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Abstract. Communities in social networks are often defined as groups
of densely connected actors. However, members of the same dense group
are not equal but may differ largely in their social position or in the role
they play. Furthermore, the same positions can be found across the bor-
ders of dense communities so that networks contain a significant group
structure which does not coincide with the structure of dense groups.
This papers gives a survey over formalizations of network-positions with
a special emphasis on the use of algebraic notions.

1 Introduction

A common trend in recent years is the emergence of very large networks, i. e., sets
of objects (later called vertices) together with one or more relations. Examples
include networks of humans together with kinship or friendship relations, affil-
iation networks where actors are connected by common participation in events
or common membership in organizations, authorship networks where researchers
are connected by co-authored documents, citation networks where articles point
to other articles, customer-product networks where customers are linked to the
products they bought or evaluated, or online discussion groups where users re-
spond to other users. Concrete examples include Amazon’s “who purchased this,
also purchased that”-network, the WWW where Web-pages link to other pages,
and the online encyclopedia Wikipedia where users are co-authoring articles and
articles point to other articles.

While it is generally believed that valuable information is contained in these
networks, their sheer size makes it a challenging task to extract this information
automatically. Network analysis methods (see [28] and [4] for an overview) try
to achieve different goals. A well-known issue is the computation of the impor-
tance or centrality of vertices (see, e. g., Chapt. 5 of [28]). For instance, Google’s
PageRank [6] defines the importance of Web-pages relative to a user’s query and
thereby facilitates seeing the most important results first. Other examples are
popularity-rankings of users in social networking sites. A different goal in net-
work analysis is the computation of densely connected groups of vertices (see,
e. g., Chapt. 7 of [28]). The hope is that these clusters correspond to natural
divisions of the network into, e. g., articles or documents treating similar topics,
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researchers working on the same problems, or customers interested in the same
products. An early definition for densely connected groups is that of a clique
which is a subset of pairwise connected vertices. Obviously this definition is very
strict and will normally result in rather small groups, compare [13]. More stable
notions require that clusters do not have to be perfect cliques but have to be
more densely connected within the group than to the outside. See, e. g., [14] for
different formalizations of this idea.

A third issue in network analysis aims at computing groups of vertices that
occupy the same structural position or play the same role in the network (see,
e. g., Chapts. 9–12 of [28], or [19]). In this article we review several formalizations
of network-positions with an emphasis on the resulting algebraic structures. Since
we believe that the notion of structural position of vertices is not as well-known
as the notion of, e. g., dense groups of vertices, we give an intuition of positions
or roles in social networks in the following Section 1.1. Figure 1 shows a small
network together with an intuitive partition into classes of vertices that occupy
the same structural positions.

Fig. 1. Example graph taken from [1]. The coloring defines classes of vertices that
(intuitively) occupy the same structural position.

1.1 Social Role and Social Position

Formally, methods that compute role assignments partition the vertex set of a
graph into several classes. However, in contrast to clustering where these classes
have to be densely connected, role assignments try to identify classes of vertices
that occupy the same social position, play the same role, or have the same func-
tion in the network. To illustrate this distinction, employees of a company that
work closely together are likely to form a dense group, e. g., due to having fre-
quent email or face-to-face contact. However, densely connected employees may
occupy different positions (like, e. g., manager or secretary) and these differences
are reflected in their mutual relations. However, positions are normally not so
evident, since social actors do not always occupy institutionalized positions (like
manager or secretary). In many social networks, actors appear uniform or at
least differences in their positions are not known. In this situation we might still
discover positions dependent on the relations these actors have with other actors.
For instance, Turner et al. [27] analyzed the patterns of user interaction in Usenet



groups and identified several types of users (in our notation, groups of users that
occupy the same position), among others the answer person, questioner, troll
(someone who likes to draw others into useless discussions), spammer, and flame
warrior. Of course, these positions are not institutionalized (nobody enters a
Usenet group officially as a questioner—even less as a spammer). Instead, the
positions are determined by the pattern of interaction these users have with
other users. Moreover, note that these types of users do not correspond to dense
groups. It is simply impossible that a dense group of users (users that have
frequent interaction) is solely composed of, e. g., questioners.

To summarize these considerations we conclude that in many networks there
is a meaningful group structure which does not coincide with the partition into
dense clusters and that these groups are defined (or reflected) by similar pat-
terns of interaction to other groups. Since these positions are dependent on the
relations, i. e., the graph structure, we will use the term structural positions.

1.2 Outline of this Paper

Until now we have only given an intuition of the notion of structural position.
In the remainder of this article we review different formalizations of structural
positions and analyze the properties of the so-defined sets of role assignments.

In Sect. 3 we treat discrete approaches, i. e., formalizations of structural po-
sitions which identify two vertices as either equivalent or non-equivalent. These
Boolean notions define certain ideal types of role structures and are convenient to
understand conceptual differences between various approaches. However, these
discrete measures are of limited applicability in the context of empirical, huge,
and possibly noisy networks. Major drawbacks are the fact that results are of-
ten trivial (very small classes), highly sensitive to small changes in the input
data, computationally intractable, and unable to deal with varying importance
of vertices or with vertices that do not fit exactly into one of the classes.

To overcome these drawbacks, a series of measures have been proposed that
do not require vertices to be equivalent or non-equivalent but that define varying
degrees of similarity between two vertices. These measures are more robust to
the irregularities of application data. We review some of them in Sect. 4.

Furthermore, Sect. 3 and Sect. 4 are both divided into two parts. The first
parts (Sects. 3.1 and 4.1) describe formalizations that recognize two vertices as
equivalent (similar) if they have identical (largely overlapping) neighborhoods.
For instance, two actors in a social network are considered as similar by these
measures if they are connected to almost the same other actors. However, this
understanding of structural position is a very limited point of view. Coming back
to the Usenet example, two users may be equivalent in their role (e. g., may both
be answer persons) without replying to any common other user. To overcome this
drawback several formalizations have been proposed that recognize vertices as
equivalent if their neighborhoods themselves are equivalent (but not necessarily
identical). These discrete proposals will be reviewed in Sect. 3.2; their real-valued
counterpart (which defines similarity of vertices instead of equivalence or non-
equivalence) are introduced in Sect. 4.2. The partition in Fig. 1 is an example



of a role assignment in which equivalent vertices have equivalent (same-colored)
but not necessarily identical neighborhoods.

2 Preliminaries

An (undirected) graph G = (V,E) consists of a set of vertices V (the objects or
actors) and a symmetric relation E ⊆ V ×V , whose elements are called edges. For
sake of simplicity we will only consider undirected graphs but most notions of this
paper can be adapted to directed graphs. If v ∈ V , then N(v) = {u ∈ V ; (u, v) ∈
E} denotes the neighborhood of v. For more on graph theory see, e. g., [9]. If
∼⊆ V × V is an equivalence relation and v ∈ V then [v] = {u ; u ∼ v} is called
the equivalence class of v. The set of equivalence classes defines a partition of
V . The mapping r : v 7→ [v] which maps a vertex to its class will be called
a role assignment. Equivalence relations, partitions, and role assignments are
mutually in a canonical one-to-one correspondence. If two vertices u, v ∈ V are
equivalent we say that u and v occupy the same position, have the same status, or
play the same role. Two specific and trivial partitions are the identity partition
in which every vertex occupies a different position (hence the classes of the
identity partition are all singleton sets) and the complete partition in which all
vertices occupy the same position (hence the only class of the complete partition
is the complete vertex set). Equivalence relations on V can be partially ordered
by ∼1≤∼2⇔∼1⊆∼2 (∼1 is then called finer than ∼2). This partial order is a
lattice (see, e. g., [17]) where the infimum of two equivalence relations is given
by their intersection and the supremum is given by the transitive closure of their
union. The identity partition is the minimum element and the complete partition
the maximum element of this lattice.

3 Discrete Approaches

3.1 Requiring Neighborhood Identity

If two individuals have the same neighbors they cannot be distinguished from
the point of view of any individual in the network. This idea has given rise to two
different formalizations of vertex equivalence which will be presented in Sect. 3.1.
The two formulations differ in how neighbors within the own class are treated.

Structural Equivalence. The most simple, but also most restrictive require-
ment of role equivalence has been defined by Lorrain and White [20] who pro-
posed that individuals are role equivalent if they are related to the same indi-
viduals.

Definition 1. Let G = (V,E) be a graph, and r a role assignment on V . Then,
r is called structural if for all u, v ∈ V

r(u) = r(v) =⇒ N(u) = N(v) .



Fig. 2. The bipartition of a complete bipartite graph (indicated by the vertex coloring)
defines a structural equivalence.

Trivially, the identity partition is structural for each graph. A slightly less trivial
example is the bipartition of complete bipartite graphs, see Fig. 2.

We note some elementary properties of structural equivalence. A class of
structurally equivalent vertices is either an independent set (i. e., contains no
edges, compare Fig. 2) or a clique. The distance of two structurally equivalent,
non-isolated vertices is at most 2, since if u and v are structurally equivalent and
u has a neighbor w then w is also a neighbor of v. Thus, structural equivalence
can only identify vertices that are close to each other.

It can easily be verified that if ∼1 and ∼2 are two structural equivalences for
a graph, then so are their intersection and the transitive closure of their union.

Proposition 1. The set of structural equivalences of a graph is a sublattice of
the lattice of all equivalence relations.

In particular there exists always a maximum structural equivalence (MSE) for
a graph. The property of being structural is preserved under refinement which
implies that the whole set of structural equivalences is completely described by
the MSE.

Proposition 2. If ∼1≤∼2 and ∼2 is a structural equivalence, then so is ∼1.

Modular Decomposition. We now present another compatibility requirement
that yields a convenient decomposition of a graph and is widely used in graph
theory and combinatorics. Here it is required that all vertices that lie in one
class must have identical neighborhoods outside their own class, whereas struc-
tural equivalence required identical neighborhoods without any restriction. We
do not know of any article that proposed modular decomposition for defining
role assignments in social networks. Gagneur et al. [15] used modular decompo-
sition to identify functional complexes in protein-protein interaction networks.
The following is mostly adapted from [23].

Let G = (V,E) be a graph. A subset of vertices M ⊆ V is called a module if
for any v ∈ V \M , either v is adjacent to every member of M , or v is adjacent
to no member of M . It is easy to see that V and the singleton subsets are
always modules, called trivial modules. A partition P of V is called a congruence
partition if every class of P is a module. Thus, the complete partition and the



identity partition are congruence partitions for all graphs. The quotient G/P of a
graph G modulo a congruence partition P is defined to be the subgraph induced
by a set of representatives of each class of P. This is well-defined since each
class is a module, i. e., a different choice of representatives yields an isomorphic
subgraph.

We say that two sets overlap if they intersect and neither of them contains
the other and call a module strong if it overlaps no other module. Figure 3
shows a small affiliation network (vertices connected if they participate in the
same events) together with its strong modules.

Fig. 3. Affiliation network G resulting from the affiliations W = {0, 1, 2, 3}, X =
{1, 2, 3, 4}, Y = {4, 5, 6}, and Z = {7, 8}. The strong modules of G are: {1, 2, 3}, {5, 6},
{7, 8}, {0, 1, 2, 3, 4, 5, 6}, and the trivial modules (singleton sets and the complete vertex
set). For instance, {{0}, {1, 2, 3}, {4}, {5, 6}, {7, 8}} is a congruence partition for G,
which reveals the vertices that participate in the same set of affiliations.

Let M be the set of strong modules. We say that a strong module M1 is a
(direct) child of another strong module M2 if M1 ⊂ M2 and there is no M ∈M
such that M1 ⊂ M ⊂ M2. This child-relation on M defines a rooted tree whose
nodes are the elements of M, whose root is V , and that has one leaf for each
vertex v ∈ V . A node of this tree corresponds to the element of M that contains
exactly the leaf descendants of that node. Such a tree will be called a union tree
on V . The union tree represents M in O(|V |) space. A central observation is
that all modules of G can be represented by the union tree defined by its strong
modules (and hence in O(|V |) space). A node U is called degenerate if the union
of any subfamily of the direct children of U is a module; it is called prime if no
union of any nontrivial subfamily of the direct children of U is a module.

Theorem 1 ([23]). A strong module is either degenerate or prime.

All modules of G may thus be represented by constructing the union tree of
its strong modules and labeling the nodes as degenerate or prime. This labeled
union tree is called the modular decomposition tree (MD-tree) of G. The modular
decomposition tree of a graph G = (V,E) can be computed in O(|V |+ |E|) time
by the algorithm from [23]. See Fig. 4 for the MD-tree of the graph from Fig. 3.

A node X in the MD-tree induces a graph whose vertices are the (direct)
children of X (which are strong modules of G). Two such children are adjacent
if nodes contained in them are adjacent. Thus, the graph induced by a node of
the MD-tree is the quotient of a subgraph of G.



Fig. 4. MD-tree T of the graph G shown in Fig. 3. The leaves of T are the vertices
of G. The internal nodes (A, B, C, D, and E) of T correspond to the strong modules
that are not singleton sets. They are labeled by S if the induced graph is complete,
by P if the induced graph is edgeless, and by the induced graph if it is prime. For
instance, the node B induces a prime graph that is a path connecting the the modules
{0}, D = {1, 2, 3}, {4}, and E = {5, 6}.

If a node of the modular decomposition tree is prime, it induces a graph
that has no nontrivial modules. Such a graph is called prime. If a node of the
modular decomposition tree is degenerate, it induces a graph in which every
subset of nodes is a module. Such a graph is called degenerate. A degenerate
graph is either complete or edgeless [23].

A degenerate node that induces a complete graph is called an S-node, a
degenerate node that induces an edgeless graph is called a P -node. If we label
nodes in the MD-tree as S or P if they are degenerate and with the induced
subgraph if they are prime, then the MD-tree encodes not only the set of modules
of G but it is also possible to reconstruct G from this labeled MD-tree, compare
Fig. 4.

Limitations of requiring identical neighborhoods. Several researchers
have pointed out that the requirement of identical neighborhoods does not meet
the intuition of structural position (see, e. g., [26, p.78] or [21, p.304]). We il-
lustrated this in the context of Usenet groups at the end of Sect. 1.2. As an
abstract example, consider Fig. 5, where the white vertices are indistinguish-
able in terms of the graph’s structure (since they are automorphic images of
each other). However, two white vertices connected to different black vertices



have disjoint neighborhoods and hence would not be recognized as similar by
measures that require (almost) identical neighborhoods.

Fig. 5. Graph with a vertex partition indicated by the coloring. Vertices with identical
neighborhoods (like {4, 5, 6, 7}) can be recognized by equivalences defined in Sect. 3.1
(or by measures from Sect. 4.1). However, the fact that all white vertices are structurally
indistinguishable is not discovered by these formalizations.

3.2 Requiring Neighborhood Equivalence

To overcome the limitations mentioned above, role assignments have been for-
malized by measures that require equivalent neighborhoods for equivalent ver-
tices.

Automorphic Equivalence. Two vertices that are automorphic images of
each other are indistinguishable with respect to structural properties. Automor-
phic equivalence defines that exactly these vertices occupy the same structural
position.

Definition 2 ([11]). Let G = (V,E) be a graph, u, v ∈ V . Then u and v are
said to be automorphically equivalent if there is an automorphism ϕ of G with
ϕ(u) = v.

Let G = (V,E) be a graph and H a subgroup of G’s automorphism group
(not necessarily proper). An orbit of the action of H on V is a subset of vertices of
the form {ϕ(v) ; ϕ ∈ H}, for a v ∈ V . It is well known that the orbits of a group
of automorphisms define a partition of V , called an orbit partition. For example,
the coloring in Fig. 5 defines the orbit partition of the (entire) automorphism
group. It is easy to see that structurally equivalent vertices are automorphically
equivalent. No efficient algorithms are known to compute automorphic equiva-
lence. Furthermore, classes of automorphically equivalent vertices will be rather
small for most empirical networks.



Equitable Partitions. The partition shown in Fig. 5 has the property that
every white vertex has exactly one black neighbor and zero white neighbors and
every black vertex has exactly four white neighbors and two black neighbors.
Hence, it satisfies the condition of the following definition.

Definition 3 ([16]). Let G = (V,E) be a graph and c : V → {1, . . . , k} a color-
ing of the vertex set. Then c defines an equitable partition if c(u) = c(v) implies
that for every color c0 the neighborhoods of u and v contain the same number of
vertices colored c0.

Equitable partitions are called divisors of graphs in [8]. In the context of social
network analysis partitions of this type have been called exact colorations [11].
Equitable partitions are indeed a relaxation of automorphic equivalence.

Proposition 3 ([10]). Orbit partitions are equitable.

The set of orbit equivalences forms a proper subset of the set of all equitable
partitions. For example, the complete partition for the graph in Fig. 1 is equitable
but not an orbit partition. The coloring in Fig. 1 defines an orbit partition and
hence an equitable partition.

The compatibility requirement for equitable partitions is still too strict for
empirical graphs, as the defined partitions will be almost trivial (having very
small classes).

Regular Equivalence. The term regular equivalence has been introduced by
White and Reitz [29]. It is closely related to the notion of bisimulation (see [24]
and [22]). A coloring defines a regular equivalence if vertices that are colored
the same have the same colors in their neighborhoods. In contrast to equitable
partitions, multiple occurrence of a color makes no difference for regular equiv-
alence. If r is a role assignment on V and U ⊆ V then r(U) = {r(u) ; u ∈ U} is
the set of classes (or colors) that members of U have.

Definition 4. Let G = (V,E) be a graph. A role assignment r on V is called
regular if for all u, v ∈ V

r(u) = r(v) ⇒ r(N(u)) = r(N(v)) .

An example of a regular equivalence can be seen in Fig. 6. Note that, in contrast
to equitable partitions, regularly equivalent vertices can have different degrees.

In empirical graphs equitable partitions (and hence orbit partitions and struc-
tural equivalence) frequently lead to partitions whose classes are very small.
In contrast, the maximal regular equivalence is close to the complete partition
(which is also trivial):

Proposition 4. The maximal regular equivalence of an undirected graph is the
division into isolated and non-isolated vertices.

Also for directed graphs the complete partition is regular if every vertex has at
least one in-coming and one out-going edge. Since the maximal regular equiv-
alence is mostly trivial, it is worthwhile to consider the structure of the set of
regular equivalence to identify non-trivial members of it.



Fig. 6. Graph with a non-trivial regular equivalence indicated by the vertex coloring.
Note that the maximal regular equivalence of this graph is the complete partition.

Theorem 2 ([1]). The set of all regular equivalences of a graph G forms a
lattice, where the supremum operation is identical to the supremum in the lattice
of all equivalences.

Figure 7 shows a small graph together with its lattice of regular equivalences.

Fig. 7. Graph (left) and its lattice of regular equivalence relations (right).

Although the supremum in the lattice of regular equivalences coincides with
the supremum in the lattice of all equivalences, the infimum is different.

Proposition 5. The intersection of two regular equivalences is not necessarily
regular.



Proof. Consider the graph in Fig. 8. The intersection of the two regular partitions
P1 and P2 is P = {{A,C}, {B,D}, {E}}, which is not regular. ut

Fig. 8. The intersection of the regular equivalences P1 = {{A, C, E}, {B, D}} and
P2 = {{A, C}, {B, D, E}} is not regular for this graph.

The fact that the supremum in the lattice of regular equivalences coincides
with the supremum in the lattice of all equivalences implies the existence of a
maximum regular equivalence which lies below a given (arbitrary) equivalence.
Thus it is possible to partition a network (e. g., using some a priori knowledge
about different types of vertices) and then “regularizing” this partition by split-
ting up some classes.

Definition 5 ([3]). Let G be a graph and ∼ an equivalence relation on its vertex
set. An equivalence relation ∼1 is called the regular interior of ∼ if ∼1 is regular,
∼1≤∼, and for all ∼2 satisfying the former two conditions it holds ∼2≤∼1.

Another name for regular interior is coarsest regular refinement. The maximal
regular equivalence of a graph is the regular interior of the complete partition.

Corollary 1. Let G be a graph and ∼ an equivalence relation on its vertex set.
Then the regular interior of ∼ exists. On the other hand there is in general no
minimum regular equivalence above a given equivalence (called regular closure
or regular hull).

Proof. The first part has been shown in [3]. For the second part recall the exam-
ple in the proof of Prop. 5 shown in Fig. 8. It is easy to verify that the regular
partitions P1 and P2 are both above the (non-regular) partition P and are both
minimal with this property. ut

Corollary 2 ([3]). The infimum in the lattice of regular equivalence relations
is given by the regular interior of the intersection.

Computation of regular equivalences. The regular interior of a given input par-
tition (and hence the maximal regular equivalence) can be computed quite effi-
ciently. The algorithm catrege [2] is the most well-known in the social network
literature. It runs in time O(n3) on a graph with n vertices. Paige and Tar-
jan [25] presented a sophisticated algorithm for the relational coarsest partition



problem which is essentially equivalent to computing the regular interior. Their
algorithm runs in O(m log n) time on a graph with n vertices and m edges. This
is a significant improvement especially for sparse graphs whose number of edges
is linear in n.

However, as we have seen above, the maximal regular equivalence is often triv-
ial. Hence we might wish to compute a regular equivalence with a given number
of equivalence classes. Unfortunately, this task is NP-hard in general [12]. In
particular, this implies that computing the whole set of regular equivalences is
(probably) not possible in polynomial time. For some graphs this follows already
from the fact that the size of this set is not polynomially bounded.

4 Relaxations of Discrete Approaches

The Boolean definitions for structural positions presented in Sect. 3 do often
not fit well to empirical data since in real world applications vertices are not
necessarily either equivalent or non-equivalent but might be just be “similar”.
In Sect. 4 we introduce real-valued solutions that assign similarity values to pairs
of vertices. These methods are more robust to the irregularities of application
data.

4.1 Similarity by Neighborhood Overlap

Two vertices are structurally equivalent (see Def. 1) if they have exactly the same
neighbors. Frequently, vertices are defined as similar if their neighborhoods have
large overlap. The notion of neighborhood overlap can be normalized in many
different ways. We present only one of these measures and refer the reader to
Chapt. 9 of [28] for additional possibilities.

A simple measure is to count how many neighbors two vertices have in com-
mon and normalize this over the size of the union of the two neighborhoods.

σ(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

.

The notion of neighborhood overlap can also be extended to the overlap of
higher order neighborhoods (e. g., the second order neighborhood of a vertex v
consists of those vertices that have distance two to v). Examples include [7, 18],
where vertices are defined as similar if they are connected by “many” paths of
length k, and where k goes through all integers (for structural equivalence k
must be two). The approaches differ in how the number of connecting paths is
normalized, and how paths of length k are counted. However, as with structural
equivalence, these measures do not assign high similarity to vertices that lie in
different dense clusters, even if these vertices cannot be distinguished in terms
of the graph’s structure. For instance, these measures will recognize Vertices 1
and 4 in Fig. 5 as more similar than, e. g., 4 and 8. Therefore, these measures do
not overcome the limitations described at the end of Sect. 3.1. Furthermore, it
seems to be likely that these measures are biased to detecting dense subgraphs
and thus do not distinguish conceptually from density based graph clustering.



4.2 Requiring Neighborhood Similarity

In this section we define similarity of vertices, under the requirement that similar
vertices have to be connected to vertices that are themselves similar. This is the
“real-valued” version of the equivalences from Sect. 3.2. We only sketch the
most important definitions and theorems and refer to [5] for a more exhaustive
treatment.

We represent an equivalence relation ∼ on a set of n vertices is by its char-
acteristic matrix S, which is defined to be the n× n matrix

Suv =

{
1/r if u ∼ v and r is the size of v’s equivalence class
0 if u 6∼ v .

The normalization by r seems to be arbitrary at the moment. However, this
normalization simplifies formulas later. In any case the so-defined characteristic
matrices are equivalent to the more usual Boolean matrices (which have only
zero or one as entries) since there is a unique one-to-one correspondence between
them. The characteristic matrices of equivalence relations satisfy the identities
ST = S and S2 = S (due to the symmetry and transitivity of equivalence
relations) and have the property that, after appropriate reordering of the rows
and columns, they have block-diagonal form with constant diagonal blocks (since
vertices are “equally equivalent” to all members of their class and not equivalent
to members outside their class). See Fig. 1 for a vertex partition and Fig. 9 for
its characteristic matrix. To define relaxations of equivalence relations we drop

S =

2666666666666664

1/4 1/4 0 0 0 0 0 0 1/4 1/4
1/4 1/4 0 0 0 0 0 0 1/4 1/4
0 0 1/4 1/4 0 0 1/4 1/4 0 0
0 0 1/4 1/4 0 0 1/4 1/4 0 0
0 0 0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0 0 0
0 0 1/4 1/4 0 0 1/4 1/4 0 0
0 0 1/4 1/4 0 0 1/4 1/4 0 0

1/4 1/4 0 0 0 0 0 0 1/4 1/4
1/4 1/4 0 0 0 0 0 0 1/4 1/4

3777777777777775
Fig. 9. Characteristic matrix of the vertex partition shown in Fig. 1. The matrix S
defines a structural similarity for this graph.

the restriction on the block-diagonal form but keep the requirements ST = S
and S2 = S.

Definition 6 ([5]). Let V be a set of n vertices. A real n×n matrix S is called
a similarity if it is symmetric, i. e. ST = S, and idempotent, i. e. S2 = S.

The real value in row u and column v is called the similarity of vertices u and
v. We call a similarity structural if it is compatible with the graph structure.



In Sect. 3.2 it is required that equivalent vertices have equivalent (e. g., same
colored) neighborhoods. Here we require that vertices which are similar have
neighbors that are themselves similar. This is ensured by the condition in the
next definition. If G = (V,E) is a graph on n vertices then its adjacency matrix
is defined to be the n× n matrix A whose rows and columns are indexed by the
vertices of G and where Auv = 1 if (u, v) ∈ E and Auv = 0 else.

Definition 7 ([5]). Let G = (V,E) be a graph with adjacency matrix A and S
a similarity on V . Then S is called structural (for G) if AS = SA.

The next theorem shows that structural similarities indeed ensure that sim-
ilar vertices have similar neighbors.

Theorem 3 ([5]). Let G = (V,E) be a graph and S the characteristic matrix
of an equivalence relation ∼ on V . Then S is structural if and only if ∼ is
an equitable partition. In particular, automorphic equivalences induce structural
similarities.

For instance the similarity shown in Fig. 9 is structural for the graph in Fig. 1.
However, structural similarities are not limited to strict equitable partitions
(which often lead to very small classes of vertices). In the next theorem, we
derive an equivalent condition for a similarity to be structural. This condition
yields a compact description of the set of structural equivalences of a graph and
shows that non-trivial structural similarities exist for all graphs.

Theorem 4 ([5]). Let G = (V,E) be a graph with adjacency matrix A and
S a similarity on V . Then S is structural if and only if ker S is generated by
eigenvectors of A if and only if img S is generated by eigenvectors of A.

For instance the image of the similarity shown in Fig. 9 is generated by eigen-
vectors of the graph in Fig. 1 associated to the eigenvalues 3, 1 and −2.

Lattice of Structural Similarities. Theorem 4 not only yields an efficient
method for computing structural similarities and a compact description of the
set of all structural similarities of a graph—it also provides means to prove a
lattice structure on this set.

If ∼1 and ∼2 are two equivalence relations on a set V and S1 respectively
S2 the associated similarities, then ∼1 is finer than ∼2 (∼1≤∼2) if and only if
ker S1 ⊆ ker S2. We will use this correspondence to generalize the partial order
of equivalence relations to a partial order on the set of similarities. We establish
first a connection between similarities and subspaces.

Lemma 1 ([5]). Let U ⊆ Rn be a subspace. Then there is a unique similarity
S such that U = kerS.

By the above lemma, we get a bijection between the set of subspaces of Rn

and the set of similarities on V . Via this bijection the set of similarities can be
supplied with a partial order ≤, where we say that a similarity S1 is finer than
a similarity S2, denoted by S1 ≤ S2, if ker S1 ⊆ ker S2.



The set of all subspaces of Rn is a complete lattice: If M = {Ui ; i ∈ I} is a
set of subspaces of Rn (not necessarily finite), then

inf(M) = {v ∈ Rn ; ∀i ∈ I it is v ∈ Ui}

is the infimum of M. Conversely, the subspace

sup(M) = {v ∈ Rn ; ∃k ∈ N, v1 ∈ Ui, . . . , vk ∈ Uk : v = v1 + · · ·+ vk}

is the supremum of M. It follows that the set of similarities on a vertex set V
is a complete lattice too.

Theorem 5 ([5]). The set of structural similarities of a graph is a complete
sublattice of the lattice of all similarities on its vertex set.

Theorem 5 implies (see [5]) that given a similarity S that is not necessarily
structural, there is always a finest structural similarity above S and a coarsest
structural similarity below S. Note, that this does not hold for regular equiv-
alence relations, where only the regular interior exists but not the regular hull
(see Corollary 1).

5 Conclusion

We reviewed several proposals for role-equivalence or role-similarity of actors in
networks. Some formalizations (like structural equivalence, automorphic equiva-
lence, or equitable partitions) are likely to yield very small classes of equivalent
vertices in irregular application data. Other approaches (like regular equiva-
lence or structural similarities) define larger sets of possible role-assignments.
An important (and in general unsolved) task is the identification of “good” or
“meaningful” elements of these sets. It is yet to be explored whether their lattice
structure can help in solving this task.
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