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Abstract. Visualization is a powerful tool to derive insights from massive, noisy,
and possibly inconsistent datasets. We propose a method for the visualization of
conflict networks that show a set of actors together with hostile or conflictive re-
lations on the systemic level. Our method highlights the most involved actors, re-
veals the opposing groups, provides a graphic overview of the conflict structure,
and allows for smooth animation of the dynamics of a conflict. The visualization
technique can deal with potentially complex network structures and distinguishes
visually between bilateral and multilateral conflicts.
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Introduction

Event data describes “who did (when/where) what to whom” and are among the most
widely used indicators in quantitative international relations research [1]. From a high
level view, event data are used for two types of purposes: first, the assessment of cur-
rent or past political situations, second; for statistical validation of theories about the
likelihood and outcome of conflict and cooperation. Currently there exist many event
databases (some of which are described in this book) that differ largely in scope, gran-
ularity, and in whether they are hand-coded or automatically extracted from, e. g., news
sources. Due to the typical size of these datasets, it is hard to derive insights from them
without automatic support.

In this chapter we present a method to visualize event data given as a set of pairwise
conflictive or hostile interactions. Well-designed images of conflict data provide support
for at least three different purposes. First, they give the analyst a graphic overview of the
data, which may reveal expected or surprising patterns, and thereby can lead to hypothe-
ses that may be validated or rejected later. Second, visualizing data is a powerful tool
for error detection and data cleaning. Last but not least, images are very convenient to
present and communicate insights to others.

A straightforward way to visualize conflicts is to make use of geographic maps and,
e. g., highlight countries involved in conflicts. While such drawings have the advantage
that they are very common and most people are familiar with them, a different visual-
ization strategy can give additional insights into the data. As a matter of fact, conflicts
among large sets of political actors do not normally happen at random but often reveal
a grouping of actors into two or more blocks, characterized as follows: conflicts within
a block are rare or weak and conflicts between actors from different blocks frequent and
more serious. Groups need not be defined by official treaties or alliances but are rather
determined by the interactions themselves. Naturally, this grouping of actors does not



necessarily coincide with geographic closeness or distance so that geographically deter-
mined positions do not reveal the group membership of actors. A distinguishing feature
of our method is that we show the conflict network where actors’ positions are deter-
mined by the relations themselves, thereby revealing the network’s structure.

Given a list of events, our method visualizes the resulting conflict network in such
a way that actors are far from each other if there is a strong negative (i. e., conflictive)
relationship between them and close to each other if they share the same opponent(s). An
example of visualization of a conflict network is shown in Fig. 1. If events have times-
tamps attached to them, the static visualization can be turned into an animated scatterplot
showing the dynamics of major conflicts over time. From such a video, an analyst can
recognize or discover the major actors engaged in conflict during certain periods of time,
see how they are grouped together, and which are their main opponents. The observer
is also enabled to detect time-points where the conflict structure changes significantly.
Since our animation is smooth by design, it can be recognized easily which actors enter
or leave a conflict during transitions. In contrast to a pure dyadic analysis, networks give
additional information about indirect ties (e. g. enemies of enemies), density, complexity,
and structure of the actors’ network environment.

Figure 1. Visualization of the conflict network constructed from events related to the War in Bosnia. The
nodes represent political actors, the edges represent conflictive relations which are often military engagements.
Three groups that are in conflict with each other are revealed. The dominant members of these groups are
{BOSSER (Serbs in Bosnia),SER (Serbia)}, {UNO,NAT (NATO)}, and {BOS (Bosnia)}.

Related Work

Many event databases exist that differ largely in scope (e. g., which actors or events are
included; which time-period is being considered) and granularity (e. g., aggregation of
actors ranging from countries over ethnic groups and organizations to individual persons;



granularity of time-stamps ranging from years to days). Hand-coded datasets (such as [2,
3]) are typically coarser-grained than machine-coded event sets (such as [4,5]). King
and Lowe [4] report similar performance for an automated extraction tool as for human
coders. Nevertheless, it can be expected that machine-coded data is more likely to contain
events that are obviously incorrect for a human coder (cf. Sect. 4.2 below). Although
our method is applicable to human-coded as well as to machine-coded event data, it is
especially appropriate for the visualization of large, fine-grained, and potentially noisy
datasets. For the examples in this paper we use automatically coded data from the KEDS
(Kansas Event Data System ) project [5].

One typical use of event data is to analyze the outcome and likelihood of conflict. For
instance, Schneider and Troeger [6] examine the influence that conflicts and cooperative
events in war regions have on financial markets. They demonstrate that this impact not
only depends on the severity of conflicts but also on the degree to which economic agents
could anticipate events. Guidolin and La Ferrara [7] analyze the effects that the onset
of violent conflict has on asset markets. Schneider [8] reversed this line of research by
examining how political events can be foreseen by using data from financial markets.
Obviously, studies as in the three last-mentioned papers rely on the validity of conflict
data, i. e., to what extent does the dataset represent the true level of conflict or cooperation
at a given point in time. Thus, a possible usage scenario of our visualization technique is
to detect coding errors and clean the data before doing the analysis.

While studies of conflict often focus on the dyadic level (i. e., the relationship be-
tween only two actors), there is increasing interest in applying network analysis tech-
niques to understand world politics at the systemic level. Maoz et al. [9] provide an
overview of the potential use of network analysis in international relations research. In
many studies, network structures such as alliance and ethnic (e. g., linguistic or religious)
affinity networks, as well as trade relations, are considered as independent variables from
which it is sought to predict the level of conflict (cf., e. g., [10,11]). Harary [12] and Maoz
et al. [13] analyze the balance (i. e., does it hold that two enemies never have common
friends; is the enemy of an enemy a friend) of the network of friendship and enmity in
world politics. Other papers aim to understand the effect of several structural character-
istics, including reciprocity, triangularity, polarity and bipolarity, on conflict [14,15,16].
Note that the bipolarity index that we introduce in Sect. 2.1 is different from those con-
sidered by Esteban and Ray [14] since our index is defined as a function of the struc-
ture of conflictive relations. A paper closely related to ours is Hämmerli et al. [17], who
applied network analysis and visualization techniques to conflictive and cooperative re-
lationships. The main difference is that in their paper actors that are strongly in conflict
are drawn closely together, whereas our visualization technique separates strong enemies
(cf. Fig. 1), thereby revealing opposing groups.

The method presented in our paper is also a tool to dynamically visualize news
sources—a topic that has received considerable attention (cf. e. g., [18,19,20]). Wong et
al. [21] proposed a method to generate animated scatterplots from data streams, such as
sequences of news articles. (Scatterplots are widely used in statistical graphics, see, e. g.,
[22,23].) However, the scatterplots in [21] show similarities between documents and not
hostile relationships between political actors as will be done here.

The basic version of our visualization method [24], which is restricted to display a
single bipolar conflict is augmented in the current paper to deal with several and poten-
tially multipolar conflicts.



Outline of this paper. In Sect. 1 we provide background information on the type of data
that is being analyzed. Our method for visualizing the conflict structure embodied in a
set of events is introduced in Sect. 2 and extended to smooth animation of event series in
Sect. 3. The utility of our method is illustrated on event data from the Balkans in Sect. 4.
We conclude with a discussion of open problems and future work.

1. Event Data

Our method is applicable to event data given as a series of pairwise interactions. Al-
though it is independent of the data format, we will focus on a particular coding scheme
to make the exposition more concrete. The Kansas Event Data System (KEDS) [5] is a
software tool that automatically extracts events from text such as news reports. In Sect. 4
we will use KEDS data for the Balkans region. Formally, an event series is a sequence
a1, . . . , ak of tuples ai = (ti, si, oi, ci), where

• ti is the time-stamp (date, given by the day),
• si is the subject (source actor),
• oi is the object (target actor), and
• ci is the code (event type)

of event ai. We say that actors si and oi are involved in event ai. Events are classified
using the World Event/Interaction Survey (WEIS) codes [25]. Each event is assigned
Goldstein weights−10 ≤ ω(ai) = ω(ci) ≤ 8.3, which are psychometrically determined
scores depending only on the type of event (see [26]). A positive weight indicates the
degree of cooperation of the corresponding type of event, whereas a negative weight
measures hostility. Examples for Goldstein weights associated with event types are the
following.

072 EXTEND MIL AID 8.3
054 ASSURE 2.8
160 WARN -3.0
173 SPECIF THREAT -7.0
223 MIL ENGAGEMENT -10.0

Apparently, extending military aid is a highly cooperative action, whereas warnings
are mildly hostiles and military engagement is extremely hostile. To analyze conflict, we
will only make use of negatively weighted events, i. e. hostile actions.

The following excerpt indicates the coding of actors in the Balkans data.

NATO_OFFICIAL [NAT]
NATO-LED_STABILIZATION_FORCE_IN_BOSNIA [NAT]
SERBS_IN_BOSNIA [BOSSER]
RATKO_MLADIC [BOSSER]
MILOSEVIC [SERGOV 890101-971230] [FRYGOV 971231-001005] [SERSM >001006]

Several tokens in the news may be interpreted as referring to the same aggregated
actor. In the above excerpt, NATO (NAT) is represented by (among others) potentially
unnamed officials and SFOR.1 Similarly, the actor BOSSER is represented by (among
others) the general term “Serbs in Bosnia,” as well by specific persons like Ratko Mladić.
On the other hand, the same token may represent different actors at different times. For

1The (Stabilisation Force) was a NATO-led multinational force in Bosnia and Herzegovina.



instance, Slobodan Milošević represents the Serbian government (SERGOV) until De-
cember 1997, the government of the Federal Republic of Yugoslavia (FRYGOV) until
October 2000, and after being replaced by opposition-list leader Vojislav Koštunica only
himself (SERSM).

Given an actor coding, textual statements are parsed into events like the following
example which took place on 10 July 1995.

950710 NAT BOSSER 173 (SPECIF THREAT) POSSIBLE AIR STRIKES

This event is an action initiated by the NATO (active) and directed at the Serbs in
Bosnia (passive). In addition to the event code (173), a textual description of the type
of event (in this case a “specified threat”) is given in parentheses. The rest of the line is
the stemmed form of the text fragment that has been turned by the KEDS parser to the
corresponding event. Often, this text gives valuable additional information, in this case
information about the nature of NATO’s threat. Datasets derived from serious conflicts
can be quite large. For instance, the KEDS dataset encoding the Balkans conflict consists
of more than 78, 000 events.

To detect emergent patterns and utilize indirect relations, we transform the data into a
network. Any set {a1, . . . , ak} of events gives rise to a directed and weighted interaction
graph G = (V,E, ω) that we call a conflict network. This graph G is made of a set V
of vertices, a set E of edges and a set ω of weights, in the following way. The network’s
actor set V is the set of actors involved in any event as the source or the target, i. e.,
V =

⋃k
i=1{si, oi}. There is a directed edge e = (u, v) ∈ E if there is an event with

source u and target v, and we assign a weight ω(e) that is minus the sum of all negative
weights on events initiated by u and directed to v (i. e., edge weights are positive and
indicate the degree of hostility; cooperative events are disregarded).

Figure 2. Force-directed drawing of hostile interaction in the Balkans from 1991 until 1997. The darkness of
the edges is proportional to cumulative hostility weights. This kind of graph visualization is inappropriate for
conflict networks as it does not distinguish between important and non-important actors nor does it reveal the
structure of the network. In this chapter we present a method to draw conflict networks in a concise and easily
understandable way (see Fig. 1).

Figure 2 shows an example of a conflict graph drawn by standard force-directed
layout techniques [27]. The complexity of Fig. 2 already indicates the insufficiency of



general-purpose graph drawing techniques and the need for other analysis and visual-
ization methods that are more appropriate for this application. In Sect. 2 we develop a
method that extracts the dominant conflict structure, filters out minor actors, and pro-
duces a less complex image that is easy to understand.

It is unlikely that a focused data set yields an interaction graph with more than one
significant non-trivial connected component. However, since connected components can
be analyzed separately, we may safely assume that all interaction graphs are anyway
connected.

2. Visualizing Conflict Structures

In this section we focus on extracting the structure of conflicts from static event data,
i. e., we ignore time-stamps and consider the data to be given as a set rather than a se-
quence. The actors’ positions are determined in a way where actors that are strongly in
conflict with each other are far apart in the drawing and actors that are not connected
by a conflictive edge, but have conflicts with the same other actors, are drawn closely
together. Thus, the drawings facilitate the recognition of groups of actors that fight the
same enemy. We start in Sect. 2.1 with the assumption that the network contains only
one major bipolar conflict. This rather restrictive assumption is generalized in Sect. 2.2
to multipolar conflicts and in Sect. 2.3 to several parallel conflicts that overlap in the data
set. The static methods that are developed in this section will be augmented to include
dynamics in Sect. 3.

During the computation of the conflict network’s group structure we will ignore
edge directions. The rationale behind this is that if there is a strong negative (i. e., hostile)
edge between actors u and v, then u and v should be in different groups—independent
of whether the edge is directed from u to v or vice versa. However, edge directions will
be taken into account when determining whether an actor is more active or more passive
and highly asymmetric edges will also be shown as such.

2.1. Single Bipolar Conflict

A first attempt to determine the two opponent groups of a bilateral conflict would be to
try to divide the actor set V into two disjoint subsets U and W , such that all edges go
from U to W or vice versa and, hence, no edge connects two actors of the same group.
See Fig. 3 for a fictitious conflict network of selected Balkan actors (the real network
of these actors is much more complex) and the matrix P of derived group-membership
values.

However, the discrete assignment of actors to the two groups of a bipartite conflict
is completely impractical for empirical data. Firstly, the requirement that all conflictive
relationships must be between the groups, and hence none of them within any group, is
typically not supported by the data. Secondly, the attempt to determine a partition of V 2

such that the sum of edge weights between the two groups is maximized is impractical
as well: the problem is computationally intractable, highly sensitive to noise, requires
actors to be purely in one group or the other, and reveals no prominence of actors.

2The groups U and W form a partition of V if their union equals V (V = U ∪W ) and their intersection is
empty (U ∩W =).



P =

BOS NAT CRO MOS SER BOSSER1 1 1 1 0 0
0 0 0 0 1 1



Figure 3. Visualization of a fictitious network that constitutes a bipartite conflict structure. The group-mem-
bership values are shown in matrix P . Actors are either entirely (value of one) or not at all (value of zero) in a
given group.

We relax the idea of a strict bipartition by employing the recently introduced frame-
work of structural projections and the closely related structural similarities [28]. This will
lead us to a method that poses no algorithmic problems, is robust to noise, can handle
actors that are members of both groups, and filters out unimportant actors on the fly. In-
stead of mapping actors to one class or the other, structural projections yield real-valued
degrees of membership to classes. For a relaxed bipartition, actors that are strong mem-
bers of one group have major conflicts with actors that are strong members of the other
group but only minor conflicts with actors in their own group.

An example of visualization of such a real-valued assignment is shown in Fig. 4; the
associated group-membership values of the most involved actors are in matrix P (1).

Figure 4. Bipolar visualization of Balkan conflict 1989–2003. Dominant actors include those set out in Fig. 3.
Actors are members of the first or second group to the extent that they are mapped close to the left or right
coordinate axis, respectively. (See the membership values of the most important actors in matrix P (1).) The
angle (left vs. right) encodes the ratio between the two group’s membership values. Involvement of actors is
proportional to the distance from the origin. The aspect ratio (shape) of an actor encodes the ratio between
activeness (height) and passiveness (width).

P =

BOS NAT CRO MOS UNO SER BOSSER . . .
.7 .5 .3 .2 .5 0 0 . . .
0 0 0 0 .2 .8 .7 . . .

 (1)



Note that the degree of membership assigned to actors varies. E. g., BOS is a much
stronger member of the first group (value of 0.7) than, e. g., CRO (value of 0.3). On the
other hand UNO, though closer to the first group (degree of membership is 0.5), is also a
member of the second group (degree of membership is 0.2), because conflicts with other
actors in the first group (e. g., with Bosnia) are reported. Many of the unimportant actors
close to the origin are filtered out because their level of hostility is not sufficient to place
them prominently in one group or the other. Thus, our method not only determines a
relaxed bipartition, but also indicates which actors are most responsible for the division.

The determination of the optimal membership values so that the weight of edges
between the groups is maximized is derived in [24]. (Also see [28] for the general
framework of this method.) Here we reproduce the results only.

Group-membership values. Given a conflict network G = (V,E, ω) on n = |V | actors,
let A be the symmetric adjacency matrix of G, defined as the n × n matrix whose rows
and columns are indexed by the actors of G and where the entries are defined by Auv =
Avu = ω(u, v) + ω(v, u).

1. Compute maximum and minimum eigenvalues λmax and λmin of A together with
associated normalized eigenvectors vmax and vmin.

2. Let P be the 2 × n matrix with x = (vmax + vmin)/
√

2 in the first and y =
(vmax − vmin)/

√
2 in the second row.

3. The membership values of actor v are the two real values in the column of P that
is associated to v (see (1) for an example).

4. The involvement of actor v is defined to be the norm of its membership values,
i. e., the involvement is

√
P 2

1v + P 2
2v .

Any eigenvector algorithm for real symmetric matrices can be used in Step 1 (see, e. g.,
[29]), and there are many readily available software packages.

Activeness or passiveness of actors. Activeness is defined as the net weight of the events
in which an actor is involved as the subject initiating the event, i. e., activeness of actor v
is the value

∑
u∈V ω(v, u). Symmetrically, passiveness adds weights of events received,

i. e., passiveness of actor v is the value
∑

u∈V ω(u, v).

Indicator for the fit of the bipolar conflict model. The bipolarity (or fit to the bipolar
model) is defined as the ratio between the minimal and maximal eigenvalue, i. e.,

β(G) =
∣∣∣∣ λmin

λmax

∣∣∣∣ .

The index β(G) measures to what extent are conflicts only between the two groups and
ranges between zero and one. It is one if and only if the graph is bipartite (i. e. if the
model fits perfectly) and it is zero if and only if there are as many conflicts within the
groups as there are in-between (i. e., if the model does not fit at all).

2.1.1. Graphing Bipolar Conflict Space

The graphical attributes of our visualization are determined as follows. The actors’ posi-
tion in the two-dimensional drawing indicate their group membership and involvement:
Actors are mapped in direction of the left or right coordinate axis to the extent that they
are members of the first or second group, respectively. We propose a coordinate system



where the x-axis points to the upper left corner and the y-axis to the upper right corner.
This coordinate system seems to be preferable to the more usual one (one axis verti-
cal, one horizontal) since it prevents the misguided interpretation of superiority of one
group over the other. The angle (left vs. right) encodes the ratio between the two group
membership values. The ratio between activeness and passiveness determines the aspect
ratio (height vs. width) of a node, so that actors who initiate conflictive interactions, but
are not the subject of retaliation are high and narrow. Involvement is proportional to the
distance from the origin and emphasized in the size of an actor. Finally, we indicate the
fit of the bipolar model using a bipolarity gauge on the right-hand side of the images.

Figure 4 shows the bipolar visualization of the network derived from the Balkan
Conflict from 1989 to 2003. The circles around the origin link points of identical in-
volvement. They help see that the most involved actor during the whole period of time
is Serbia (SER), closely followed by the Serbs in Bosnia (BOSSER) and Bosnia (BOS).
The bipolarity of this network is rather low (only around 0.42), indicating many conflicts
within groups. Despite the low level of model fit, our method still yields two reasonable
opponent groups: Serbia and the Serbs in Bosnia opposed to Bosnia and Croatia (CRO).
The NATO (NAT) is opposed to SER and BOSSER, due to the massive air strikes in 1994
and 1995. Since NATO initiated more events than it receives (i. e., is more active than
passive), it is displayed as a high and narrow actor.

2.2. Multipolar Conflict

The low fit of the bipolar conflict model to the complete Balkan data set (Fig. 4) indicates
that many conflicts occur within groups and hence the assumption of only two opposing
groups is not satisfactory. We call a conflict structure where k ≥ 2 groups are mutually
in conflict a k-lateral conflict (for k = 2 we get a bilateral conflict). Here we extend the
method developed so far to deal with k-lateral conflicts. Doing this is straightforward
from the analysis point of view, although the visualization has limitations if k gets larger
than three for two-dimensional visualizations. The reason for these limitations is that it
is not possible to draw four or more points in a two-dimensional space such that all pairs
are at the same distance. In the following we derive a method to draw conflict networks in
a two-dimensional image that reveals more general than just bilateral conflict structures.

The position of a particular actor in the drawing should express which other actors it
confronts. If two actors u and v are connected by a hostile edge of large weight, then we
want to draw u and v on opposite sides of the image. The difficulty lies in the fact that we
have to draw not only two authors but the whole network such that all confronting pairs
are simultaneously as far from each other as possible. This objective, which contrasts to
most objective functions for graph drawing that traditionally want to keep edge lengths
short [27], is of course due to the fact that edges encode negative relations. The good
news is that this problem is efficiently solvable, as will be derived next.

Let G = (V,E, ω) be the conflict network with actor set V of cardinality n =
|V | and let A be its symmetric adjacency matrix (as defined in Sect. 2.1). Since we
want to draw the conflict network in two-dimensional space, the positions of all n actors
are represented by two vectors x, y ∈ Rn. If for two actors u and v the entry auv in
the adjacency matrix is large (i. e., if they are strongly in conflict), then they are well-
represented by the coordinate vector x if the entry xu is (say) strongly negative and the
entry xv strongly positive. Then, the value xuauvxv is negative and has a quite large



absolute value. Summing this up over all pairs of actors, x is determined to minimize the
objective function

ΦA(x) =
∑

u,v∈V

xuauvxv = xTAx ,

under the condition that x must have unit length to keep the drawing to the screen size.
It follows from an alternative description of the eigenvalues of a matrix that this term
is minimized if and only if x is equal to the eigenvector of A associated to the smallest
eigenvalue λmin (see, e. g., [29]). The second coordinate vector y is chosen to minimize
ΦA(y) under the condition that y is normalized and orthogonal to x. This is solved by
taking for y the eigenvector of A associated to the second smallest eigenvalue λ′min.

This method can reveal network structures beyond bilateral conflicts. For instance,
Fig. 5 shows the visualization of the Balkan Conflict network (1989–2003). Three groups
can be detected whose dominant members are {BOS} (first group), {BOSSER,SER}
(second group), and {UNO,NAT} (third group). However, actors are not strictly assigned
to one or the other group but their membership can also be intermediate. For instance,
conflicts that are reported between UNO and BOSSER (Serbs in Bosnia) are stronger than
conflicts between UNO and SER, which leads to the drawing in Fig. 5 where BOSSER
is more distant to UNO than SER to UNO. Actor CRO (Croatia) is much less involved
and therefore drawn smaller and closer to the origin in the center of the drawing than
the aforementioned five actors. CRO has strong conflicts with the second group (most
notably with SER) but no strong conflicts are reported between CRO and either members
of the first or third group. Therefore, CRO is drawn exactly opposite to SER and between
the first and third group.

Note that the complete Balkan data set indeed yields three groups that are mutually
in conflict. In particular, it is not possible to assign the Balkan actors to only two groups
without having strong conflicts within a group, leading to the low fit of the bipolar model
(Fig. 4).

The visualization of the Gulf Conflict network (1979–1999) (see Fig. 6) does not
reveal three groups. Instead we can see a bilateral conflict (ISR vs. LEB) overlaying a
trilateral conflict that is mostly formed by USA, IRQ, and IRN. In Sect. 2.3 we extend
our method to handle such situations.

Interpolation between bipolar and tripolar conflicts. One further detail has to be taken
care of: a conflict is not necessarily either bilateral or trilateral but can show an interme-
diate structure. For instance, Fig. 7 shows the conflict structure among a selected subset
of Gulf actors involved in conflicts in Iran and Iraq. The dominant structure is a triangle
formed by USA, IRQ, and IRN. However, conflicts reported between USA and IRN are
weaker than those reported between IRQ on one side and USA or IRN on the other side.
The question arises whether this network is best represented by a balanced tripolar struc-
ture similar to Fig. 5 (which would ignore that two of the three actors are closer to each
other than to the third), or by a bipolar structure placing IRQ on one side and USA along
with IRN on the other (which would ignore the hostile edge between USA and IRN). We
argue that the best way to represent such a conflict structure lies in the middle, i. e., to
show it as an intermediate between a bipolar and a balanced tri-polar conflict. Figure 7
shows a triangle which has three unequal sides, but where USA and IRN are closer to
each other than to IRQ. Such a representation can be computed by appropriately scaling



Figure 5. The graph on the left-hand side visualizes the conflict network arising from the Balkan Conflict
1989–2003. This network matches well the model of a trilateral conflict shown on the righthand side. Three
groups that are mutual in conflict are revealed whose dominant members are {BOSSER,SER}, {UNO,NAT},
and {BOS}. The black-white gradient of the edges indicates the main direction. For instance, the edge from
NAT directed to SER has a higher weight than the reverse edge from SER to NAT, meaning that more actions
were directed from NATO to the Serbs than the reverse.

Figure 6. Visualization of Gulf Conflict 1979–1999: Two overlapping dominant conflicts can be detected. The
trilateral conflict model shown in Fig. 5 (right) does not fit well to this network. A remedy for this fact is to
separate almost independent conflicts first, as will be described in Sect. 2.3.

the eigenvectors we project on (see the algorithm description in Sect. 2.4). If the weight
of the edge between USA and IRN got smaller and smaller, then these two actors would
move towards each other until the pattern of a purely bipolar conflict is reached.

2.3. Parallel Conflicts

The complete data set for the Gulf Conflict (1979–1999) did not match well a bilateral
nor a trilateral conflict model (see Fig. 6), since it consists of two almost independent
conflicts: that between ISR and LEB on one hand and the mutual conflicts between USA,



Figure 7. The dominant cluster in the Gulf Conflict data set (1979–1999) contains USA, IRQ, and IRN and
shows a tri-polar structure, although a higher conflict intensity is reported between the pairs (IRQ,IRN) and
(IRQ,USA) than between (USA,IRN).

IRQ, and IRN on the other. A way to obtain a better visual representation of this data
set is to first separate almost independent conflicts into different sub-networks and then
visualize these independently as described before. The separation of independent con-
flicts can be done either by a network clustering algorithm that computes dense clusters
(corresponding to subsets of actors that are strongly in conflict) or interactively by the
analyst who chooses a subset of actors he or she is interested in.

The Gulf Conflict data set contains three significant clusters that have been obtained
by a slight adaptation of a spectral clustering technique [30]. The strongest one (already
shown in Fig. 7) has a mostly tri-polar structure. The two other conflict clusters (that have
a very trivial bipolar structure) can be seen in Fig. 8. The formerly overlaying conflicts
(see Fig. 6) are now displayed separately, each according to its structure.

Figure 8. The remaining two of the three major clusters in the Gulf Conflict data set (1979–1999) (the cluster
containing USA, IRQ, and IRN has been shown already in Fig. 7) have a trivial bipolar structure and are shown
in the above two diagrams.

2.4. Visualization Algorithm

We summarize the method outlined in this section in the following algorithm for the two-
dimensional visualization of conflict networks. The algorithm takes as input a directed
graph G = (V,E, ω) where the weight ω(u, v) of an edge (u, v) is determined by the
conflictive actions targeted from actor u to actor v.

1. Divide the actor set into dense clusters C1, . . . , Cp, either by a clustering algo-
rithm (such as [30]), or manually during data analysis.

2. For all clusters C, compute A as the symmetric adjacency matrix of the subgraph
defined by C and perform the following steps to visualize C (let n = |C| denote
the number of actors in C).

(a) Compute the two minimal (negative) eigenvalues λmin and λ′min of A to-
gether with (orthogonal and normalized) eigenvectors x and y.



(b) Construct the 2×n matrix P whose first row is equal to x and whose second
row is equal to y · λ′

min
λmin

(i. e., y scaled with the ratio of the next-to-minimal
eigenvalue divided by the minimal eigenvalue).

(c) Draw actor v as an ellipse at the position defined by the v’th column of P . The
ratio height/width of the ellipse is proportional to the outdegree/indegree (i. e.,
activeness/passiveness) of v. The product of height with width (proportional
to the area of the ellipse) is proportional to the Euclidean length of the v’th
column of P (encoding v’s involvement).

(d) Draw the strongest edges of the subgraph defined by C (the number of edges
drawn is a free parameter). The width of an edge (u, v) is proportional to the
symmetric weight ω(u, v) + ω(v, u). A dark-grey to light-grey color gradi-
ent is directed from u to v if ω(u, v) > ω(v, u) and directed from v to u if
ω(u, v) < ω(v, u). The darker side of this gradient is a fixed grey-value (close
to black). The lighter side is this grey value scaled with ω(v, u)/ω(u, v) if
ω(u, v) > ω(v, u), so that the gradient becomes more pronounced if the ratio
gets larger.

An example of a strongly skewed edge is that from NAT directed to SER in Fig. 5. Note
that the side closer to NAT is darker than the side closer to SER.

3. Animating Conflict Dynamics

The images generated as described in Sect. 2 already reveal the actors and conflicts that
are dominant over the whole period of time. However, due to varying conflict intensity
and changing oppositions and alliances these images might not represent well the struc-
ture at specific time-points. Likewise, conflicts of short duration might be filtered out.
To obtain a more detailed insight into the evolution of conflicts, we will introduce a
technique for smooth animation of the above type of scatterplots for limited periods of
time.

The event graph G is used to generate a sequence of graphs Gt, each of which
represents the view on the set of events at the specific time t. A graph Gt yields one
frame of the final video and this frame shows a detailed image of the situation at time
t. How the events are viewed at a certain time-point is determined by a scaling function
η : R → R≥0, which models how events move into the data when time increases and
how they fade out. Examples of possible scaling functions are triangular shaped scaling
functions with time radius r, as defined and illustrated in Fig. 9. The function ηr does not

ηr(t) =

 (t + r)/r if |t| ≤ r and t < 0
−(t− r)/r if |t| ≤ r and t ≥ 0

0 if |t| > r .

Figure 9. Left: Definition of the triangular shaped scaling function ηr with time radius r. Right: Illustration
of ηr for r = 2.

consider events with a time-stamp more then r away from the current time-point. Events



move into Gt linearly until t is larger than their time-stamp. Then, they fade out linearly
until they have zero weight.

For a fixed scaling function η and time point t, the graph Gt = (V,E, ωt) is defined
as follows. The actor set V and the edge or event set E are the same as for the input graph
G. The weight ωt(e) of an event e at time t is defined to be ωt(e) = ω(e) · η(te− t), that
is, the weight of e at time t is its absolute weight ω(e) times a scaling factor which is
dependent on the difference between the time-stamp te of the event and the current time
t. The graph Gt may be reduced by removing events with zero weight, as well as isolated
actors, since these do not influence the analysis and would be invisible in the final video.

Given a graph G, representing a list of events, the movie is generated by the follow-
ing steps.

1. Select a sequence of time-points t1 < · · · < tN in a given time interval.
2. For each i from 1 to N

Compute the visualization of the graph Gti .
3. The images for all time-points yield the frames of the video.

In order to maintain the overall appearance of the frames one further detail has to
be taken into consideration. If v is an eigenvector of A associated to eigenvalue λ, then
so is −v. Thus the eigensolver algorithm could return either v or −v as a solution to the
eigenvalue problem. To prevent that this assignment switches from one frame to another
(which would result in interchanging the axes of the coordinate system from one frame to
another) we have to ensure that the eigenvectors we use point in a well-defined direction.

For the bipolar conflict projection the canonical direction for the eigenvector vmax

associated to the largest eigenvalue is simply the direction in which each entry of vmax

is positive. (It is standard knowledge in algebraic graph theory that all entries of this
eigenvector have the same sign.) We define the canonical direction for the eigenvector
vmin for time-step t recursively by the direction of this eigenvector for time-step t − 1.
The direction of vmin is chosen such that the angle between vmin at time t and vmin at
time t − 1 is smaller than 90 degrees. Thus, only the direction of vmin for the very first
time-step is arbitrary. This translates to the fact that there is no absolute meaning attached
to the two opponent groups. A second computation of the movie could interchange the
first and second group, but then it has to reverse the assignment for all actors and at all
time points, which results in the same opponents.

For multipolar conflicts the computed coordinates are only unique up to rotation or
reflexion of the two-dimensional image space. To ensure that the images are not rotated
or reflected from one image to the next we determine the two-dimensional orthogonal
transformation that minimizes the distance between images at time t and time t− 1 and
apply it to the drawing at time t. More precisely, let t be a time-point that is not the first
and let Pt−1 be the 2×n matrix holding the two-dimensional coordinates of all n actors
at time t− 1. Further, let Pt be the 2× n matrix as returned by the eigensolver at time t.
Set X = Pt−1P

T
t and compute the Singular Value Decomposition (SVD) X = USV T

of X [29]. The optimal coordinates at time t are given in the matrix P ′
t = UV TPt.

Of course, animation can also be applied to sub-networks representing independent
conflict clusters.

In Fig. 10 we show three selected time points in the Gulf Conflict cluster containing
USA, IRQ, and IRN. In the smooth animation, the radical change of the relative positions
of USA and IRQ can be easily followed.



Figure 10. Dynamic visualization of Gulf Conflict (cluster containing USA, IRQ, and IRN) (left: June 1989,
middle: March 1990, right: August 1990). Note that especially the relative positions of USA and IRQ changed
completely during this period.

4. Application Example

We apply our method to visualize a data set from the Kansas Event Data System
(KEDS) [5] (see Balkan data set [5]) in a prototypical implementation. The animations3

are realized in SVG format (Scalable Vector Graphics, see W3C Recommendation at
http://www.w3.org/TR/SVG/), thus they can be viewed on any web browser with
an appropriate plug-in.

4.1. Dynamic Bipolar Visualization
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Figure 11. Left: Volatility profile of the bipolar visualization of the Balkan conflict. Right: Bipolarity (fit of
the bipolar model) of the Balkan Conflict.

The varying degree of polarization can be inferred from the model fit indicator curve
in Fig. 11 (right). Although there is great variation in the magnitude of the model fit,
it is often close to one and at all time points considerably distant from zero. Thus, the
simplistic assumption of bipartite conflicts already fits the data sufficiently well—if we
restrict the analysis to relatively short time intervals. (As it has been noted before, sum-
marizing the whole data set over 14 years in a bipolar model provides suboptimal results,
e.g. see Figs. 4 and 5.) The volatility indicator [24] measures the sensitivity to noise of

3The animation of the bipolar visualization are available from
http://www.inf.uni-konstanz.de/algo/research/conflict/



our drawing technique. The volatility profile for the Balkan conflict is shown in Fig. 11
(left). The fact that this indicator is small during most time-steps gives guarantees the
stability of our method. The peaks in this plot, where the volatility reaches a value of
one, can be recognized in the animation by a sudden movement of the actors.

The following figures show selected time-points of the Balkans conflict.

Figure 12. War in Bosnia, first semester 1995 (only edges incident to UNO are shown). Left: Two opposing
groups and UNO trying to mediate. Right: BOSSER’s troops in conflict with the UN. The heavy edge pushes
UNO to the group on the right-hand side.

Figure 13. Left: NATO bombing in Bosnia, second semester 1995. Note that BOSSER changed from high and
narrow (being the source of events) in Fig. 12 (right) to broad and flat (being a target). Right: Dayton peace
talks.

Figure 14. Left: Conflict between Turkey and the Kurds before the change from Reuters North America to
Reuters Business Briefing (June 1997). Right: During the change: TUR and KUR are still visible to the left and
to the right of the origin and are rapidly moving towards it.

Important changes in the conflict structure took place in 1995 and 1996. Figure 12
(left) shows the war in Bosnia, where Serbia and the Serbs in Bosnia (BOSSER) are
opposed to Bosniaks and Croats. The UNO, which is trying to install peace in Bosnia, has
conflicts of similar strength to all of them. This changes when troops of the Bosnian Serbs
captured weapons from UN peace keepers and declined to return them (Fig. 12right).
After the Bosnian Serbs did not respond to an ultimatum, the NATO started air strikes



under the order of the UN (Fig. 13left). The opposing parties finally participated in peace
talks which took place in Dayton, Ohio and were signed in December 1995 (Dayton
Peace Agreement, Fig. 13right). After this, events in the Balkans calmed down and the
media focused on the conflict between Turkey and the Kurds.

The conflict between Turkey and the Kurds also exemplifies a problem with the
data that we were not aware of before seeing the animation. In July 1997, there is an
abrupt change in media coverage in the sense that reports on hostilities between Turks
and Kurds are suddenly missing. Figure 14 shows the conflict structure in the Balkans
with only a few days in between. The change is also visible in a significant drop in the
bipolarity curve (Fig. 11right), where the highly bipolar situation rapidly changes into a
more complex one, and in a peak in the volatility curve (Fig. 11left).

That this change is indeed supported by the data can be verified by printing the
events involving TUR and KUR. During a period of one month from May 10’th 1997 to
June 10’th 1997 many hostile events between these two actors are reported (see Fig. 15).

970514 TUR KUR (MIL ENGAGEMENT) KILLED
970514 TUR KUR (MIL ENGAGEMENT) TROOPS CLASHED
970514 TUR KUR (MIL ENGAGEMENT) TURKISH PUSHED AGAINST KURDISH
970520 TUR KUR (MILITARY DEMO) HUNTING DOWN
970521 TUR KUR (MILITARY DEMO) BUILDING UP FORCES
970522 KUR TUR (MIL ENGAGEMENT) ATTACKED KILLING
970522 TUR KUR (MIL ENGAGEMENT) TURKISH PUSHED AGAINST KURDISH
970522 KUR TUR (NONMIL DEMO) STAGED PROTEST
970522 KUR TUR (DENIGRATE) CONDEMNATION
970524 KUR TUR (MIL ENGAGEMENT) ATTACKS ARMY
970526 TUR KUR (MIL ENGAGEMENT) TROOPS CLASHED
970527 TUR KUR (MIL ENGAGEMENT) BOMBED
970602 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKISH
970604 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKEY
970604 TUR KUR (ARREST PERSON) JAIL
970605 TUR KUR (MIL ENGAGEMENT) KILLED
970607 TUR KUR (DENY) DENIED
970609 TUR KUR (DENY) DENIED
970610 KUR TUR (DEMAND) DEMANDING

Figure 15. Hostile events between TUR and KUR from 05/10/97 to 06/10/97.

In contrast, during a period of one month from 11 June 1997 until 11 July 1997
there is no hostile event reported between TUR and KUR. There are no prominent historic
events explaining this sudden “peace”. However, turning to the data description gives
the information that this is precisely the time when KEDS sources change from Reuters
North America to Reuters Business Briefing, with the latter apparently not covering the
conflict (or TUR and KUR being filtered out during preparation of the data for the KEDS
parser).

4.2. Multipolar Visualization of Independent Conflict-Clusters

The conflict network arising from the Balkan data set contains several interesting sub-
networks corresponding to separate conflicts. Figure 16 shows six selected conflict clus-
ters that have been identified by a spectral clustering technique [30]. Note that some
of these sub-networks have a trilateral structure (such as the war in Bosnia shown at
the top-left). Other clusters have a purely bipolar structure, as e. g., Slobodan Milošević
(SERSM) versus the UN War Crime Tribunal (UNWCT) shown at the bottom-right. Yet
other sub-conflicts have an intermediate structure, as e. g., conflicts on Cyprus shown at
the top-right. Naturally, it could be argued that some of these conflicts should not be part
of the Balkan data set. Thus, the visualization presented here may also serve as a support
for data cleaning.



Figure 16. Strong conflict clusters in the Balkan data set.

While the six conflict sub-networks in Fig. 16 seem to be reasonable and correspond
to known historic events, we detected another conflict cluster in the Balkan data set
that surprised us. According to the network shown in Fig. 17, the USA-Government
(USAGOV) would be a serious opponent of the USA.

Figure 17. One conflict cluster found in the data set seems hard to believe. The hostile edge between USAGOV
and USA is probably due to some systematic errors of the KEDS parser (see text for a more detailed descrip-
tion).

To find out the reason for this strange configuration we printed all major hostile
events with weight < 5.0 between these two actors in Fig. 18. Apparently the KEDS
parser repeatedly interpreted certain recurrent statements in the news as military demon-
strations of the US-Government targeted against the USA. (Military demonstration is
a serious hostile event with weight= −7.6; the most hostile event has weight −10.0.)
Note that although, this error seems to be repeated quite often, the resulting conflictive
edge would vanish against the hostilities between (say) BOSSER and BOS. In particular,
it would not be visible without the prior clustering. The story around Fig. 17 is a good



930224 USAGOV USA (ARREST PERSON) ROUNDED UP
930714 USAGOV USA (MILITARY DEMO) SENDING TROOPS
930729 USAGOV USA (NONMIL THREAT) CONSIDERING STRIKES
940210 USA USAGOV (MIL ENGAGEMENT) FIRED AT PRESIDENT CLINTON’S
940525 USAGOV USA (MILITARY DEMO) SEND TROOPS
950104 USA USAGOV (CUT AID) EMBARGO
950803 USAGOV USA (CUT AID) EMBARGO
950929 USAGOV USA (MILITARY DEMO) SEND TROOPS
951008 USAGOV USA (MILITARY DEMO) SEND TROOPS
951119 USAGOV USA (MILITARY DEMO) SEND TROOPS
951119 USAGOV USA (MILITARY DEMO) SEND TROOPS
951120 USAGOV USA (MILITARY DEMO) SENDING TROOPS
951125 USAGOV USA (MILITARY DEMO) SEND TROOPS
951202 USAGOV USA (MILITARY DEMO) SEND TROOPS
951203 USAGOV USA (MILITARY DEMO) SEND TROOPS
951213 USAGOV USA (CUT AID) VOTED TO CUTTING OFF FUNDS
960113 USAGOV USA (MILITARY DEMO) INSPECTED TROOPS
960113 USAGOV USA (MILITARY DEMO) INSPECTED TROOPS
960203 USA USAGOV (ARREST PERSON) HOLDS
960711 USAGOV USA (MIL ENGAGEMENT) ASSAULT
960917 USAGOV USA (MILITARY DEMO) ORDERED TROOPS
961006 USAGOV USA (MILITARY DEMO) SENT TROOPS
970624 USAGOV USA (CUT AID) VOTED TO CUT OFF FUNDS
990501 USAGOV USA (SEIZE POSSESSION) EXPANDED
990504 USA USAGOV (MIL ENGAGEMENT) KILLED
010616 USA USAGOV (NONMIL DEMO) DEMONSTRATED

Figure 18. Hostile events between USA and USAGOV. Military demonstration is a serious event
(weight= −7.6) that repeatedly has been interpreted by the KEDS parser as being targeted against the USA.

example to illustrate the utility of visualization for data cleaning and/or improvement of
automatic event parsers.

5. Discussion

In this chapter we presented a general method for the visualization of conflict networks.
We focused on the description of the visualization technique and briefly demonstrated
its usefulness. The images produced give deep insight into the conflict structure and, as
illustrated in the examples, may lead to the detection of coding errors.

A future ready-to-use conflict visualizer would certainly benefit from interaction
possibilities allowing the analyst to trace back the events responsible for conflict edges
and finally trace back the original news reports [24]. Another issue for future work is
to augment the method to simultaneously visualize other relations (such as membership
to official alliances, or geographic closeness) and supplementary attributes of the actors
(such as ethnic composition, distinction between state and non-state actors etc.). Visual-
izing attribute data can be conveniently done by color or texture of the nodes representing
actors.
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