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Abstract

With few exceptions, statistical analysis of social networks
is currently focused on cross-sectional or panel data. On
the other hand, automated collection of network-data often
produces event data, i. e., data encoding the exact time of
interaction between social actors. In this paper we propose
models and methods to analyze such networks of dyadic
events and to determine the factors that influence the fre-
quency and quality of interaction. We apply our methods to
empirical datasets about political conflicts and test several
hypotheses concerning reciprocity and structural balance
theory.

1. Introduction

Most social networks are inherently dynamic. Actors

repeatedly create ties and break up others. Since the adjust-

ment of ties is influenced by the existence and non-existence

of other ties, the network is both, the dependent and the

explanatory variable in this process. Methods designed to

detect rules and regularities in network-dynamics can be

distinguished by the type of data they work with.

The most common form of longitudinal data in network

analysis are panel data, i. e., sequences of networks on the

same set of actors, observed at two or more timepoints.

Network panel data can be fitted to actor-based Markov-

chain models [1], [2], where actors can change their ties

at any moment between observations. Clearly, panel data

do not represent these dynamics well, since the sequence of

changes is not observed but has to be estimated by statistical

methods. The prevalence of panel data in longitudinal net-

work analysis is rather due to the fact that data are typically

collected by the use of questionnaires.

Another form of longitudinal network data (typically

called event data) consists of sequences of time-stamped

events encoding interactions between actors. The availability

of event data has grown considerably with the advent of au-

tomated data-collection facilities. Examples include log-data

of computer mediated communication (e. g., email, Usenet-

groups, or social network services), open collaboration in

wikis, phone-call data, or events that are routinely observed

and reported in the news. Note that event data typically

do not encode affective relations, such as friendship, but

rather dyadic interaction, such as communicating, working

together, etc. However, apart from the advantage of a finer

time-granularity, event data are often available in larger

quantities and are independent of respondents’ subjectivity

in assessing their relations.
In this paper we propose models and methods for network

data consisting of time-stamped, dyadic, weighted events,

where the weight indicates the quality (hostile vs. friendly)

of an event. Specifically our methods attempt to determine

how the rate and quality of events is influenced by the state

of the network.
In the remainder of this introduction we introduce a

dataset used for illustration and present related work. Our

newly proposed model is described completely in Sect. 2.

The results of an illustrative application of the model and a

summary are given in Sect. 3 and Sect. 4.

1.1. Exemplary Data: Political Events

We apply our newly proposed model to datasets from the

Kansas Event Data System (KEDS) [3], which is a software

tool that automatically extracts daily events from news

reports. Events encode who did when what to whom and,

thus, describe time-stamped dyadic interaction of specific

types. The actors involved in events are political actors, such

as countries, international organizations, or ethnic groups.

Event types are classified using the World Event/Interaction

Survey (WEIS) codes [4] and each event type is assigned

a psychometrically determined weight (see [5]) from the

interval [−10, 8.3], where −10 stands for the most hostile

and +8.3 for the most cooperative type of interaction.

Examples or cooperative events are visits, agreements, and

provision of military aid; hostile events include accusations,

threats, and military actions against another actor. On those

empirical event networks we test hypotheses concerning

reciprocity and structural balance theory (e. g., “the enemy

of my enemy is my friend”), see Sect. 3.
To evaluate how our method performs on networks of

different size and density, we apply it to several datasets

that are publically available from the KEDS website1 and

that have the following numbers of actors and events.

1. http://web.ku.edu/keds/
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region time period act. events
LEVANT 1991/05/05 2007/01/31 699 171, 000
BALKANS 1989/04/02 2003/07/31 325 78, 000
GULF 1979/04/15 1999/03/31 202 304, 000
TURKEY 1992/01/03 2006/07/31 429 20, 000

1.2. Further Related Work

The analysis of event data (alternatively referred to as

time-to-event analysis, survival analysis, or lifetime anal-
ysis) is an established area in statistics, see [6] for a

general reference. Although, event data analysis is common

in political science [7], network dependencies are rarely

considered there. A notable exception is given by Goldstein

et al. [8] who applied vector-autoregression to the dyadwise

aggregated levels of cooperation/conflict over short time-

intervals. The influence of common friends and enemies on

dyads in political networks has been analyzed in [9], [10].

Both references do not use event data, but rather data coding

the yearly state of the world system on the country-level in

terms of alliances and wars (among others).

Research about event networks include the following. De

Nooy [11] analyzed a network of literary authors and critics,

where the interaction-events encode positive or negative lit-

erature reviews. In a paper closely related to ours, Butts [12]

proposed a general framework for modeling the rate of

relational events. Our paper extends this by modeling the

conditional quality (weight) of events. Work dealing with

the prediction of events in networks includes [13], [14].

Methods to visualize networks constructed from event

data have been presented in [15], [16]. The contribution of

the current paper is different, since here we propose methods

for statistical testing of hypotheses in such networks.

2. Model Specification

We assume that the probability of events is dependent on

previous events. It is the goal of the analyst to determine the

form of this dependency and thereby establishing rules that

govern the behavior of actors. For instance, the happening

that an actor a performs some hostile action targeted at

an actor b may increase the probability that b acts hostile

towards a. If this can be validated statistically, the analyst

will have learned the rule that (in the specific context at

hand) actors show a tendency to retaliate which, in turn,

improves the ability to predict future events.

2.1. Model Overview

For modeling the probability of an observed sequence of

events E = (e1, . . . , eN ), we assume that each event ei is

only dependent on events that happened earlier, i. e., ei is

dependent on (e1, . . . , ei−1). To obtain a tractable model, we

further assume that this dependence is completely captured

by a dynamic network encoding the past interaction among

actors: The past events (e1, . . . , ei−1) determine an event
network Gi (see Sect. 2.3) and, given the state of Gi, the

next event ei is assumed to be conditionally independent on

(e1, . . . , ei−1). The probability of ei, given Gi, is modeled

parametrically so that the estimated parameters give the

information which properties of Gi increase/decrease the

rate (frequency) of events and which properties of the

network influence actors to act more friendly/hostile towards

other actors.

More formally, let E = (e1, . . . , eN ) be a sequence of

events and let

θ = (θ(λ); θ(μ)) = (θ(λ)
1 , . . . , θ

(λ)
kλ

; θ(μ)
1 , . . . , θ

(μ)
kμ

)

be the parameters of the model (where the rate parameters
θ(λ) stochastically determine the event rate and the weight
parameters θ(μ) stochastically determine the event weight,

as we shall see later). The probability density function for

the event sequence E (given specific parameter values) is

f(E; θ) = f(e1

∣∣Ge1 ; θ) · . . . · f(eN

∣∣GeN
; θ) . (1)

Here f(ei

∣∣Gei
; θ) denotes the probability density for the

event ei, given the network Gei
and parameter values θ.

For a given observed sequence of events E =
(e1, . . . , eN ) we obtain a likelihood function on the space

of parameters Θ by

L : Θ → R; θ �→ L(θ) = f(E; θ) (2)

and our goal is to determine those parameter values θ̂
that maximize L (Maximum Likelihood Estimation (MLE),

compare [17]).

In the next subsections we give details on the input format,

the construction of Gei , the form of the probability density,

and the estimation of the parameters.

2.2. Input Data Format

The input data we consider consists of sequences of
(dyadic, weighted) events E = (e1, . . . , eN ). An event
e ∈ E is defined to be a tuple e = (ae, be, we, te), where

• ae is the source (initiator) of e;

• be is the target (addressee) of e;

• we ∈ R is the weight coding the quality of e; and

• te is the time when e happens.

Time is given on some scale, e. g., by second, minute,

hour, day, month, or year. In the datasets that we consider

in this paper, time is given by the day. Several events may

happen during the same time unit. The input event sequence

is assumed to be in non-decreasing order with respect to

time. The order of events that happen within the same time

unit is considered as undefined.

The weight indicates the quality of the event, i. e., its level

of hostility (negative weight) or cooperativeness (positive
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weight). We assume in this paper that event weights are

normalized to the interval [−1, 1]. (So that, for instance,

Goldstein weights of KEDS events are divided by ten.)

2.3. Explanatory Variable: Network of Past Inter-
action

Given a sequence of events E = (e1, . . . , eN ) and a

timepoint t (denoting the current time), the event network
Gt = Gt(E) = (A; ω+

t , ω−t ) is a weighted network

encoding the past interaction between actors. Here, A is the

set of actors that are involved in any event in E (thus, A
does not change over time) and ω+

t and ω−t are functions

defined on dyads encoding cooperative respectively hostile

interaction before time t.
The value of cooperative/hostile interaction of a partic-

ular dyad (a, b) increases whenever a initiates a coopera-

tive/hostile event e targeted at b. When the difference be-

tween the current time t and the event time te increases, the

influence of e diminishes. The latter property is motivated

by the assumption that actors forget (or forgive) cooperative

and hostile actions.

More precisely, let D = {(i, j) : i, j ∈ A, i �= j} denote

the set of all dyads and T1/2 ∈ R>0 a given positive number

denoting the halflife of the influence of events. Then, the

function ω+
t : D → R≥0, is defined by

ω+
t (i, j) =

∑
e : ae=i, be=j,

we>0, te<t

|we| · ln(2)
T1/2

· e−(t−te)· ln(2)
T1/2 .

The function ω−t : D → R≥0 is defined by the same formula,

where the condition we > 0 is replaced by we < 0. (Note

that ω− still maps to the non-negative numbers, since the

absolute value |we| is taken.)

Thus, the function ω+
t (i, j) is defined as the sum over all

weights of events e that involve i as source (ae = i) and

j as target (be = j), that happen before the current time t
(te < t), and that have positive weight (we > 0). Similarly,

ω−t (i, j) is the sum over events with negative weight we < 0.

How strongly an event e is counted at time t depends on the

time-difference t − te: each time this difference increases

by T1/2 the factor for we is halved. The choice of T1/2 is

dependent on whether the analyst is interested in short-term

or long-term responses.

If e is an event in E, we sometimes write Ge for Gte
.

Note that Ge is only dependent on events that happen earlier
than e (and not on events that happen in the same time unit

as e).

2.4. Dependent Variable: The Next Event

Let e = (ae, be, we, te) be the i’th event in the observed

sequence E and and let Δte denote the time difference

between the i’th and the (i − 1)’th event. The probability

density of e, given the state of the network Ge (compare

Eq. (1)), is decomposed into two factors

f(e
∣∣Ge; θ) = fλ(ae, be, Δte

∣∣Ge; θ(λ)) ·
fμ(we

∣∣ae, be; Ge; θ(μ))

Here fλ(ae, be, Δte
∣∣Ge; θ(λ)) is the probability density that

the i’th event happens after a waiting time of Δte and

involves ae as source and be as target—given the state of

the network Ge and the rate parameters θ(λ). Likewise,

fμ(we

∣∣ae, be; Ge; θ(μ)) is the probability density that event

e has weight we—given the network Ge and values for the

weight-parameters θ(μ) and given the fact that the next event

involves ae as source and be as target. Section 2.4.1 clarify

the functional form of the density for the event weight (event

quality); for space limitations we do not give details on how

the event rate (frequency) is modeled (see [12] for how this

can be done). We emphasize that the weight parameters and

the rate parameters are uncorrelated and, thus, the former

can be estimated even if the model for the event rate is

unspecified.

2.4.1. Event Quality. We assume that the weight of an

event e from actor a to actor b has an expected value

μab = μab(Ge; θ(μ)) that is dependent on the current state

of the network Ge and the parameters θ(μ). The deviation

of the actual (observed) weight from the expected value μab

is modeled as a normal distribution.
More precisely, for parameters θ(μ) = (θ(μ)

1 , . . . , θ
(μ)
kμ

, σ),
the conditional distribution of the weight w of event e =
(a, b, w, t) is modeled as

fμ(w
∣∣a, b; Ge; θ(μ)) =

1
σ
√

2π
e−

[w−μab(Ge;θ(μ))]2

2σ2 .

The expected event weight μab(Ge; θ(μ)) is postulated to

be dependent on the parameters (θ(μ)
1 , . . . , θ

(μ)
kμ

) and the

values of various statistics sh(Ge; a, b), h = 1, . . . , kμ that

characterize the network around a and b. More precisely, the

average event weight is assumed to be a function

μab(Ge; θ(μ)) =
kμ∑

h=1

θ
(μ)
h · sh(Ge; a, b) . (3)

The maximum likelihood estimates of the weight parameters

θ̂
(μ)
h reveal dependencies between characteristics of the

network and future event weights. For instance, if a certain

statistic sh(Ge; i, j) encodes how much j attacked i in the

past, then a (significantly) negative value for θ̂
(μ)
h would

imply that actors show a tendency to initiate hostile events

towards attackers. (This tendency to retaliate can indeed be

observed, see Sect. 3.)

2.5. Network Statistics

The general model outlined so far can be applied to test

many hypotheses concerning the interplay between network

202202



structure and the quality of dyadic events. The specialization

is done by plugging various statistics into Eq. (3). The

particular statistics that we define below are motivated

by previous statistical models for cross-sectional [18] or

longitudinal networks [2].

It should be noted that some of these statistics are used

to test hypotheses (e. g., reciprocity or structural balance

theory), while others mostly serve to control for certain triv-

ial regularities (e. g., inertia). A control statistic that always

has to be taken to obtain meaningful results is the constant
statistic, defined by constant(Gt; a, b) = 1. The constant

statistic just controls for possible deviation from zero of the

average event weight. The function constant(Gt; a, b), as

well as the ones whose definition follows, correspond to the

statistics sh(Gt; a, b) in Eq. (3).

2.5.1. Dyad Inertia and Reciprocity. The most simple

model would assume that actors just continue to act in the

way they did in the past. For instance, if actor a often

initiated hostilities targeted at actor b, the dyad (a, b) is likely

to be a hostile one in the future. This effect is controlled for

by the two statistics capturing the inertia of positive/negative

events, defined by

inertia±(Gt; a, b) = ω±t (a, b) .

A non-trivial, but very reasonable, network effect would

be that actors reciprocate, i. e., actor a adapts its events

towards actor b dependent on how b treated a in the past.

This is captured by the two statistics

reciprocity±(Gt; a, b) = ω±t (b, a)

equal to the positive/negative weights on the reverse ties.

A positive estimate for the weight parameter associated to

reciprocity+ would imply that actors reward coopera-

tion; a negative estimate for the weight parameter associated

to reciprocity− would imply that actors retaliate when

receiving hostilities. Interestingly, these two effects are not

satisfied to the same extent in some datasets, compare

Sect. 3.

2.5.2. Structural Balance Effects. Structural balance the-

ory [19], [20] predicts that the relation of two actors a and

b is (among others) dependent on their common friends

and foes. In the following we take it as an indicator for

being friends, if two actors cooperate (in either direction)

and as an indicator for being enemies, if they exchange

hostilities. Let ω+
t,sy(i, j) = ω+

t (i, j) + ω+
t (j, i) denote

the symmetric positive weight on a dyad (i, j) and let

ω−t,sy(i, j) = ω−t (i, j) + ω−t (j, i) denote the symmetric
negative weight.

The friends-of-enemies-statistic for a dyad (a, b) indicates

whether there are actors who are enemies of a and friends

of b.

friendOfEnemy(Gt; a, b) =
√∑

i∈A

ω−t,sy(a, i) · ω+
t,sy(i, b)

The square-root expresses the assumption that a second

(third, forth, etc.) friend of an enemy has a decreasing

marginal effect, compare [18].
By varying the plus/minus-signs, we obtain in a

similar manner the statistics friendOfFriend,

enemyOfFriend, and enemyOfEnemy.

2.5.3. Activity and Popularity Effects. As a matter of fact,

some actors are more active than others, some do rather

initiate hostile events (aggressive actors), others are more

cooperative. Likewise, some actors are typical targets of

hostilities, while others tend to experience cooperation. To

control for such differences in actors’ position or power,

we introduce a set of statistics dependent on the degree of

actors.
These statistics vary in three dimensions: (1) outdegree

(activity) vs. indegree (popularity), (2) positive vs. negative

weight, and (3) whether we want to analyze the influence

of these degree statistics on the initiator of events (source)

or on the addressee of events (target). Together we obtain

eight different statistics, one of which is defined below (the

others are implied by analogy). The statistic

activitySource+(Gt; a, b) =
∑
i∈A

ω+
t (a, i)

measures the activity of the source actor with respect to

positive events.

2.6. Parameter Estimation

Given an observed event sequence, the log-likelihood

function (compare Eq. (2)) on the parameters is

log L(θ) = log Lλ(θ(λ)) + log Lμ(θ(μ))

=

(∑
e∈E

log fλ(ae, be, Δte
∣∣Ge; θ(λ))

)
+

(∑
e∈E

log fμ(we

∣∣ae, be; Ge; θ(μ))

)
.

Hence the maximum likelihood estimation of the rate pa-

rameters θ(λ) is independent from the maximum likelihood

estimation of the weight parameters θ(μ). This has the

nice implication that a misspecification of one of the two

submodels does not jeopardize the estimation of the other

set of parameters.

3. Application to Political Event Networks

For illustration, we apply our newly developed method

to test several hypotheses in political network analysis. The

concrete datasets are introduced in Sect. 1.1.
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Table 1. Estimated weight parameters and their standard errors (in brackets), computed with the halflife parameter
T1/2 (see Sect. 2.3) set to 30 days. Parameter values are bold if they are significantly positive (tendency towards

cooperation) or negative (tendency towards hostility) at the 5% level. The rightmost column indicates which
hypothesis predicts positive/negative values for which parameter.

LEVANT BALKANS GULF TURKEY predicts

weight parameters
reciprocity+ 0.048 (0.120) -0.129 (0.100) 0.132 (0.014) 0.665 (0.758) H1 (+)
reciprocity− -0.137 (0.013) -0.225 (0.036) -0.096 (0.003) -0.729 (0.307) H2 (−)

inertia+ 0.272 (0.113) 0.718 (0.081) 0.252 (0.012) 4.184 (0.693)
inertia− -0.088 (0.008) -0.368 (0.030) -0.092 (0.003) -0.657 (0.230)
friendOfFriend 1.557 (0.073) 0.886 (0.122) 0.223 (0.023) 2.216 (0.620) H3 (+)
friendOfEnemy -0.061 (0.044) -0.818 (0.084) -0.134 (0.013) 0.518 (0.574) H4 (−)
enemyOfFriend -0.069 (0.040) -0.679 (0.081) -0.157 (0.013) 0.091 (0.566) H5 (−)
enemyOfEnemy -0.305 (0.015) 0.198 (0.051) 0.060 (0.007) -3.110 (0.439) H6 (+)

activitySource+ 0.135 (0.019) 0.222 (0.022) 0.061 (0.003) 1.140 (0.169)
activitySource− -0.107 (0.003) -0.058 (0.010) -0.013 (0.001) -1.272 (0.097)
activityTarget+ 0.008 (0.017) 0.231 (0.021) 0.042 (0.003) 1.264 (0.163)
activityTarget− -0.045 (0.003) -0.017 (0.008) 0.001 (0.001) -0.488 (0.095)
popularitySource+ 0.078 (0.017) 0.033 (0.018) -0.025 (0.004) 0.396 (0.166)
popularitySource− -0.017 (0.004) -0.009 (0.012) 0.005 (0.001) -0.123 (0.090)
popularityTarget+ 0.127 (0.014) 0.058 (0.014) -0.028 (0.004) 0.080 (0.156)
popularityTarget− -0.045 (0.003) -0.061 (0.010) 0.004 (0.001) -0.685 (0.078)
constant -0.087 (0.002) -0.038 (0.002) -0.078 (0.001) -0.013 (0.004)

3.1. Exemplary Hypotheses

One of the most widely satisfied hypotheses in network

analysis is the one that actors tend to reciprocate; this has

also been observed for political conflicts, see [8]. In signed

networks, we got two types of reciprocation that need not

to be fulfilled to the same extent.

H1 Actors behave more cooperatively towards those who

cooperated with them in the past (tendency to reward).

H2 Actors behave more hostile towards those who behaved

hostile towards them in the past (tendency to retaliate).

Besides the dependency of a dyad on its reverse dyad, it

is very reasonable to assume that interaction between two

actors is influenced by their common friends or enemies.

More precisely, structural balance theory [19], [20] (also

compare [9], [10]) predicts that actors behave more . . .

H3 . . . cooperatively towards the friends of their friends;

H4 . . . hostile towards the friends of their enemies;

H5 . . . hostile towards the enemies of their friends; and

H6 . . . cooperatively towards the enemies of their enemies.

3.1.1. Operationalization. All hypotheses are operational-

ized by testing whether the estimated parameters of ap-

propriate statistics are significantly positive (for the weight

parameters this indicates a tendency towards cooperation)

or negative (indicating a tendency towards hostility). The

appropriate statistics for the event quality hypotheses H1 to

H6 are given in Sect. 2.5. To control for other obvious net-

work effects we include the inertia, activity, and popularity

statistics in our model.
The choice of the value of the halflife parameter T1/2 (see

Sect. 2.3) depends on whether we want to test a tendency

to, say, retaliate in the short run or rather in the long run.

We estimated the model with T1/2 being set to one day,

seven days, 30 days, and 180 days; results were surprisingly

consistent. Estimated parameters and their standard errors

for T1/2 = 30 days are reported in Table 1.

3.2. Results and Discussion

A first observation is that, while hypothesis H2 (tendency

to retaliate) is consistently confirmed over all four datasets,

hypothesis H1 (tendency to reward) could only be validated

for one of the four datasets.

Similarly, the four structural balance hypotheses are not

satisfied to the same extent. The rule that “the friend of my

friend is my friend” (H3) indeed holds in all conflicts that

we analyzed. The rules that actors fight the friends of their

enemies (H4), as well as the enemies of their friends (H5)

is validated in two datasets (BALKANS and GULF) while the

other two yield non-significant parameters. Hypothesis H6

(“the enemy of my enemy is my friend”) is only validated

in the BALKANS and GULF conflicts; by contrast, it has a

significantly negative effect in the LEVANT and TURKEY

conflicts. This might support the reasoning of Doreian and

Mrvar [21], who argued that networks are often not perfectly

balanced but might contain more than two mutually hostile

subgroups. Saperstein [22] argued that application of the

rule “the enemy of my enemy is my friend” often leads to

undesirable political behavior.

It is interesting to note that the validity of hypotheses

varies over conflicts of different type: the Gulf conflict is

mostly a war among state actors, the Balkan conflict a civil

war among ethic groups, and the Levant and Turkey datasets
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encode asymmetric conflicts involving state actors and non-

state actors.

4. Conclusion

We propose a general model for longitudinal networks that

are given as sequences of time-stamped, weighted events.

The maximum likelihood estimates of the parameters of

this model reveal how the network of past events influences

the rate and quality of future events. Specializations of this

general model—used to test hypotheses that are motivated

by social science theory—are obtained by plugging specific

network statistics into Eq. (3). In this paper we employed

several statistics modeling dependencies of a dyad on its

reverse dyad, on the network positions of its source and

target, and on indirect relations such as enemies of ene-

mies. It is straightforward to construct statistics modeling

dependencies on actor or dyad covariates (see, e. g., [2]);

in the case of political actors such covariates could encode,

for instance, national capability, ethnic composition, level of

democracy, trade relations, formal alliances, or geographic

adjacency (compare [10]).

The concrete analysis of networks of political actors—

although it has been included mostly for illustration

purposes—yields interesting insight. Most notably are that,

while negative reciprocity (tendency to retaliate) seems to

be universally satisfied, positive reciprocity (tendency to re-

ward) seems to be much rarer. Similarly, the four hypotheses

resulting from structural balance theory (H3 to H6) do not

seem to hold to the same extent. Clearly a sound validation

of these hypotheses must control for certain covariates (see

above and [10]).
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