego-alter) data quite naturally to graphical con-
cepts, emanates from the metaphor of a seesaw or scale, respectively.
More specifically, take a transparent tube which is subdivided and piv-
oted in the middle:

max-value ego min-value alter max value

Being empty in the beginning it is successively (un)filled from the
middle, according to the extent of ratings on a relation

ego rating alter rating

which, of course, may result in imbalance

overestimated reciprocated underestimated

With this rather minimalistic glyph design, including the addi-
tional dimension of time to form a single (letter-like) dataword is now
straightforward. Some may find the stacking below reminiscent of a
modernistic depiction of a falling tube tumbling left and right accord-
ing the balance of its filling. This is intentional because it is in line
with our basic metaphor. Since human perception is geared toward
comparison of progress with respect to some grounded baseline, how-
ever, we use bottom-up visualizations of development instead; com-
pare Figure 4.

.55/.5, .65/.4, .55/.3, .7/.2, .7/.3, .6/.4, .5/.5, .4/.6, .3/.7, .2/.7, .8/.7, .2/.7, .3/.7, .4/.6, .45/.5

.4/.6, .6/.4, .4/.6, .6/.4, .4/.6, .3/.2, .2/.3, .55/.45, .55/.45, .6/.4, .4/.6, .6/.4, .4/.6, .6/.4, .4/.6

.1/.1, .1/.2, .1/.2, .1/.2, .1/.2, .3/.4, .3/.5, .4/.6, .5/.5, .5/.6, .6/.6, .6/.5, .7/.6, .7/.6, .7/.7

Fig. 4. Basic graphical design (read bottom to top) for any dyadic time-
series (read left to right). Typical examples would be ego-alter ratings
on a relationship. Patterns, trends, and outliers are clearly visible and
interpretable — “Their relationship was an emotional seesaw.”

The graphical mapping displays both quantities of interest, the ab-
solute values (extent) and their differences (balance/reciprocity), si-
multaneously:

• the higher the weight on an edge, the more ink
(irrespective of the degree of balance)

• the more imbalance in a dyad, the more prominent the slope
(irrespective of the size of weights)

Our design choices are based on intuition and gestalt principles.
While a single seesaw intuitively represents the concept of imbalance,
their alignment is intended to invoke the gestalt principle of common
fate, which states that graphical elements of similar orientation are
perceived as a whole even when they differ in other attributes such as
size. Similarly, motivations to enhance the basic design are addressed
in Section 3.3.

The conscious exploitation of gestalt principles appears to add a
new twist to the use of glyphs and may contrast the proposed graph-
ical mapping from other designs working also in small-scale such as
juxtaposed bar charts mapping time on the vertical axis (Figure 5),
rotated horizon graphs [28] or data vases [49].
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gestalt-based difference only ego-alter extent max. extent & diff

data: (1,1),(1,2),(1,2),(1,2),(1,2),(3,4),(3,5),(4,6),(5,5),(5,6),(6,6),(6,5),(7,6),(7,6),(7,7)

Fig. 5. Gestalt-based representation of dyad evolution compared to con-
ventional times series charts displaying the difference of values, con-
trasting both values, or juxtaposing maximum extent and difference.

On a second level, the alignment of multiple dyad time series
gestalts in a matrix arrangement is expected to support exploration of
patterns for egos, alters, and groups of them. More details are provided
in Section 4.

3.3 Enhancements
The minimalist nature of the basic glyph design allows for additional
enhancements, inspired by gestalt laws.

First of all, the current design leaves color as a degree of freedom to
represent additional attributes; cf. [26] for various coloring schemes.
For instance, single data values or special data ranges can be high-
lighted or mitigated, exploiting the law of figure and ground, as exem-
plified within the case study below. Another particular application in
social networks would be the fading out of unconfirmed relations be-
cause these may be a critical factor in relational data collection [33].
Alternatively, color could be used to combine and distinguish different
ranges of extent and/or balance as suggested by the law of similarity.

We already alluded to claim that human perception subconsciously
relates progress with respect to some baseline. One may capitalize
on this by explicitly indicating a reference line that incorporates addi-
tional (statistical) information at the bottom of each gestalt. We even
suggest to use two reference lines where appropriate, e.g., one indicat-
ing the expected time-series values in the beginning and one indicating
the expected values at the end of the evolution.

Although this is rarely the case in network survey data, we do note
that if there are too many points in time, a horizontal representation
of evolution might be more appropriate for word-like representations.
That is, vertical lines are depicted next to each other, metaphorically
indicating balance as “stable” , or toppling towards ego , or alter ,
respectively — banking angles to 45 degrees where appropriate [27].



4 NETWORK EVOLUTION

On high-resolution small-scale displays such as paper, multiple dyad
gestalts can be combined easily to enable visual exploration of pat-
terns, trends, and outliers in complete longitudinal network data by
simple means:

4.1 Matrix Representation

Their character-like representation enables a straightforward integra-
tion of dyad gestalts into what we refer to as a gestaltmatrix. Each
matrix entry mi j depicts a single dyad gestalt, i.e. the evolution of the
complete dyadic time-series of ego i and alter j. Note that matrix
entries mi j and m ji are redundant, since depicted gestalts are just mir-
rored at the vertical axes. The full matrix is displayed nevertheless
to capitalize on the alignment across rows and columns. It facilitates,
therefore, the detection of overall patterns, trends, and outliers from an
ego point of view (the row) or from the view of all others (the column),
respectively.

To the best of our knowledge, the most similar approach to repre-
senting change in social networks has been proposed in [47]. There,
the authors indicate time through various subdivisions of matrix cells,
mapping each data value to a single colored pixel; relation 7→ color.
Such an atomistic treatment is highly efficient in terms of visualizing
“the largest amount of data which is possible on current displays” [32].
In terms of gestalt laws, however, a holistic mapping – relation 7→ an-
gle & length – seems to be more appropriate for indicating extent and
balance (cf. Figure 5). Other related approaches involve animation and
interaction, such as toggling the colors of matrix cells according to a
queried time range [23].

4.2 Matrix Ordering

The crucial degree of freedom in a matrix-based network represen-
tation is the ordering of actors which determines the permutation of
rows and columns. In social network analysis, orderings are often
determined to highlight higher level organization in the matrix. The
corresponding technique of blockmodeling (see, e.g., [14]) refers to
substantively meaningful rearrangements that (visually) reveal regu-
larities of the network structure within the matrix cells. For instance,
one may be interested in cohesive groups and thus order the matrix
so that locally dense groups form blocks along the diagonal. While
this is not the only criterion, it is certainly among the one most com-
monly used. For most scenarios, however, finding an optimal permuta-
tion is N P-hard. Various heuristics to calculate acceptable solutions
for given criteria have been proposed. A comprehensive overview of
blockmodeling techniques is provided in [14].

Since we aim for a single matrix-like diagram conveying the en-
tire network evolution, we here define an aggregated actor similar-
ity that, subsequently, can be used as the input to a blockmodel-
ing approach. In other words, we describe a dyad by some simi-
larity measure s that summarizes the time-series information mi j =

s
(
(d1

i j,d
1
ji), . . . ,(d

T
i j ,d

T
ji)
)
.

The quality of an ordering obtained from such a similarity depends
on its suitability for the analytic perspective. As a default that can be
used in the absence of more specific requirements, we propose to sum
the geometric means of dyadic ratings, mi j = ∑

T
t=1

√
dt

i j ·dt
ji. This

represents a reasonable general-purpose solution because of its ten-
dency to group actors with consistently high and balanced weights.
Part of the rationale is the correspondence of the geometric mean with
the amount of ink and slope used in the seesaw design.

5 CASE STUDY

We illustrate and further elaborate the proposed principles on one of
the most well-known longitudinal data sets in social network analy-
sis. Being the subject of many previous analyses, the data is ideally
suited to demonstrate our method’s capability to provide previously
unexplored insights.

5.1 Data

The data comprises complete sociometric preference rankings – ‘like
best’ to ‘like least’ – among 17 previously unacquainted male students
at the University of Michigan in the mid 50s. The rankings were col-
lected in 15 consecutive weeks and have been published in [40, 42].
Since all participants got free accommodation in fraternity housing,
the data is commonly referred to as Newcomb Fraternity Data.

The development of friendships in the Newcomb Fraternity Data
has been (re)analyzed numerous times, e.g., in [52, 35, 15, 38, 58].
Notably, it has also been used as an illustrating example in the in-
troduction of stochastic actor-oriented models for dynamic network
analysis [45].

Most descriptions of the Newcomb Fraternity Data have been based
on summary measures, data aggregations and cross-sectional network
views as in Figures 2 and 3. Beyond that, various animations between
single states have been presented, e.g., in [35]. Even with the most so-
phisticated animations, though, attempting to describe and compare
the evolution of multiple relationships or detecting interesting pat-
terns – such as non-requited friendship nominations – inevitably re-
sults in cognitive overload.

The question is, thus, whether an analyst can gain further insights
from the proposed static views on the overall evolution.

5.2 Exploring Individual Relations

Throughout the observation span, most mutual rankings in the New-
comb Fraternity Data are highly inconsistent, which indicates a low
level of reciprocity or a high level of imbalance, respectively. This
“large number of asymmetric ties suggests that we might gain some
insight by using a layout method that accounts for this asymme-
try” [35, page 1228]. Given highly asymmetric relational data, how-
ever, directed (node-)link representations become less comprehensible
already in the static case [30].

In contrast, the proposed static gestalt-based representation pro-
vides a convenient and intuitive way to explore and communicate
extent and balance in asymmetric relations. Because of their small,
letter-like space requirements, the graphics can be used directly inside
of (publishable) text. In this way, it is not necessary to go back and
forth between an explanation and a diagram — facilitating compre-
hension, improving readability and conveying more information. For
illustration compare the two paragraphs in Figure 6 with regard to the
entropy of information.

For example, 7 12 are friends almost from
the beginning. While 2 befriends 17 only
late, 16 17 seems to stand no chance at that.
The relationships of 7 14, 3 15, or 10

15 are rather more complicated. The latter is
no surprise as 10 is unpopular

with many.

“Nodes 10 and 15, for example, quickly emerge as nodes
on the edge of the social structure. While they nomi-
nate each other symmetrically early in the observation
period, they lose interest in each other by the end. Nei-
ther node receives top-five nominations from any other
node in the network. Their nominations to others seem
to dance around the graph, never resting for long on a
single person.” [35, p. 1228]

Fig. 6. Explanation with datawords: more information with fewer words.



5.3 Exploring Groups of Relations
Besides the persistent asymmetry in friendship rankings and large het-
erogeneity in the popularity of actors (addressed below), the evolution
of group structures within the Newcomb Fraternity Data has been stud-
ied extensively.

Evaluating blockmodeling algorithms according to the density of
inter- and intra-block top ratings, e.g., White et al. state that “by at least
the fifth week not only the final blocks but also the final blockmodel
have emerged with remarkable clarity”[58, page 764]. Their findings
basically confirm the actor groups originally proposed by Nordlie [42]
based on rank correlations. Nakao and Romney [38] provide further
evidence for structural convergence in the Newcomb Fraternity Data
by relating the number of concordant (c) and discordant (d) rankings
with Goodman-Kruskal’s Gamma coefficient (c−d)/(c+d)∈ [−1,1].

Findings on group structures in the Newcomb Fraternity Data-
have been presented either textually (13 9 17 1 8 6 4) (7 11 12 2)
(14 3 10 16 5 15) [58, page 764] or by depicting a permuted adjacency
matrix; compare Figure 7(a). An exception can be found in [38], where
the authors use multidimensional scaling to place actors in the plane
according to the similarities of their rankings at a given point in time.
Then, Procrustes analysis is used to align each actor’s positions over
time, as indicated by the convex hulls presented in Figure 7(b).

(a) wave 14 tabular [52, page 154] (b) MDS + Procrustes [38, page 122]

Fig. 7. Previous descriptions of groups in Newcomb Fraternity Data.

Any grouping can be visualized compactly and evaluated in a single
gestaltmatrix without data aggregation. For illustration we here use an
ordering based on the number of inversions in consecutive rankings

, which assumes local minima in week 8 and week 12.
Thus, the ratings in week 7 and week 11 are rather stable and, there-
fore, reasonable proxies for static representations. We choose week 11
and sort actors according to their values in the Fiedler vector of the
Laplacian matrix obtained from (mi j), where mi j =

√
d11

i j ·d11
ji if both

ratings are top 3-ratings and mi j = 0 otherwise. This choice of sim-
ilarity measure is motivated by the common use of thresholding in
published reanalyses of the Newcomb Fraternity Data; compare Fig-
ures 2 and 3. The resulting gestaltmatrix is presented in Figure 8. A
block structure due to higher internal rankings is clearly visible.

As suggested in Section 3.3 we augment the plain color design.
First, inspired by the gestalt principle of figure and ground, we com-
bine two different hues: using black for highlighting top 3 values of
the extent and gray for fading the others, we intend to assess the re-
sult of the commonly used thresholding before the background of the
full data set. Second, motivated by the gestalt principle of similarity,
we distinguish different types of actors by coloring them according
to their standardized popularity over time. Popular actors are col-
ored blue, whereas unpopular actors are colored red. More specifi-
cally, we evaluated the deviation π from a null model, assuming that
at each time step, each actor obtains each possible ranking at a time,
i.e. µ = ∑ j 6=i dt

ji/k = k/2, with k = #{ j 6= i} and assuming rankings
from k to 1. This gives

π(i) =
1
T
·

T

∑
t=1

∑
j 6=i

dt
ji/k−µ
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Fig. 8. Gestaltmatrix of Newcomb Fraternity Data, showing the evolution
using all 4080 data points (rankings) from 15 waves. Labels on the
diagonal are numbered according to Nordlie [42] and colored according
to the standardized overall popularity of the corresponding actor. The
sorting of actors is according to a spectral approach described in the
main text.

where σ refers to the standard deviation of a single ranking dt
ji from

µ and T is the number of panels.
A variant gestaltmatrix with identical coloring is shown in Fig-

ure 10. In this matrix we reproduce an ordering of the actors proposed
in [38]. With the gestaltmatrix view on the complete evolution of re-
lations, however, additional insights can be obtained from the more
refined perspective. Consider the column of the “scapegoat in this
group (man 10), who received one of the bottom three choices of each
of the other persons” [58, p. 759]. It is clearly visible which others did
overrate the ‘scapegoat’ in the beginning. Interestingly, these include
the overall most popular actors 17, 4 and 9. Also, a strong desire of
the most unpopular actors to be friends especially with the popular ac-
tors is revealed. To the best of our knowledge, these findings on the
Newcomb Fraternity Data have never been published before, despite
long-standing investigations spanning various disciplines.

As a concluding example, we stress once more the potential to com-
plement and critically inform existing analyses, based on animation or
interaction. Figure 9 demonstrates the consequences.

“For example, one can see that nodes 1, 6, 8, and 13 remain strongly
connected to each other throughout the observation period, occupy-
ing a small cluster at the right of the graph. Nodes 7, 12, and 4
form a cluster early in the groups history, but node 4 then breaks with
this group at about week 8, instead nominating nodes 17 and 2.” [35,
p. 1228]
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Fig. 9. Illustration with the actual data casts doubt on statements from
the literature.
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Fig. 10. Gestaltmatrix of Newcomb Fraternity Data, showing the complete evolution of 4080 rankings collected in 15 waves. Labels on the diagonal
are numbered according to Nordlie [42] and colored according to standardized overall popularity of corresponding actor. Arrangement of actors
according to the sorting proposed in [38].



6 EXPERT FEEDBACK

The representation proposed here is intended for domain expert use
and scientific communication. While it is currently being used in sev-
eral cooperations, we may not show proprietary data in this paper. This
is one reason why, in the case study of Section 5, we resorted to a well
known and fairly typical data set which, in addition, has been the sub-
ject of many previous analyses.

We will ultimately be interested in a quantitative comparison as-
sessing the relative efficiency of our design in communicating extent
and balance in asymmetric relations. In the absence of sufficiently
similar previous approaches, however, the number of dimensions and
confounding factors appears to be too large for a formal, well-focused
user study to be included in this paper [11]. Instead we rely on external
expert reviews [51] as an initial sanity check.

Because of its intuitiveness and some other obvious benefits (static
representation, generality, printability, publishability) we did assume
that social scientists are willing to spend the five minutes it takes to un-
derstand the design and learn how to read it. The method was therefore
presented at INSNA Sunbelt XXXI Social Networks Conference,1 the
main venue for networks in the social sciences (no published proceed-
ings). Interest was surprisingly high and feedback overwhelmingly
positive; even to the point that the idea was taken up and applied in
another presentation at the same conference within two days.

Fourteen senior domain experts and a number of other delegates
provided personal feedback in private and informal face-to-face dis-
cussions, with all but three approaching us before we could ask them
to. They mentioned in particular the simplicity, intuitiveness, and aes-
thetic appeal of the design, and the ease by which tendencies and out-
liers can be detected both on the actor and dyad level. They also men-
tioned the compact and simultaneous representation of the entire data
set, allowing back and forth comparison of matrix rows and cells. Gen-
erally, they were aware of the fact that distances between vertices are
difficult to determine in matrix representation, but needed help in un-
derstanding the consequences of row and column reordering and the
reliability of conclusions drawn from a given ordering. The latter was
somewhat surprising because this aspect of our design is shared with
any matrix representation of networks. Under the name sociomatrix
the latter are known well in this domain [36, 19].

Feedback was particularly vocal from the modeling community,
where the interest is in identifying factors that govern the evolution of
dyads [46]. Detecting evolving patterns and, in particular, exceptional
actors, is of great importance in these approaches because current
models rely on fairly strong homogeneity assumptions. The gestalt-
based design was found to serve this purpose better than anything our
respondents had known before.

These impressions were confirmed during a dedicated modeling
workshop,2 where we worked with two groups to represent their data
appropriately in our design. Encouraged by the reactions so far, we
plan to make the approach available in more generally accessible form,
possibly in our tool visone.3

7 DISCUSSION

We proposed a novel methodology for static visualization of longitu-
dinal asymmetric network data, which we refer to as gestaltmatrix. It
is based on word-sized representations of dyadic evolution, which in
turn represent an application of gestaltlines, i.e. multivariate sparklines
capitalizing on gestalt principles.

While, currently, scepticism with regard to glyph-based approaches
to representing multidimensional data appears to dominate, our work
is in line with other recent work such as [41], in which it is suggested
that additional perceptually-effective forms of compact multidimen-
sional representation may await discovery and characterization.

Since our approach provides novel means to explore and commu-
nicate the extent and balance of values in dyads, it can also be used

18-13 February 2011, St. Pete Beach, FL, USA; approx. 550 delegates.
21st Advanced Siena Users Meeting (AdSUM 2011), April 7+8, Konstanz;

41 delegates.
3www.visone.info

to complement existing techniques that require animation or interac-
tion. Next to some obvious benefits such as effective communication
of findings and suitability for publication on paper we also demon-
strated that gestalt-based network analysis bears the potential to yield
additional insight even into data that was previously studied exten-
sively. Additionally, we revealed misinterpretations that we suspect
resulted from more aggregate data views.

There are many ways in which additional information about, e.g.,
volatility or other attributes can be integrated into a gestaltmatrix de-
sign. We have only shown one example by indicating the average pop-
ularity of each actor on the diagonal. The main goal was to argue that a
detailed design can lead to interpretable forms on the level of the dyad
(matrix cell), the actor (row), and the network (matrix). These forms
are likely to ease the discovery of trends, change events, and outliers.

There are two major limitations for the scope of our method. The
first one is shared with all matrix representations of networks, namely
that paths are difficult to discover and follow. The other one is a con-
sequence of our attempt to bring out a joint appearance of the data in a
dyad; as a consequence, individual time slices are difficult to extract.
Possible remedies for these two problems may lie in a combination of
the seesaw metaphor with node-link diagrams and by using gestaltlines
highlighting the current point in time as edge labels. These, however,
require more careful research. In ongoing collaborations with social
scientists we are dealing with specialized data sets that contain in ex-
cess of 100 actors. This can be considered an upper limit for the large
majority of empirical studies also from the modeling point of view.
For larger networks, however, larger print and, possibly, a hierarchical
design may become necessary.

Qualitative evidence on the acceptance and intuitive understanding
of the proposed principles was provided based on informal feedback
from domain experts. Further research shall include a quantitative as-
sessment of the impact that gestaltmatrices have on the understanding
of asymmetric relations in longitudinal social networks.
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