
Fast and Simple Horizontal Coordinate
Assignment

Ulrik Brandes and Boris Köpf

Department of Computer & Information Science,
University of Konstanz, Box D 188, 78457 Konstanz, Germany

{Ulrik.Brandes|Boris.Koepf}@uni-konstanz.de

Abstract. We present a simple, linear-time algorithm to determine hor-
izontal coordinates in layered layouts subject to a given ordering within
each layer. The algorithm is easy to implement and compares well with
existing approaches in terms of assignment quality.

1 Introduction

In layered graph layout, vertices are placed on parallel lines corresponding to an
ordered partition into layers. W.l.o.g. these lines are horizontal, and we assume
a polyline representation in which edges may bend where they intersect a layer.
The standard approach for layered graph layout consists of three phases [18]:
layer assignment (vertices are assigned to layers), crossing reduction (vertices and
bend points are permuted) and coordinate assignment (coordinates are assigned
to vertices and bend points).

The third phase is usually constrained to preserve the ordering determined in
the second phase, and to introduce a minimum separation between layers, and
between vertices and bend points within a layer. Criteria for readable layout
include length and slope of edges, straightness of long edges, and balancing of
edges incident to the same vertex. Note that, if an application does not prescribe
vertical coordinates, it is easy to determine layer distances that bring about a
minimum edge slope. We therefore confine ourselves to horizontal coordinate
assignment.

Previous approaches for horizontal coordinate assignment either optimize a
constrained objective function of coordinate differences, iteratively improve a
candidate layout using one or more of various heuristics, or do both [18,10,6,
17,8,14,7,15,16,5]. A recently introduced method [3] successfully complements
some of the above heuristics with new ideas to determine visually compelling
assignments in time O(N log2N), where N is the total number of vertices, bend
points and edges. We present a much simpler algorithm that runs in time O(N)
without compromising on layout quality.

In Sect. 2, we define some terminology to state the horizontal coordinate
assignment problem formally. Several important ideas introduced in previous
approaches are reviewed in Sect. 3, and our new method is described in Sect. 4.

P. Mutzel, M. Jünger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 31–44, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

32 U. Brandes and B. Köpf

2 Preliminaries

A layering L = (L1, . . . , Lh) of a graph G = (V, E) is an ordered partition of
V into non-empty layers Li such that adjacent vertices are in different layers.
Let L(v) = i if v ∈ Li. Oblivious whether G is directed or undirected, an edge
incident to u, v ∈ V is denoted by (u, v) if L(u) < L(v). An edge (u, v) is short
if L(v) − L(u) = 1, otherwise it is long and spans layers LL(u)+1, . . . , LL(v)−1.
Let N−

v = {u : (u, v) ∈ E} (N+
v = {w : (v, w) ∈ E}) denote the upper (lower)

neighbors and d−
v = |N−

v | (d+v = |N+
v |) the upper (lower) degree of v ∈ V .

A layering is proper, if there are no long edges. Any layering can be turned
into a proper one by subdividing long edges (u, v) with dummy vertices bi ∈ Li,
i = L(u) + 1, . . . , L(v)− 1, that represent potential edge bends.

A layered graph G = (V ∪ B, E;L) is a graph G together with a proper
layering L, where the vertices are either original vertices in V or dummy vertices
(having upper and lower degree one) in B. The edges of a layered graph are often
called (edge) segments, and segments between two dummy vertices are called
inner segments. A maximal path in G whose internal vertices are all dummy
vertices is also called a long edge. Let N = |V ∪ B| + |E| denote the size of a
layered graph.

An ordering of a layered graph is a partial order ≺ of V ∪ B such that
either u ≺ v or v ≺ u if and only if L(u) = L(v). We sometimes denote the
vertices by v

(i)
j , where Li = {v

(i)
1 , . . . , v

(i)
|Li|} with v

(i)
1 ≺ . . . ≺ v

(i)
|Li|. The position

pos[v(i)j] = j and the predecessor of v
(i)
j with j > 1 is pred[v(i)j] = v

(i)
j−1. An edge

segment (u, v) is said to cross an edge segment (u′, v′), if u, u′ ∈ Li, v, v′ ∈ Li+1,
and either u ≺ u′ and v′ ≺ v, or u′ ≺ u and v ≺ v′.

Given a layered graph together with an ordering, the horizontal coordinate
assignment problem is to assign coordinates to the vertices such that the ordering
and a minimum separation δ > 0 are respected, i.e.

Horizontal Coordinate Assignment Problem: For a layered graph
G = (V ∪ B, E;L) with ordering ≺, find real values x(v), v ∈ V ∪ B,
such that x(u) + δ ≤ x(v) if u ≺ v (minimum separation constraint).

A horizontal coordinate assignment should additionally satisfy two main criteria
which appear to govern the readability of a layered drawing with given ordering:

– edges should have small length,
– vertex positions should be balanced between upper and lower neighbors,
– and long edges should be as straight as possible.

3 Previous Work

Apparently, an early algorithm to determine horizontal coordinates is used in
a system for control flow diagrams, but we were unable to find a detailed de-
scription [11]. In the following, we summarize more recent approaches, since
they nicely illustrate the rationale behind our approach. Horizontal coordinate
assignment is also discussed in [4, Section 9.3] and [1].

Fast and Simple Horizontal Coordinate Assignment 33

Optimization approaches. In their seminal paper [18], Sugiyama et al. present
a quadratic program for the horizontal coordinate assignment problem. The
objective function is a weighted sum of terms∑

(u,v)∈E

(x(u)− x(v))2 (1)

and
∑
v∈V

x(v)−

∑
u∈N−

v

x(u)
d−

v

2

+
∑
v∈V

x(v)−

∑
w∈N+

v

x(w)
d+v

2

. (2)

The first term penalizes large edge lengths, while the second serves to balance
the influence of upper and lower neighbors. The objective function is subject
to the minimum separation constraint and, to enforce vertical inner segments,
x(u) = x(v) if (u, v) ∈ E for u, v ∈ B. Note that the quadratic program is
infeasible if ≺ implies a crossing between inner segments of long edges.

A related approach is introduced in [5]. A necessary condition for an optimal
solution of (1) is that all partial derivatives are zero. Equivalently, every vertex
is placed at the mean coordinate of its neighbors. The system of linear equations
thus obtained is modified so that upper and lower neighbors contribute equally,

x(v) =

∑
u∈N−

v

x(u)
d−

v
+

∑
w∈N+

v

x(w)
d+

v

2
. (3)

If the coordinates of vertices in the top and bottom layer are fixed, say equidis-
tantly, to exclude the trivial assignment of all-equal coordinates, the system has
a unique solution that can be approximated quickly using Gauß-Seidel itera-
tion. Though a given ordering may not be preserved, the resulting layouts have
interesting properties with respect to planarity and symmetry [5].

Another quadratic program is discussed in [4, p. 293f]. For every directed
path v1, . . . , vk where v1, vk ∈ V and v2, . . . , vk−1 ∈ B, terms

(
x(vi)− x(v1)− i − 1

k − 1
(x(vk)− x(v1))

)2
,

i = 2, . . . , k − 1, are introduced to make long edges straight, and only the mini-
mum separation constraints are enforced.

Some popular implementations [9,13] use a piecewise linear objective function
introduced in [8] reading ∑

e=(u,v)∈E

ω(e) · |x(u)− x(v)| , (4)

subject to the minimum separation constraint. The weight ω(e) reflects the im-
portance of drawing edge e vertically, and weights of 1, 2, and 8 are used for edges
incident to 0, 1, and 2 dummy vertices, respectively. The corresponding integer
optimization problem is solved to optimality using a clever transformation and
the network simplex method. This objective function is the main justification
for our heuristic.

34 U. Brandes and B. Köpf

Iterative heuristics. After an initial, say leftmost, placement respecting the or-
dering and minimum separation constraint, several heuristics can be applied to
improve the assignment with respect to the criteria stated in Sect. 2.

The method proposed in [18] sweeps up and down the layering. While sweep-
ing down, vertices in each layer are considered in order of non-increasing upper
degree. Each vertex is shifted toward the average coordinate of its upper neigh-
bors, but without violating the minimum separation constraint. To increase the
available space, lower priority vertices may be shifted together with the cur-
rent one. The reverse sweep is carried out symmetrically. A post-processing to
straighten long edges without moving original vertices is applied in [7].

In addition to the average coordinates of upper or lower neighbors, the av-
erage of all neighbors is considered in [14,16]. Instead of a priority order based
on degree, violation of the minimum separation constraint is avoided by group-
ing vertices and averaging over their independent movements. In [15], this kind
of grouping is extended to paths of dummy vertices, so as to constrain inner
segments of long edges to be vertical.

Several heuristic improvements are proposed in [8]. They are applied itera-
tively and the best assignment with respect to (4) is kept after each iteration.
One of these heuristics straightens long edges in apparently the same way as [7].
Another one is similar to the method of [18], but, since the objective function
consists of absolute instead of squared differences, uses the median instead of
the average of the neighbor’s coordinates.

A fast non-iterative heuristic is presented in [3] and implemented in the AGD
library [13]. Similar to [15], the dummy vertices of each long edge are grouped,
and leftmost and rightmost top-to-bottom placements of all vertices subject to
this grouping are determined. Dummy vertices are fixed at the mean of their
two positions thus obtained. In a rather involved second phase, original vertices
are placed so as to minimize the length of some short edges as measured by (4)
without changing positions of dummy vertices.

Since local improvements, such as straightening edges after y-coordinates
have been determined [2], can be applied to layouts obtained from any method,
all examples in this paper have been prepared without such postprocessing to
better facilitate comparison.

4 The Algorithm

We present a heuristic approach for the horizontal coordinate assignment prob-
lem that guarantees vertical inner segments, and yields small edge lengths and
a fair balance with respect to upper and lower neighbors.

We essentially follow the inherent objective of (4), i.e. we define the length of
an edge segment (u, v) by |x(u)− x(v)|. Recall that ∑k

i=1 |x − xi| is minimized
if x is the median of the xi. Therefore, we align each vertex vertically with its
median neighbor wherever possible. To achieve a balance between upper and

Fast and Simple Horizontal Coordinate Assignment 35

lower neighbors similar to the one that motivated (2) and (3), their medians are
considered separately and the results are combined.

The algorithm consists of three basic steps. The first two steps are carried out
four times. In the first step, referred to as vertical alignment, we try to align each
vertex with either its median upper or its median lower neighbor, and we resolve
alignment conflicts (of type 0) either in a leftmost or a rightmost fashion. We
thus obtain one vertical alignment for each combination of upward and downward
alignment with leftmost and rightmost conflict resolution. In the second step,
called horizontal compaction, aligned vertices are constrained to obtain the same
horizontal coordinate, and all vertices are placed as close as possible to the next
vertex in the preferred horizontal direction of the alignment. Finally, the four
assignments thus obtained are combined to balance their biases.

Details on vertical alignment are given in the following two sections, though
only for the case of upward alignment to the left. The other three cases are
symmetric. Balanced combination of assignments is described in Sect. 4.3. thus
obtained.

4.1 Vertical Alignment

We want to align each vertex with a median upper neighbor. Two alignments
are conflicting if their corresponding edge segments cross or share a vertex. We
classify conflicts according to the number of inner segments involved.

(a) layered graph (b) candidates

L1

L2

L3

L4

L5

(c) alignment

Fig. 1. Leftmost alignment with median upper neighbors (dummy vertices are outlined,
non-inner segments involved in type 1 conflicts are dashed)

Type 2 conflicts correspond to a pair of crossing inner segments and prevent
at least one of them from being vertical. One or both of the involved segments
can therefore be marked as non-vertical and ignored when alignments are deter-
mined. Since vertical inner segments appear to improve readability dramatically,
however, we assume that type 2 conflicts have been avoided in the crossing re-
duction phase (as, e.g., in [15]). Alternatively, one can eliminate type 2 conflicts
in a preprocessing step prior to the horizontal coordinate assignment, e.g. by

36 U. Brandes and B. Köpf

swapping the two lower vertices involved until the crossing is no longer between
two inner segments [3,2]. Note that this changes the ordering, and potentially
the number of crossings. If the ordering is more important than vertical inner
segments, the original ordering can be restored in the final layout. Finally, type 2
conflicts can also be treated as described below for type 0 conflicts.

Alg. 1: Preprocessing (mark type 1 conflicts)

for i← 2, . . . , h− 2 do
k0 ← 0; l← 1;
for l1 ← 1, . . . , |Li+1| do

if l1 = |Li+1| or v
(i+1)
l1

incident to inner segment between Li+1 and Li

then
k1 ← |Li|;
if v

(i+1)
l1

incident to inner segment between Li+1 and Li then

k1 ← pos[upper neighbor of v
(i+1)
l1

];

while l ≤ l1 do
foreach upper neighbor v

(i)
k of v

(i+1)
l do

if k < k0 or k > k1 then mark segment (v(i)
k , v

(i+1)
l);

l← l + 1;
k0 ← k1;

Type 1 conflicts arise when a non-inner segment crosses an inner segment.
Again because vertical inner segments are preferable, they are resolved in favor
of the inner segment. We mark type 1 conflicts during a preprocessing step
given by Alg. 1. The algorithm traverses layers from left to right (index l) while
maintaining the upper neighbors, v(i)k0

and v
(i)
k1
, of the two closest inner segments.

It clearly runs in linear time and marks non-inner segments involved in type 1
conflicts so that they can be ignored when determine alignments are determined.
Observe that it is easy to modify this preprocessing to either mark type 2 conflicts
or eliminate them on the fly by swapping the lower vertices of crossing inner
segments.

Finally, a type 0 conflict corresponds to a pair of non-inner segments that
either cross or share a vertex. We say that a segment (u, v) is left of a segment
(u′, v′), if either v ≺ v′, or v = v′ and u ≺ u′. Type 0 conflicts are resolved
greedily in a leftmost fashion, i.e. in every layer we process the vertices from left
to right and for each vertex we consider its median upper neighbor (its left and
right median upper neighbor, in this order, if there are two). The pair is aligned,
if no conflicting alignment is left of this one. The resulting bias is mediated by
the fact that the symmetric bias is applied in one of the other three assignments.

By executing Alg. 2 we obtain a leftmost alignment with upper neighbors.
A maximal set of vertically aligned vertices is called a block, and we define the
root of a block to be its topmost vertex. Observe that blocks are represented

Fast and Simple Horizontal Coordinate Assignment 37

Alg. 2: Vertical alignment

initialize root[v]← v, v ∈ V ∪B;
initialize align[v]← v, v ∈ V ∪B;
for i← 1, . . . , h do

r ← 0;
for k ← 1, . . . , |Li| do

if v
(i)
k has upper neighbors u1 ≺ . . . ≺ ud with d > 0 then
for m←
 d+1

2 �, � d+1
2 do

if align[v(i)
k] = v

(i)
k then

if (um, v
(i)
k) not marked and r < pos[um] then

align[um]← v
(i)
k ;

root[v(i)
k]← root[um];

align[v(i)
k]← root[v(i)

k];
r = pos[um];

by cyclically linked lists, where each vertex has a reference to its lower aligned
neighbor, and the lowest vertex refers back to the topmost. Moreover, each vertex
has an additional reference to the root of its block. These data structures are
sufficient for the actual placement described in the next section.

4.2 Horizontal Compaction

In the second step of our algorithm, a horizontal coordinate assignment is de-
termined subject to a vertical alignment, i.e. all vertices of a block are assigned
the coordinate of the root.

(a) blocks

L1

L2

L3

L4

L5

(b) classes

Fig. 2. Blocks and classes with respect to the alignment of Fig. 1(c)

38 U. Brandes and B. Köpf

Consider the block graph obtained by introducing directed edges between each
vertex and its predecessor (if any) and contracting blocks into single vertices.
See Fig. 2(a) and note that the root of a block that is a sink in this acyclic graph
is always a leftmost vertex in its layer, so that there is at most one vertex of this
kind in each layer.

We partition the block graph into classes. The class of a block is defined by
that reachable sink which has the topmost root.1 Within each class, we apply
a longest path layering, i.e. the relative coordinate of a block with respect to
the defining sink is recursively determined to be the maximum coordinate of the
preceding blocks in the same class, plus minimum separation.

Alg. 3: Horizontal compaction

function place block(v)
begin

if x[v] undefined then
x[v]← 0; w ← v;
repeat

if pos[w] > 1 then
u← root[pred[w]];
place block(u);
if sink[v] = v then sink[v] = sink[u];
if sink[v] �= sink[u] then

shift[sink[u]]← min{shift[sink[u]], x[v]− x[u]− δ};
else

x[v]← max{x[v], x[u] + δ};
w ← align[w];

until w = v;

end

initialize sink[v]← v, v ∈ V ∪B;
initialize shift[v]←∞, v ∈ V ∪B;
initialize x[v] to be undefined, v ∈ V ∪B;

// root coordinates relative to sink

foreach v ∈ V ∪B do if root[v] = v then place block(v);

// absolute coordinates

foreach v ∈ V ∪B do
x[v]← x[root[v]];
if shift[sink[root[v]]] <∞ then

x[v]← x[v] + shift[sink[root[v]]]

1 A similar definition is given in [3]. However, our blocks may contain original vertices
and non-inner segments, and therefore give rise to bigger classes. Note that, within
a class, coordinates are easy to determine.

Fast and Simple Horizontal Coordinate Assignment 39

For each class, from top to bottom, we then compute the absolute coordinates
of its members by placing the class with minimum separation from previously
placed classes.

The entire compaction step is implemented in Alg. 3. The first iteration
invokes a recursive version of a technique known as longest path layering to
determine the relative coordinates of all roots with respect to the sink of their
corresponding classes. Another variant of this algorithm is used to determine
visibility representations of planar layered graphs [12]. At the same time, we
determine for each sink the minimum distance of a vertex in its class from its
neighboring vertex in a class with a higher sink. The second iteration distributes
this information from the roots to all vertices to obtain the absolute coordinates.

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

leftmost upper rightmost upper leftmost lower rightmost lower

Fig. 3. Biased assignments resulting from leftmost/rightmost alignments with median
upper/lower neighbors for the running example of [2,3]

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

AGD implementation our method with our method with
of involved heuristic [3] the same separation uniform separation

Fig. 4. Final assignments compared

40 U. Brandes and B. Köpf

4.3 Balancing

Although the coordinate assignments computed in the first two steps result in
vertical inner segments and in general display short edge lengths, they are gov-
erned by their specific choices of a vertical alignment direction and horizontal
preference. We even out their directional tendencies by combining them into a
balanced horizontal coordinate assignment.

First, we align the layouts to the one with smallest width by shifting the
two assignments for the leftmost (rightmost) alignments so that their minimum
(maximum) coordinate agrees with the minimum coordinate in the smallest-
width assignment. Out of the four resulting candidate coordinates we fix, for
each vertex separately, the final coordinate to be the average median, which for
k values x1 ≤ . . . ≤ xk equals (x�(k+1)/2�+ x�(k+1)/2)/2. This choice is justified
by the following lemma.

Lemma 1. The average median is order and separation preserving.

Proof. Let xi, yi, i = 1, . . . , k be pairs of real values with xi + δ ≤ yi for some
δ ≥ 0. W.l.o.g assume that x1 ≤ . . . ≤ xk, which implies xi + δ ≤ yj for 1 ≤ i ≤
j ≤ k. In particular, there are at least k − i values among y1, . . . , yk larger than
or equal to xi+ δ. Let π be a permutation of {1, . . . , k} with yπ(1) ≤ . . . ≤ yπ(k).
It follows that xi + δ ≤ yπ(i) and therefore 1

2 (x�(k+1)/2� + x�(k+1)/2) + δ ≤
1
2 (yπ(�(k+1)/2�) + yπ(�(k+1)/2)). �

We have chosen the average median over the mean because it appears to suit
better the way that biased assignments are determined. Extreme coordinates
specific for a particular combination of vertical and horizontal directions of pref-
erence are dropped, and the two closer ones are averaged. In ideal situations,
vertices end up at the average coordinate of their median upper and lower neigh-
bors, thus balancing between upward and downward edge length minimization.
Moreover, if a vertex is aligned twice, say, with its median upper neighbor while
it is positioned unevenly to the left and right in the other two assignments, the
average median lets straightness take precedence over averaging.

Alg. 4: Horizontal coordinate assignment

preprocessing using Alg. 1;
for vertical direction up, down do

for horizontal direction left, right do
vertical alignment with Alg. 2;
horizontal compaction with Alg. 3;

align to assignment of smallest width;
set coordinates to average median of aligned candidates;

Our method for horizontal coordinate assignment is summarized in Alg. 4.

Fast and Simple Horizontal Coordinate Assignment 41

37

40

19 28

29

34

30 33
31 32

23 24 27
25

26

20

15

16

21

22

38
41

39

1

9 42

10

12
13

14
11 4 5 6 7 8

35 36
43

2

18
17

3

(a
)
da
V
in
ci
[7
]

1

1
0

2

1
8

1
7

1
2

1
3

1
4

1
1

3

4

5 6
3
5

3
6

4
3

3
7

7

4
0

3
8

4
1

3
9

8

1
9

9

4
2

2
8

2
0

2
1

1
5

2
2

2
9

1
6

3
0

3
3

3
1

3
2

3
4

2
3

2
4

2
7

2
5

2
6

(b
)
A
G
D
im
pl
em
en
ta
ti
on
of
[3
]

1

1
0

2 1
8

1
7

1
2

1
3

1
4

1
1

3

4

5 6
3
5

3
6

4
3

3
7

7

4
0

3
8

4
1

3
9

8

1
9

9

4
2

2
8

2
0

2
1

1
5

2
2

2
9

1
6

3
0

3
3

3
1

3
2

3
4 2
3

2
4

2
7

2
5

2
6

(c
)
ou
r
m
et
ho
d

F
ig

.5
.
E
xa
m
pl
e
gr
ap
h
us
ed
in
se
ve
ra
l
pu
bl
ic
at
io
ns
on
la
ye
re
d
la
yo
ut
[7
,
p.
5]
.
T
he
la
yo
ut
of
th
e
da
V
in
ci
sy
st
em
,
w
he
re
ho
ri
zo
nt
al

co
or
di
na
te
s
ar
e
de
te
rm
in
ed
us
in
g
th
e
it
er
at
iv
e
he
ur
is
ti
c
of
[1
8]
w
it
h
ad
di
ti
on
al
ed
ge
st
ra
ig
ht
en
in
g,
is
us
ed
as
a
re
fe
re
nc
e
to
fix
la
ye
rs
,

or
de
ri
ng
,a
nd

y
-c
oo
rd
in
at
es
.T
he
ot
he
r
tw
o
la
yo
ut
s
ar
e
co
m
pu
te
d
w
it
h
th
e
m
in
im
um

se
pa
ra
ti
on
va
lu
es
of
[3
]a
nd
w
it
ho
ut
po
st
pr
oc
es
si
ng

42 U. Brandes and B. Köpf

Fig. 6. Impact of alignment on layout width

The final assignment obtained for the example from Fig. 3 is shown in Fig. 4
and compared to the result obtained with the heuristic of [3]. Note that our al-
gorithm does not depend on uniform minimum separation. In fact, the minimum
separation can be chosen independently for each pair of neighboring vertices. A
common choice, used in many implementations, is the sum of half of the ver-
tex widths plus some constant, though we obtain better layouts with uniform
separation when vertex widths do not differ significantly.

Theorem 1. Algorithm 4 computes a horizontal coordinate assignment in time
O(N), where N is the total number of vertices and edge segments. If the mini-
mum separation is even, the assigned coordinates are integral.

Proof. Since the median upper and lower neighbors needed in Alg. 2 can be
determined once in advance, each of Algs. 1, 2, and 3 requires time proportional
to the number of vertices and edges in the layered graph.

Note that all coordinates in a biased assignment are multiples of the minimum
separation. Since the final coordinates are averages of two biased coordinates,
they are integral if the minimum separation is even. �

5 Discussion

We presented a simple linear-time algorithm for the horizontal coordinate as-
signment problem which requires no sophisticated data structures and is easy to
implement. Preliminary computational experiments suggest that our algorithm
is not only faster (also in practice), but that its coordinate assignments compare
well with those produced by more involved methods. Figure 5 gives a realistic
example.

Figure 6 illustrates that the alignment constraint has a significant impact
on the width of the layout. Clearly, the presence of many long edges increases
chances of large width requirements. A closer investigation of this trade-off may
suggest means to control for this effect. Moreover, edges in the block graph
could be assigned a cost corresponding to the number of edge segments con-
necting the same two blocks. With such costs, an adaptation of the minimum
cost flow approach for one-dimensional compaction of orthogonal representations
with rectangular faces described in [4, Sect. 5.4] can yield smaller edge lengths.
Our aim here, however, was a simple approach that is easy to implement.

Our algorithm has several generic elements that could be instantiated differ-
ently. While it has already been mentioned that crossing inner segments can be

Fast and Simple Horizontal Coordinate Assignment 43

dealt with in many ways, one could alter also the alignment (e.g., to only con-
sider one of two medians, or to break conflicts in favor of high degree vertices),
the method of compaction (e.g., using adaptive schemes of separation), and the
final combination (e.g., aligning the central axes and fixing the average).

References

1. Oliver Bastert and Christian Matuszewski. Layered drawings of digraphs. In
Michael Kaufmann and Dorothea Wagner, editors, Drawing Graphs: Methods
and Models, volume 2025 of Lecture Notes in Computer Science, pages 104–139.
Springer, 2001.

2. Christoph Buchheim, Michael Jünger, and Sebastian Leipert. A fast layout algo-
rithm for k-level graphs. Technical Report 99-368, Department of Economics and
Computer Science, University of Cologne, 1999.

3. Christoph Buchheim, Michael Jünger, and Sebastian Leipert. A fast layout algo-
rithm for k-level graphs. In Joe Marks, editor, Proceedings of the 8th International
Symposium on Graph Drawing (GD 2000), volume 1984 of Lecture Notes in Com-
puter Science, pages 229–240. Springer, 2001.

4. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

5. Peter Eades, Xuemin Lin, and Roberto Tamassia. An algorithm for drawing a hier-
archical graph. International Journal of Computational Geometry & Applications,
6:145–156, 1996.

6. Peter Eades and Kozo Sugiyama. How to draw a directed graph. Journal of
Information Processing, 13(4):424–437, 1990.

7. Michael Fröhlich and Mattias Werner. The graph visualization system daVinci —
a user interface for applications. Technical Report 5/94, Department of Computer
Science, University of Bremen, 1994.

8. Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong
Vo. A technique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214–230, 1993.

9. Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software—Practice and Experience,
30(11):1203–1233, 2000.

10. Emden R. Gansner, Stephen C. North, and Kiem-Phong Vo. DAG – A program
that draws directed graphs. Software—Practice and Experience, 17(1):1047–1062,
1988.

11. Lois M. Haibt. A program to draw multilevel flow charts. In Proceedings of the
Western Joint Computer Conference, volume 15, pages 131–137, 1959.

12. Xuemin Lin and Peter Eades. Area minimization for grid visibility representation
of hierarchically planar graphs. In Takao Asano, Hiroshi Imai, Der-Tsai Lee, Shin-
ichi Nakano, and Takeshi Tokuyama, editors, Proceedings of the 5th International
Conference on Computing and Combinatorics (COCOON ’99), volume 1627 of
Lecture Notes in Computer Science, pages 92–102. Springer, 1999.

13. Petra Mutzel, Carsten Gutwenger, Ralf Brockenauer, Sergej Fialko, Gunnar W.
Klau, Michael Krüger, Thomas Ziegler, Stefan Näher, David Alberts, Dirk Ambras,
Gunter Koch, Michael Jünger, Christoph Buchheim, and Sebastian Leipert. A
library of algorithms for graph drawing. In Sue H. Whitesides, editor, Proceedings
of the 6th International Symposium on Graph Drawing (GD ’98), volume 1547 of
Lecture Notes in Computer Science, pages 456–457. Springer, 1998.

44 U. Brandes and B. Köpf

14. Georg Sander. Graph layout through the VCG tool. In Roberto Tamassia and
Ioannis G. Tollis, editors, Proceedings of the DIMACS International Workshop on
Graph Drawing (GD ’94), volume 894 of Lecture Notes in Computer Science, pages
194–205. Springer, 1995.

15. Georg Sander. A fast heuristic for hierarchical Manhattan layout. In Franz J.
Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph
Drawing (GD ’95), volume 1027 of Lecture Notes in Computer Science, pages 447–
458. Springer, 1996.

16. Georg Sander. Graph layout for applications in compiler construction. Theoretical
Computer Science, 217(2):175–214, 1999.

17. Kozo Sugiyama and Kazuo Misue. Visualization of structural information: Auto-
matic drawing of compound digraphs. IEEE Transactions on Systems, Man and
Cybernetics, 21(4):876–892, 1991.

18. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Systems, Man
and Cybernetics, 11(2):109–125, February 1981.

	Introduction
	Preliminaries
	Previous Work
	The Algorithm
	Vertical Alignment
	Horizontal Compaction
	Balancing

	Discussion
	References

