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Abstract6

As a consequence of the rising interest in longitudinal social networks and their7

analysis, there is also an increasing demand for tools to visualize them. We argue8

that similar adaptations of state-of-the-art graph-drawing methods can be used to9

visualize both, longitudinal networks and predictions of stochastic actor-oriented10
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widening tremendously. This is especially true for the interest in dependencies19
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among tie dynamics and actor attributes, and more concretely the co-evolution20

of networks and behavior. Since the temporal dimension constitutes an addi-21

tional, qualitatively different level of complexity, the demands on visualization22

tools are even higher than they are anyway in static network analysis (Bender-23

deMoll and McFarland, 2006).24

Social network visualization is a field of growing interest in itself (Klovdahl,25

1981; Freeman, 2000; Brandes, Kenis, and Raab, 2006), and partly so because26

very different approaches are suitable for specific use cases (Brandes, Free-27

man, and Wagner, in preparation). For the present case, we assume to have28

longitudinal network data given in the form of panel data, i.e., as a time-29

ordered sequence of interrelated network observations that possibly differ in30

actor composition, structure, and attributes. In social sciences, this is the most31

common form of longitudinal network data today, and often due to data col-32

lection in waves or aggregation of dyadic events over time intervals. The latter33

is frequently done to allow for the application of the same methods that are34

common for static networks, and various forms of aggregation are described35

in Bender-deMoll and McFarland (2006).36

We here define our problem area as that of visualizing a given sequence of37

snapshots of an evolving social network (rather than, say, an unordered col-38

lection of networks, an event stream, or a process taking place on a network).39

The task is further limited to producing a corresponding sequence of diagrams40

which may or may not serve as the basis of an animation (rather than, say, a41

merged view of the entire evolution). The characterizing trade-off in this situ-42

ation is between the individual quality of each snapshot and the persistence of43

features over the sequence (Brandes and Wagner, 1997). In other words, each44

diagram should be a good representation of the corresponding cross-sectional45

network, and at the same time, a mental map of the structure should be pre-46

served as much as possible to relate the individual frames with less cognitive47

effort (Misue, Eades, Lai, and Sugiyama, 1995).48

The motivation behind this task is to facilitate visual exploration of lon-49

gitudinal network data in a generic way. By using a specific methodology,50

however, analysts take a specific perspective that is generally in need of tar-51

geted visualization designs. As a concrete example, we here focus on the most52

prominent approach to longitudinal social network analysis, stochastic actor-53

oriented modeling (Snijders 2005; Snijders, van de Bunt, and Steglich 2010b),54

and show that with little adaptation, the same visualization techniques can55

be applied to reveal such a model’s predictions and interrelate them with the56

actual observation. Our approach is likely to generalize to other models as57

well.58

The remainder of this article is organized into three main parts. Since the59

crucial technical challenge in network visualization is to find a suitable layout60
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for the underlying graph structure, we start by providing background on lay-61

out algorithms for static graphs in Section 2, and outline a method known as62

stress minimization that is central to our approaches. In Section 3, we review63

the dynamic graph drawing problem, and propose specific instantiations of64

stress minimization designed for visual exploration of dynamic graphs. In the65

third part, we introduce two targeted visualization approaches for stochastic66

actor-oriented models (SAOMs) in Section 5, after recalling the formal basics67

of SAOMs in Section 4. The first of these approaches shall help assess congru-68

ence of simulations and observations w.r.t. their underlying graph structure,69

whereas the second one is to point to inhomogeneities across actors, if any.70

We conclude with a brief discussion that includes directions for future work.71

1.1 Running Example72

We use a longitudinal network of acquaintanceship among university students73

as a running example. The data is courtesy of Britta Renner and Manja Voll-74

mann (Department of Psychology, University of Konstanz) and was collected75

in 15 waves between October 2008 and February 2009.76

Students provided, among many other things, their current perceived level of77

acquaintanceship with each other on a scale from 1 (lowest) to 7 (highest).78

We dichotomized each observation using 5 as a threshold. Of the 78 freshmen79

majoring in Psychology, only nine did not participate in an initial screening,80

never answered any questionnaire, or never made a nomination resp. were81

never nominated at a level above the threshold.82

The example networks thus consist of acquaintanceship nominations among83

69 students (18 male, 51 female) that form a connected component when84

aggregated over all waves.85

The data constitutes a realistic scenario in which our methods may be applied,86

but is used here solely for illustrative purposes. No attempt at justifying mod-87

els or drawing conclusions will be made.88

2 Graph Drawing Methods for Static General Graphs89

Social network visualization can draw on two major streams of research, in-90

formation visualization of networks (Herman, Melançon, and Marshall, 2000)91

and graph drawing (Di Battista, Eades, Tamassia, and Tollis, 1999; Kaufmann92

and Wagner, 2001). Roughly speaking, the focus in information visualization is93

on visualization design, navigation, and interactivity, whereas properties and94
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construction of geometric representations are more central to graph drawing.95

We here restrict our scope to the most common graphical representation for so-96

cial networks, node-link diagrams (referred to as sociograms in Moreno 1953),97

in which actor-representing vertices are depicted as points (or, more precisely,98

graphical elements described by a single position), and tie-representing edges99

are depicted as lines linking their endpoints. We will not, in general, make100

the distinction between actors, nodes, vertices, and points, and between ties,101

links, edges, and lines.102

The central task in creating node-link diagrams is to determine positions for103

its elements, referred to as the diagram’s layout in the following. This is be-104

cause positional differences are the most accurately perceived graphical at-105

tributes (Cleveland and McGill, 1984), and layout with complex dependencies106

is the most challenging problem algorithmically. If the layout is of low quality,107

even the best graphical design (in terms of using other graphical attributes108

such as shape, color, size, etc.) or interaction mechanisms can only attenuate109

the problems of poor legibility and interpretation artifacts.110

While graph structure is represented completely in plain node-link diagrams,111

the other attributes of a network can be incorporated by varying graphical112

attributes as mentioned above. Clearly, these choices are more dependent on113

the data and context, and in general easier to implement.114

2.1 Graph Layout115

In addition to distinct vertex positions to avoid ambiguity, the following ob-116

jectives are commonly considered relevant for application-independent lay-117

out (Bertin, 1983; Purchase, Cohen, and James, 1997).118

• Edges should be of more or less the same length.119

• Vertices should be distributed well over the drawing area.120

• The number of meaningless edge crossings should be kept small.121

• Symmetries in graph structure should be visible in geometric symmetries.122

For specific applications and purposes, there may be many more criteria to123

observe. For most of them, optimization is computationally intractable even124

in isolation, at least for general graphs. Since, in addition, the various criteria125

are frequently contradictory, general-purpose graph-drawing algorithms are126

usually heuristic in nature.127

Even though social networks exhibit some general tendencies such as sparse-128

ness and local clustering, they do not constitute a formally boundable class of129

graphs that allows for specific optimization algorithms. Due to their general130
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applicability, conceptual simplicity, wide availability, and ability to produce131

satisfactory results in general, the most popular class of methods used for132

social network layout are force-directed or energy-based methods (Brandes,133

2001), colloquially known as spring embedders (Eades, 1984).134

The most widely available, and often only, layout algorithm in common soft-135

ware tools for social network analysis is the spring embedder variant of Fruchter-136

man and Reingold (1991). It is a force-directed method in which a graph is137

likened to a physical system of repelling objects (the vertices) and springs138

of a given length (the edges) binding adjacent vertices together. Vertices are139

iteratively repositioned based on the forces exerted on them, so that the sys-140

tem moves toward a force equilibrium. The approach is easy to implement141

and yields acceptable results for small graphs, and it can be tuned for specific142

purposes by introducing additional or alternative forces.143

There is, however, clear experimental evidence (Brandes and Pich, 2009) that144

this and related force-directed methods do not scale well to larger graphs,145

both in terms of quality and efficiency. It is almost ironic that a current146

variant of the earliest computer-implemented method for drawing social net-147

works (Kruskal and Seery, 1980, already applied in the late 60s), turns out to148

be far superior.149

This favorable approach, known as stress minimization, is an instance of a150

family of dimension-reduction methods referred to as multidimensional scaling151

(see, e.g., Cox and Cox 2001). It is based on an objective function called152

stress (Kruskal and Wish, 1978) and was re-popularized in graph drawing by153

Gansner, Koren, and North (2004). Details are given next, but it should be154

noted that the same objective function was also used in the spring embedder155

of Kamada and Kawai (1988), although with an inferior minimization method.156

2.2 Stress Minimization157

We next describe the workhorse of our approach, stress minimization, in detail.158

Let G = (V,E) be an undirected graph defined by a set V of n vertices, and a159

set E of m edges. Given a matrix D of vertex dissimilarities δij, i, j ∈ V , the160

purpose of stress minimization is to determine positions pi = 〈xi, yi〉 ∈ R2 for161

every vertex i ∈ V such that the Euclidean distances in the plane resemble162

the given dissimilarities as closely as possible, i.e.,163

δij ≈ ‖pi − pj‖ ,

where ‖ · ‖ denotes the Euclidean norm. For any given layout P = (p1, . . . , pn)164

this is quantified using a parameterized stress function stress(P ),165
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stress(P ) =
∑
i<j

ωij (δij − ‖pi − pj‖)2 , (1)

where W = (ωij)i,j∈V is a weight matrix whose entries determine the con-166

tribution of each pair i, j ∈ V . Since stress is defined as the weighted sum167

of squared distance-representation errors, the objective is to find a layout of168

minimum stress.169

In graph drawing, graph-theoretic distances (i.e., lengths of shortest paths)170

are a plausible choice for dissimilarities (Kamada and Kawai, 1988; Gansner,171

Koren, and North, 2004). The stress term of each dyad then corresponds to172

the squared error of representing a shortest path as a straight line with unit173

length edges. Because these distances are clearly not realizable for any non-174

trivial graph, weights ωij = δ−2
ij discount representation errors for distant175

pairs, thus emphasizing local accuracy.176

Since no closed form is known to compute a layout with minimum stress177

directly, the approach appears to share some of the drawbacks of other force-178

directed methods. In particular, iterative stress reduction in general only yields179

a local minimum which may be far from an optimal layout. The experiments180

of Brandes and Pich (2009) suggest, however, that low-stress layouts can be181

obtained routinely and efficiently using a two-step process: In the first step,182

an initial layout is determined using classical scaling (Torgerson, 1952), the183

initial, spectral-decomposition variant of multidimensional scaling that has184

an essentially unique solution in which large distances are represented well,185

and that can be approximated very quickly (Brandes and Pich, 2007). In the186

second step, the representation of small distances is improved by iteratively187

and monotonically reducing the stress using an optimization technique called188

majorization (de Leeuw, 1977) that can be implemented by a simple, localized189

process moving one vertex at a time and considering only a sparse version of190

the stress function. See Gansner, Koren, and North (2004) for details.191

The kind of results obtained is illustrated in Figure 1, using two observations192

from our running example.193

We will not elaborate on algorithmic issues any further, but would like to em-194

phasize that stress minimization is reasonably easy to implement, and yields195

much better results than other force-directed methods (Brandes and Pich,196

2009), including multi-level approaches (Walshaw, 2001; Gajer, Goodrich, and197

Kobourov, 2004; Hachul and Jünger, 2004). At the same time the method is198

very flexible, because there are several degrees of freedom that allow for so-199

phisticated layout modeling. We may alter the given network’s structure resp.200

stress terms, admissible positions, dissimilarities, and weights to incorporate201

hard and weak constraints (see, e.g., Dwyer, Marriott, and Wybrow 2008;202

Gansner and Hu 2008; Brandes and Pich 2011).203
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(a) Wave 6 (b) Wave 7

(c) Wave 13 (d) Wave 14

Fig. 1. Four observations of an acquaintanceship network laid out using stress min-
imization. Red circles represent female students, whereas blue triangles represent
males. If an acquaintanceship tie is reciprocated, it is represented by a thicker line
segment, otherwise an arrow indicates the direction of nomination. Some vertices
are indexed for later reference.

Indeed, this will be our approach for both, dynamic layout and visual model204

assessment, as described below.205

3 Dynamic Network Visualization206

While producing layouts of single networks can already be challenging, deter-207

mining coherent layouts for several observations of a longitudinal network is208

even more difficult (Branke, 2001). This is because, in addition to the criterion209

of faithfully displaying structural properties, the sequence of layouts should210
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(a) unfortunate (b) fore-sighted

Fig. 2. Knowledge of future changes can inform the choice between otherwise equally
good layouts.

convey the evolution of the network.211

The latter is facilitated by maintaining an observer’s mental map (Misue,212

Eades, Lai, and Sugiyama, 1995; Saffrey and Purchase, 2008; Purchase and213

Samra, 2008). The goal is to ease comparison between a state and its prede-214

cessor by largely retaining those parts of a drawing in which little structural215

change occurred, so that the time a viewer spends on familiarizing with the216

drawing is not wasted. Since layout algorithms for the static, single-graph case217

are based solely on the current graph’s structure, they have to be modified to218

strike the right balance between structural changes and positional stability.219

Two scenarios need to be distinguished, because they differ in the amount of220

information available when a layout is determined. Either, the entire sequence221

of graphs is known in advance, i.e., before any layout is required (generally222

referred to as offline scenario, graphs are given together), or future graphs223

are unknown at the time that an intermediate state is to be laid out (online224

scenario, graphs are presented to the algorithm one at a time). In an online225

scenario, it is more difficult to maintain dynamic stability, because future226

changes are not known at the time that vertices have to be placed.227

Let us illustrate this phenomenon by the small example in Figure 2 consisting228

of a 4-star in the first observation, and an additional tie between the two gray229

vertices in second observation. In an online scenario, there is no preference for230

any of the two layouts of the first observation, whereas in an offline scenario we231

can actually choose the one that will lead to better quality and less movement.232

We will take advantage of the fact that the sequence of graphs that constitute a233

longitudinal social network is usually known in advance, and therefore assume234

to be in an offline scenario for the remainder of this paper.235

The simplest (and most common) approaches to take stability into account236

are based on variants of the spring embedders of Fruchterman and Reingold237
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(1991) or Kamada and Kawai (1988), in which the iterative computation for238

each graph in the sequence is initialized with the preceding layout (Bender-239

deMoll and McFarland, 2006; Huang, Eades, and Wang, 1998; Geipel, 2007;240

Groh, Hanstein, and Wörndl, 2009). An implicit assumption is that consec-241

utive graphs are similar in general, so that the initial layout is not too far242

from a locally optimal one. The method is therefore easy to implement, more243

efficient than computing a layout from scratch, and applicable in both on- and244

offline scenarios. Note also that both algorithms repeatedly move one vertex245

at a time to improve the current layout, thereby creating trajectories from the246

initial to the final position. These may be useful for animation. In practice,247

however, linear or sinusoidal coordinate interpolation offer better control and248

are more commonly used to determine such trajectories. More sophisticated249

transition methods are described, for instance, in Friedrich and Eades 2002;250

Friedrich and Houle 2002; Nesbitt and Friedrich 2002.251

Inspite of the convenient properties enumerated so far, the approach is rather252

problematic, because it does not address stability in a controlled way and may253

hence result in excessive and unnecessary movement of vertices. Moreover, by254

failing to make use of the existing knowledge about the future in offline scenar-255

ios, the approach is biased towards earlier configurations, and therefore prone256

to suffer from poor local minima precisely as already illustrated in Figure 2.257

Hence, layout quality tends to degrade over the course of the sequence.258

Among the first to address stability directly were Böhringer and Paulisch259

(1990), and North (1996) provides a generic problem statement. The trade-off260

between readability and stability is formalized in Brandes and Wagner (1997)261

and a similar principle for offline scenarios is proposed in Diehl and Görg262

(2002). Current proposals generally take one of the following three approaches.263

Aggregation. All graphs in the sequence are aggregated into a single graph264

that has one vertex for each actor. The position of each individual vertex265

instance in the sequence is determined from a layout of the aggregated266

graph. This approach is used, e.g., in Brandes and Corman (2003); Dwyer267

and Gallagher (2004); Moody, McFarland, and Bender-deMoll (2005).268

Linking. All graphs in the sequence are combined into a single graph that has269

one vertex for each occurrence of an actor, and an edge is created between270

vertices representing the same actor in consecutive graphs. A layout of this271

graph directly yields positions for all vertex instances in the sequence. This272

approach is used, e.g., in Dwyer and Gallagher (2004); Erten, Kobourov, Le,273

and Navabi (2004); Dwyer, Hong, Koschützki, Schreiber, and Xu (2006).274

Anchoring. Using auxiliary edges, vertices are connected to immobile copies275

fixed to a desired location which may be, for instance, the previous position276

in an online scenario, or a reference position in an offline scenario. This277

approach is used, e.g., in Lyons, Meijer, and Rappaport (1998); Brandes278

and Wagner (1997); Frishman and Tal (2008).279
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Since the method advocated here is a combination of aggregation and an-280

choring, we describe in more detail how these can be instantiated in a stress-281

minimization framework.282

3.1 Aggregation283

Maximum stability is obtained when a vertex maintains its position through-284

out the entire sequence of diagrams. This is called the flip book approach in285

Moody, McFarland, and Bender-deMoll (2005). We argue that suitable posi-286

tions can be obtained by applying stress minimization to an aggregation of287

the input sequence.288

Given a sequence G(1) = (V,E(1)), . . . , G(T ) = (V,E(T )) of T graphs with289

corresponding dissimilarities D(t), 1 ≤ t ≤ T , we are to determine layouts290

P (1), . . . , P (T ) such that a vertex is placed at the same position throughout.291

In other words, we are looking for one layout P for the vertices in V and let292

P (t) = P at all times t = 1, . . . , T .293

We combine all shortest path information into a single stress function using294

the mean shortest path distance per dyad, and use the same position variables295

pi for each instance i(t) of the same actor i,296

stress (P ) =
∑
i<j

ωij
(
δ̄ij − ‖pi − pj‖

)2
, (2)

where D̄ =
(
δ̄ij
)
i,j∈V

, δ̄ij := 1
T

∑T
t=1 δ

(t)
ij , contains the mean shortest-path dis-297

tances, and298

ωij =
1

δ̄2
ij

· 1

1 + var(δij)
,

where var(δij) := 1
T

∑T
t=1

(
δ

(t)
ij − δ̄ij

)2
is the variance of distances within a299

dyad across all observations. Thus, representation accuracy of dyads that are300

connected via short paths most of the time is emphasized. By additionally301

scaling with the variance, priority is given to structures that are relatively302

stable throughout the sequence.303

Since, technically, the aggregate stress function consists of the same type of304

terms as before, we can also use the same algorithms for its minimization:305

Layout computation is initialized by classical scaling of mean distances in the306

aggregated graph, i.e., a graph with all vertices and an edge between two307
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Fig. 3. Global layout obtained by aggregation of all stress terms. An edge is drawn
if two vertices are adjacent in any graph of the input sequence.

vertices if this edge exists in any of the observations. Subsequently, stress (P )308

is reduced via majorization.309

We require that the aggregated graph is connected, otherwise the data is split310

into connected components, and layouts are calculated separately for each of311

them. Note that it may still be the case that some individual networks of a312

sequence contain multiple disconnected components, resulting in infinite dis-313

tances and undefined weights. Being in an offline scenario, other observations314

can be used to fill in gaps as follows. An infinite distance in a dyad is replaced315

by interpolating between the two finite distances observed previously and next316

for this dyad, and by adding a small constant, say 1, to emphasize temporary317

disconnectedness. Let t−ij be the most recent and t+ij be the next observation in318

which actors i and j have finite distance δ
(t−ij)

ij and δ
(t+ij)

ij . Then the interpolated319

distance for dyad {i, j} is320

δ
(t)
ij =

(
1− β(t)

ij

)
δ

(t−ij)

ij + β
(t)
ij δ

(t+ij)

ij + 1 ,

where β
(t)
ij = (t − t−ij)/(t

+
ij − t−ij). In the special cases that there is no last321

or next finite distance, we do not interpolate, but use the one existing finite322

distances distance plus the same constant. Although unlikely, it may happen323

that a dyad has infinite distances at all times, even if the aggregated graph is324

connected. In this case, a sufficiently large distance ∆ with a small weight Ω325

is used. We suggest ∆
√
n and Ω = 1/n with n the number of vertices. This is326

in analogy to the height and width of an equally spaced grid with n points.327

The resulting aggregate layout for our running example is given in Figure 3,328

and Figure 4 contains samples from the corresponding sequence of diagrams.329
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(a) Wave 6 (b) Wave 7

(c) Wave 13 (d) Wave 14

Fig. 4. Four observations of the acquaintanceship network using aggregation layout.
While stability is perfect, there are inherent drawbacks as exemplified by labeled
vertices (see main text).

The relatively stable major groups, i.e., the female groups around Actor A,330

and above Actor B, the male group around Actor E, and the mixed group331

involving Actor D and Actor F, are discernible. Due to perfect stability, oc-332

currences of the same actor are easily indentified in each of the subfigures of333

Figure 4. However, a comparison with the layouts obtained by regular stress334

minimization shown in Figure 1 reveals that this extreme stability comes at335

the price of less desirable individual layouts:336

• Subconfigurations may appear to be placed oddly at times. An example is337

the group around Actor A in Wave 13 and 14, where it would be expected338

to lie closer to the group to which it connects through Actor B. Its position339

leads to unnecessary long links representing the strong ties to Actor B that340

have been established by then. These also create much clutter in the group341

belonging to Actor F. See Figure 1d for comparison.342

• The almost bipartite structure of the group around Actor A that could be343
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observed in Figure 1d is hardly recognizable.344

• Actor C starts out being connected to an actor at the very bottom, but345

then links up with an actor further up. Since this new neighbor is far away346

from the first neighbor, any reasonable constant position can only result in347

either an awkward or a long link connecting Actor C.348

• Actor D and Actor E exhibit a very volatile connection, resulting in cor-349

responding changes of geometric distances between them in Figure 1. Al-350

though this volatility can be observed in the aggregate layout, it might be351

easily missed if the actors were located in denser regions.352

These qualitative examples are corroborated by quantitative measurement; for353

instances, stress of the layout of Wave 6 and Wave 7 as measured by Equa-354

tion 1 is almost twice as high as in the corresponding layouts of Figure 1, and355

more than thrice as high for Wave 13 and Wave 14. Because of the complex de-356

pendencies between structural characteristics, change, and relative positions,357

a comprehensive quantitative evaluation is beyond the scope of this work,358

though.359

The above examples nevertheless illustrate that fixed positions are helpful in360

building a mental map of the overall configuration, but that it is desirable to361

allow for at least small deviations to represent better the specific configurations362

at individual time points.363

3.2 Anchoring364

The main idea of the Bayesian approach to online dynamic graph drawing365

(Brandes and Wagner, 1997) is an explicit modeling of the trade-off between366

layout quality as measured by an objective function, and layout stability with367

respect to the previous drawing as measured by a difference metric (Bridge-368

man and Tamassia, 2000). A conceptually similar, though computationally369

more demanding approach using instability thresholds for offline scenarios is370

proposed in Diehl and Görg (2002). Our approach here is a direct translation371

of the former, and a computationally more efficient variant of the latter.372

Concretely, we use the aggregation approach of Section 3.1 to obtain a refer-373

ence layout that serves as a baseline for representing stable overall structures,374

and thereby facilitates the formation of a persistent mental map. For each in-375

dividual graph in the sequence we do, however, allow deviations from reference376

positions if they lead to improved representation of momentary structures. A377

stress function quantifying this compromise is378
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stressα
(
P (t)

)
= (1− α) ·

∑
i<j

ω
(t)
ij

(
δ

(t)
ij −

∥∥∥p(t)
i − p

(t)
j

∥∥∥)2

︸ ︷︷ ︸
individual layout quality

+ α ·
∑
i

φ
(t)
i

∥∥∥p(t)
i − pi

∥∥∥2

︸ ︷︷ ︸
stability

,

where P = (pi)i∈V denotes the reference layout determined as described in the379

previous section, and weights φ
(t)
i allow for inter-vertex variation in deviation380

tolerance.381

The stability term thus corresponds to a pointwise penalty for deviations from382

the reference layout, and the parameter 0 ≤ α ≤ 1 provides explicit control383

of the trade-off between quality (original stress) and stability. Note that min-384

imizing stressα for α = 0 corresponds to regular stress minimization without385

control for stability, and α = 1 corresponds to the aggregation method, since386

no deviation from the reference layout is tolerated.387

Besides modeling stability explicitly as a layout objective, two additional mea-388

sures are taken. First, we initialize individual layout computation with the389

reference layout for the first observation, and with the layout of the preceding390

observation for subsequent ones. Assuming that consecutive observations are391

structurally similar, stress minimization is expected to reach a similar local392

minimum as for the preceding observation. Hence, ambiguities will be resolved393

in favor of the preceding layout if deviations from the reference layout must394

occur due to structural changes. For the same reason we may also expect that395

only few iterations are needed to compute a layout. Second, we postprocess396

the layout thus obtained using Procrustes rotation (Sibson, 1978), i.e., by ap-397

plying an affine transformation that minimizes the sum of squared deviations398

from reference positions without changing relative distances.399

For now, we use constant stability weights φ
(t)
i := 1 for all i and t. More sophis-400

ticated choices, however, may be useful to compensate for cases with highly401

varying degrees or localized structural change. Another potential use of stabil-402

ity weights is as normalizing factors, such that the quality and stability part403

in stressα are on equal scales, and thus, parameter α can be interpreted more404

easily in between its extreme values. More technical and user-oriented exper-405

imentation is needed, though, to quantify dependencies on these parameters.406

All fifteen networks of our running example are shown in Figure 5, now laid407

out using moderate anchoring with reference positions taken from the aggre-408

gate layout of Figure 3. Although more effort is needed to trace vertices from409

one layout to the next, major substructures remain stable and the individual410

quality of layouts has improved notably.411

This is confirmed when considering the issues we had with constant layout in412
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(a) Wave 1

(b) Wave 3 (c) Wave 2

Fig. 5. Waves 1–3 of the acquaintanceship network drawn by anchoring with ag-
gregate layout as a reference (stability at α = 0.15). Waves 4–9 and 10–15 on next
pages.

the previous section. The groups of Actors A and B move towards each other413

when they start being connected (Waves 11–15). The near-bipartite structure414

of the group involving Actor A in Wave 14 is apparent. Movement highlights415

the changing affiliations of Actors C and the volatile connection between Ac-416

tor D and Actor E. While it is more difficult to locate them in individual417

layouts, deviations from their reference position are actually meaningful and418

therefore considered desirable.419

Finally, we want to demonstrate the benefits of using offline information. Com-420

pare the above results of anchoring at reference positions from an aggregation421

layout (Figure 5) to an online approach based on initialization with the preced-422
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(d) Wave 4 (e) Wave 5

(f) Wave 7 (g) Wave 6

(h) Wave 8 (i) Wave 9

Fig. 5. Waves 4–9 (continued from previous page).
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(j) Wave 10 (k) Wave 11

(`) Wave 13 (m) Wave 12

(n) Wave 14 (o) Wave 15

Fig. 5. Waves 10–15 (continued from previous page).
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(a) Wave 10 (b) Wave 11

(c) Wave 13 (d) Wave 12

Fig. 6. Waves 10–13 of our running example drawn by a common online approach.
Substructures are similar, but the offline method (Figure 5) avoids the need for
flipping subgroups such as the ones associated with Actors A and F from Wave 12
to 13.

ing layout and no control for stability (Figure 6). Note that the latter is similar423

to the online approach provided by the SoNIA 1 software tool (Bender-deMoll424

and McFarland, 2006), since the method employed there is conceptually the425

same, as is the basic objective function, stress, when using the Kamada-Kawai426

option (MultiCompKK).427

Both approaches result in a similar configuration for Wave 10. In Wave 11, the428

group of Actor A establishes lasting connections to the groups of Actor B and429

momentary connections to the group of Actor E, forcing the groups to move430

towards each other. The online approach results in a positioning of the group431

of Actor A below the group of Actor F in Waves 11 and 12. However, with the432

1 http://www.stanford.edu/group/sonia/
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dissolution of the momentary connections in Wave 13, those groups are forced433

to flip around each other, creating excessive movement between observations.434

Anchoring with reference positions from an aggregation layout exploits offline435

information to avoid the need for such flips, and thus eliminates some move-436

ment that indicates structural changes inappropriately. Observe that there is437

much less difference in the configuration of substructures than suggested by438

the large movements in the online scenario.439

4 Stochastic Actor-Oriented Models440

Today, stochastic actor-oriented models (SAOM) (see, e.g., Snijders 2005,441

2001) are the primary tool for the analysis of longitudinal social networks.442

Given panel data, i.e., sequences of network observations at discrete time443

points, as input, it is supposed that an unobserved evolution process took444

place inbetween consecutive states. The process model is composed of network-445

specific rules such as reciprocity, triadic closure, or homophily, and these rules446

are referred to as network effects. The aim of an analysis is to identify network447

effects that explain the observed evolution.448

We briefly introduce the model in its simplest form, with only two consecutive449

network observations. For a detailed introduction and extended actor-oriented450

models see Snijders, van de Bunt, and Steglich (2010b); Snijders, Steglich, and451

Schweinberger (2007); Steglich, Snijders, and Pearson (2010).452

Let V = {1, . . . , n} denote the fixed set of actors, and AV the set of all453

adjacency matrices over V , i.e., for a matrix A ∈ AV we have entry aij = 1454

if there is a tie from i to j, and aij = 0 otherwise. Note that we are dealing455

with directed graphs from now on. The two observed networks are denoted by456

A(pre), A(post) ∈ AV .457

The evolution from A(pre) to A(post) is regarded as a stochastic sequence of458

elementary changes, called micro-steps, that are performed consecutively by459

randomly chosen actors. An actor is allowed to either create a single new460

outgoing tie, delete a single existing outgoing tie, or not change any tie at all.461

When an actor is designated to perform the next micro-step, probabilities of462

all feasible micro-steps are determined by the current network structure A(cur)
463

and do not depend on previous states. These model assumptions are realized464

in a continuous-time Markov process on state space AV that is starting from465

the first observation, A(pre). The transition probability from the current state466

A(cur) to a possible next state A is positive only if the two networks differ by at467

most one tie aij for which i is the actor designated to perfom the next micro-468

step. Since actors are assumed to strive for improving their position in the469
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network, the transition probability from A(cur) to A depends on the position470

enhancement achieved by changing to aij rather than any other feasible option.471

The assessment of an actor i’s position in a network A is according to an472

objective function fi : AV −→ R that is assumed to be of the form473

fi(θ;A) =
K∑
k=1

θk · ski(A) , (3)

where each sk = (sk1, . . . , skn)T , 1 ≤ k ≤ K, is a vector of statistics rep-474

resenting network effects, and θ = (θ1, . . . , θK) ∈ RK are associated model475

parameters. The latter are fitted to the observed data, assuming that actors476

strive to maximize their objective function. Uncertainty stemming from the477

potential influence of chance and other unknown factors is usually represented478

by a random term added to the objective function, but is not important for479

the purpose of this paper.480

Specifically, statistics ski(A) count the number of occurrences of configurations481

in A that actor i is part of, and thus represent the kth network effect. The482

selection of network effects is referred to as the model specification. Some483

common statistics are the number of484

outgoing ties: s1i(A) =
∑n
j=1 aij

reciprocated ties: s2i(A) =
∑n
j=1 aijaji

transitive ties: s3i(A) =
∑n
j=1 aij ·maxl 6=j,i(ailalj)

actors at distance two: s4i(A) =
∑n
j=1(1− aij) ·maxl 6=j,i(ailalj)

transitive triplets: s5i(A) =
∑n
j=1

∑n
l=1 aijailalj

3-cycles: s6i(A) =
∑n
j=1

∑n
l=1 aijajlali

485

Such statistics indicate local rules of network evolution. Note that the entire486

formulation implies a rather strong assumption, namely that actors are ho-487

mogenous in the sense that the same rules are working for them in the same488

way.489

For illustration, consider three actors i, j1, j2 with i intending to connect with490

either j1 or j2. Assume that the network positions of j1 and j2 are equivalent,491

except that there exists a tie from j1 to i, but not from j2. In this setting,492

a positive reciprocity parameter (i.e., a positive weight θ2 for the above s2i)493

implies that i is more likely to connect with j1 than with j2. A negative494

parameter would imply the opposite. In the following, we identify a model495

with its parameters θ.496
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Given a model θ and an initial network A(pre), the evolution predicted by θ can497

be simulated via a sequence of micro-steps conforming to the above rules. We498

denote such a sequence by S(θ, A(pre)). One possible condition for terminating499

the simulation is that the current network state A(cur) differs from A(pre) in500

the same number of dyads as A(post). The probability that a network A ∈ AV501

is the final state of a simulation S(θ, A(pre)) depends on θ, so that θ induces a502

probability distribution over all networks in AV conditional on A(pre).503

Among several methods for fitting θ to observed data (Snijders 2001; Snijders,504

Koskinen, and Schweinberger 2010a; Koskinen and Snijders 2007), the one505

most commonly used is an instance of the Method of Moments (Snijders,506

2001). 2 Parameters are determined to match statistics507

sk(A
(post)) :=

n∑
i=1

ski(A
(post)), 1 ≤ k ≤ K, (4)

of the second observation A(post) as closely as possible to their expected val-508

ues in predicted networks. Since the model is too complicated to determine509

expected values precisely, they are estimated from simulations. Therefore, the510

aim is finding parameters θ that satisfy the moment equations511

Eθ [Sk] = sk(A
(post)), 1 ≤ k ≤ K, (5)

where Sk is a random variable for the value of sk in a network resulting from512

a simulation S(θ, A(pre)).513

5 Diagnostic Visualization514

Based on the view that a SAOM θ induces a probability distribution over AV ,515

we say that θ’s predictions fit the observed data if A(post) is highly probable516

under the distribution implied by θ, i.e., if it is likely that A(post) is the result517

of simulations S(θ,A(pre)).518

There are several potential causes for poor representation of data. The main is-519

sue is model mis-specification, i.e., the inclusion of effects that are not present520

in the data or exclusion of effects that actually drive the evolution process.521

Inappropriate specification is often evidenced by parameter estimates that ex-522

hibit large standard errors or, in extreme cases, by non-convergence of the523

2 An implementation is available in the R package RSiena, see http://cran.

r-project.org/web/packages/RSiena/.
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iterative estimation process. A problem that is even more difficult to cope524

with is inhomogeneity across actors, because it is hidden in the aggregated525

statistics (4). The fact that parameters θ do not depend on individual actors,526

but are estimated in order to fit the average behavior of all actors by satisfying527

the moment equation (5), basically suggests that all actors follow the same528

rules, except for differences implied by covariates. In many cases, this restric-529

tive assumption is unjustified and leads to poor models. However, poor fit530

caused by inhomogeneity is often not apparent from estimates and their stan-531

dard errors because parameters inferred from the aggregate quantities in (5)532

do not necessarily exhibit a high level of uncertainty, even if occurrences of533

statistics are distributed very inhomogeneously across actors.534

In this section, we introduce methods that allow for visual exploration of535

model predictions and comparison with observed data. The first method re-536

veals a global impression of model predictions that can be compared with the537

observed data in order to detect regions or structural patterns that are poorly538

represented. The second method is especially designed for assessing actor-539

inhomogeneity. Contrary to the first method, where the focus is on the global540

structure of connections, the second method considers local statistics in the541

neighborhood of individual actors. These graphical methods support model in-542

terpretation and can provide guidance in proper effect selection in addition to543

the significance tests (Schweinberger, 2010) already integrated into the Siena544

program (Ripley and Snijders, 2011).545

5.1 Overall Fit546

Our first goal is a graphical representation of the predictions made by a model.547

To assess how well such predictions and the data that was actually observed548

align, the representation shall be comparable to related visualizations of the549

observed data. What, however, is an appropriate graphical representation for550

a distribution of networks? And how could it be displayed whether a network551

is typical for a given distribution or not?552

Since the actual distribution is computationally intractable, we start by sam-553

pling from it. Let A(1), . . . , A(R) ∈ AV be a set of network samples resulting554

from R simulations S(θ, A(pre)). In order to reveal shared characteristics of555

these samples, such as clustering, we follow the idea of the stress minimiza-556

tion approach described in Section 3.1 where, too, information on structural557

features of several networks is aggregated into a single layout.558

Even in the context of networks arising from uncoordinated myopic decisions559

of independently acting actors, the following arguments substantiate why an560

aggregate layout approach may be appropriate. Local actor decisions indirectly561
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depend on each other, since previous dynamics formed the structure that sub-562

sequent changes depend on. Therefore, actor-oriented models determine not563

only local dynamics, but also the global evolution of network characteristics.564

Purely local effects such as, for instance, reciprocation and transitive closure,565

thus reinforce existing global features such as segmentations into cohesive566

substructures and structural holes. Since the given observation A(pre) seeds567

an initial global structure, it is plausible that a model can not only predict568

occurrences of structural patterns but also their topological distribution.569

In analogoy to the stress in Equation (2), we therefore define a stress func-570

tion stresssim based on shortest-path distances between each pair of vertices571

in all simulated networks simultaneously. Observe that it does not matter572

that simulation runs do not have a meaningful ordering as the observations573

do. Because they are determined by the same principles, comparison of such574

drawings with a layout of A(post) based on the regular stress function yields575

insight into structural similarities or differences.576

Let δ
(1)
ij , . . . , δ

(R)
ij denote the lengths of undirected shortest paths between ver-577

tices i and j in the graphs of A(1), . . . , A(R). If i and j are in different connected578

components of A(r), we replace the conventional infinite distance by δ
(r)
ij = n,579

so that all distance between distinct vertices are in the range {1, . . . , n}. Sim-580

ilarly to the aggregated stress function (2), we define a stress function based581

on samples A(1), . . . , A(R) by582

stresssim(P ) =
∑
i<j

ωij
(
δ̄ij − ‖pi − pj‖

)2
, (6)

where δ̄ij := 1
R

∑R
r=1 δ

(r)
ij denotes the sample mean of simulated distances583

between vertices i and j. As in Section 2.2, local accuracy should be em-584

phasized by reducing the impact of distant dyads {i, j} identified by high585

sample means δ̄ij. Our application also requires additional emphasis on the586

influence of highly confirmed distances indicated by small sample variances587

s2(δij) := 1
R−1

∑R
r=1

(
δ

(r)
ij − δ̄ij

)2
. We therefore propose to use weights588

ωij :=
1

(1 + s2(δij))δ̄2
ij

.

where the newly introduced factor 1
1+s2(δij)

increases the bias towards faithful589

representation of local structures, since dyads with higher average distances590

usually exhibit larger standard deviations.591

Minimization of stresssim yields a layout in which vertices that are likely (un-592

likely) to be connected by a short path are close together (far apart). Note593
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that (6) does not include any data of the second observation A(post), but only594

information resulting from model-based simulations starting from A(pre). How-595

ever, if all sampled networks A(r) were identical to A(post), stresssim would596

reduce to the basic stress function of A(post) for static stress minimization597

as introduced in Section 2.2. The layout of A(post) based on stresssim would598

then be equal to the layout based on graph-theoretic distances. Therefore, in599

case of excellent and detailed model predictions, both methods would yield600

essentially the same layout of A(post). In particular, a drawing of A(post) based601

on stresssim would exhibit short edges, and large distances between pairs of602

unconnected vertices. Long edges, on the other hand, appear where graph-603

theoretic distances are small in the observation A(post), but not in the samples604

A(1), . . . , A(R).605

We stress that the assessment of model predictions should be in line with the606

inferential goal of SAOMs. This is not the prediction of individual ties, but607

the characterization of local processes by a limited number of network effects.608

Consider, for instance, the longitudinal network of Figure 7a together with609

a model θ̄ consisting of only two effects, outgoing ties and reciprocated610

ties. In this setting, it is equally probable that a simulation S(θ̄, A(pre)) ends611

up in A(post) or in network A depicted in Figure 7b. Therefore, simulations612

resulting in A do not necessarily invalidate the model even if A differs from613

A(post) in one third of all possible ties. Knowledge about poorly predicted ties614

may well be important for model evaluation, though, because it may inform615

the selection of effects.616

To illustrate how our approach can be used for this kind of assessment, let617

us compare a layout of A(post) based on observed shortest-path distances in618

Figure 7c with a layout of expected shorstest-path distances in Figure 7d.619

Comparing both layouts, we recognize that the reciprocated edges connecting620

the two gray vertices in Figure 7d are longer than other reciprocated edges621

in the same graph as well as corresponding edges in Figure 7c. Moreover,622

compared to their positions in Figure 7c, the white vertex and the black vertex623

are closer in Figure 7d. The fact that both pairs are equidistant in Figure 7d624

implies that, although only one pair is connected in A(post), both connections625

are equally probable under the model θ̄. As already stated, this does not626

necessarily translate into poor model-fit, but that the model fails to predict627

specific connections between these actors reliably. If context calls for more628

detailed explanations of observed relations, this may be seen as a hint at the629

inclusion of other effects, possibly based on actor covariates.630

To facilitate comparison between layouts for A(post) according the observed631

(stress) and expected (stresssim) distances, both computations are initialized632

with positions from a layout of A(pre) according to stress. While this ensures633

a certain degree of similarity, we refrain from adding stability via anchoring,634

because this would interfere with our reading of the simulation result. Instead,635
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(a) longitudinal network data (b) equally probable outcome

(c) layout using observed distances (d) layout using expected distances

Fig. 7. How to read layouts based on model predictions (see text).

layouts are aligned using Procrustes rotation, which does not alter relative636

distances.637

We apply the method to the sixth and thirteenth observation of our running638

example. Note however that in case A(pre) is disconnected, connections between639

different components are hardly predictable by a SAOM. As a consequence,640

the positioning of separate components can be quite arbitrary and therefore641

misleading. Since this is particularly true for singleton components, we omit642

the five isolated actors of Wave 6, but continue to refer to the reduced data643

as Waves 6 and 13.644

The data was subjected to the three models listed in Table 1, with Wave 6 as645

the initial and Wave 13 as the target observation. The three models are increas-646

ingly complex. While Model 1 is elementary and dyadic, the additional effects647

of Model 2 generate triadic closure and thus the formation and reinforcement648

of clusters. Model 3 is a further refinement representing the formation of local649

hierarchies (if signs are as in our example).650

The layout in Figure 8a serves as initialization for visualizing model predictions651

by minimizing the modified stress function stresssim. The resulting layout of652

Wave 13 based on simulations of Model 2 is depicted in Figure 9a. To allow653

direct comparison, Wave 13 laid out according to stress is shown once more in654

Figure 9b. Layouts have been aligned by Procrustes rotation.655

Informally speaking, the clustering in the layouts of Figure 9 is quite similar.656

The cohesive group of female students including Actor Y is easily identified657

in both. Other groups such as the males around Actors Q and Actor S, the658

females at the top left, or the mixed group next to Actor U can be matched659

as well. However, from their poor representation in Figure 9a we can conclude660

that several ties between groups as well as ties connecting marginal vertices661

like V or T with the center of the network are not predicted well by the model.662
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Model 1 Model 2 Model 3

Network Effect θ (s.e.) θ (s.e.) θ (s.e.)

outgoing ties -1.61 (0.10) -1.95 (0.23) -2.16 (0.23)

reciprocated 2.64 (0.20) 1.96 (0.22) 2.60 (0.29)

transitive ties 1.37 (0.24) 1.05 (0.26)

actors at distance 2 -0.26 (0.06) -0.22 (0.06)

transitive triplets 0.36 (0.09)

3-cycles -0.65 (0.16)

Table 1
Analyzed models with parameters θ estimated using the RSiena package (Ripley
and Snijders, 2011) for A(pre)= Wave 6 and A(post)= Wave 13 (ignoring isolates of
Wave 6).

Another salient disparity is the location of Actor W who has a bridging po-663

sition between two groups in Figure 9b, but is close to only one group in664

Figure 9a. This indicates that the model performs badly in predicting the cre-665

ation of ties between W and the group at the top left. Note that there were no666

such connections in Wave 6. The position of Q can be explained in a similar667

way.668

A weakness of this approach is that it is not always obvious whether a poor669

layout, indicated by long edges and close unconnected vertices, is caused by670

poor model predictions or by desired distances that are just difficult to realize671

in a two-dimensional drawing. Therefore, Figure 10 shows two complemen-672

tary diagrams that are meant to improve interpretability of the layouts from673

Figure 9a.674

Figure 10a displays sample means δ̄ij of simulated graph-theoretic distances675

between all dyads. E.g., the position of R in Figure 9a close to the above676

female group suggests that connections between this group and R are likely.677

But in Figure 10a, the two more suspicious edges incident to R reveal that678
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(a) Wave 6 (b) Wave 13

Fig. 8. Stress minimization layouts of Wave 6 and Wave 13 based on graph-theoretic
distances. Vertices that are isolated in Wave 6 are omitted in both networks.

its position is rather caused by the realization of desired distances to vertices679

below it. Note that peripheral vertices such as V or T, exhibit large average680

graph-theoretic distances to all other vertices.681

Additional information on model predictions is obtained by considering for682

each pair of vertices i and j the probability πij that edge aij exists in a sim-683

ulated network A. This probability can be estimated by counting the number684

of simulated networks in which i and j are adjacent, i.e.,685

πij :=
1

R

R∑
r=1

a
(r)
ij .

Even though our previous considerations implied that assessment of model pre-686

dictions must not be based solely on individual dyads, the elementary compar-687

ison of entries a
(post)
ij with the predicted probabilities πij can still be indicative688

of the plausibility of a model, where especially the coincidence of high values689

of πij with absent ties a
(post)
ij points at poor predictions. Moreover, correspon-690

dence of tie probabilities with distances between vertices in the layout implied691

by stresssim is another indicator for assumptions on model predictions.692

Figure 10b displays tie probabilities πij implied by Model 2. In general, it693

indicates that most edges are very improbable, and that most of the highly694

probable edges are within groups that existed previously while edges between695

groups are rather unlikely with few exceptions of moderate probability. This696

is indeed what we would expect from a model in which existing groups are re-697

inforced by positive triadic-closure and reciprocity parameters, and a negative698

density and distance-2 parameter.699

27



(a) Layout based on simulations of Model 2

(b) Layout based on graph-theoretic distances

Fig. 9. Comparison between layouts of Wave 13 based on simulated and observed
distances. The layout in (a) results from modifying Figure 8a by minimizing stresssim
based on Model 2. The layout in (b) is determined by using regular stress minimiza-
tion based on graph-theoretic distances.
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(a) Sample means of shortest paths in simulations of Model 2

(b) Tie probabilities implied by simulations of Model 2

Fig. 10. Sample means of shortest paths and tie probabilities implied by simulations
of Model 2. Color intensities and widths of edges increase with their probability of
existence πij in (b). In (a) they increase with the inverse of the expected shortest
path 1/δ̄ij between connected vertices.

29



The basic structures in Figure 10b are, as expected, very similar to those in700

Figure 10a. But there are also differences such as the moderate probabilities of701

connections between Actor X and two others, which are visible in Figure 10b702

but not in Figure 10a. Apparently, X is isolated in many simulated networks so703

that the average graph-theoretic distances to the two other actors, and so the704

Euclidean distances in the layout, are large, even though direct connections705

are fairly probable. Due to this shortcoming, our method may not be suitable706

for extremely sparse networks or for longitudinal data with great differences707

between consecutive observations. Our experiences so far suggest that a Jac-708

card index (see Snijders, van de Bunt, and Steglich (2010b)) higher than .5 is709

a reasonable threshold.710

Finally, we use our method to compare the three models listed in Table 1.711

Figure 11 shows for each model the layout determined in the same way as in712

Figure 9a. Compared to Figures 11b and 11c, where the layouts reveal sev-713

eral clusters of vertices, vertices in Figure 11a are homogeneously distributed.714

This indicates that the effects included in Model 1 are not sufficient to pre-715

dict the observed clustering that, on the other hand, is clearly identifiable in716

the predictions of Model 2 and Model 3. The additional effects included in717

Model 3 reinforce the basic structure already implied by Model 2, but achieve718

no remarkable improvement. In conclusion, Model 2 appears to strike the best719

balance between fit and parsimony.720

5.2 Inhomogeneity721

From analyzing the overall configuration predicted by a model, we now shift722

focus to individual actors. The methods below facilitate model diagnostics723

in general, and validation of actor homogeneity assumptions in particular.724

Thereby, they may support improvement of a model specification.725

Stochastic actor-oriented models are estimated in order to obtain simulated726

networks that resemble second observationA(post) in terms of aggregated statis-727

tics sk defined in Equation (4). Considering, e.g., the outgoing ties effect,728

simulated networks should contain the same number of ties as A(post). Whether729

these ties are homogeneously distributed over the entire network or clustered730

around some hubs, however, is not differentiated by the summarizing moment731

equations (5). One way to deal with inhomogeneities is the inclusion of addi-732

tional network effects such as popularity or similarity effects. As a prerequisite,733

however, the analyst must first become aware of them.734

In the context of exponential-family random graph models (ERGMs), Hunter,735

Goodreau, and Handcock (2008) addresses the problem of potential inhomo-736

geneity by comparing distributions of statistics (e.g., the degree distribution)737
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(a) Model 1 (b) Model 2

(c) Model 3

Fig. 11. Layouts of Wave 13 based on simulated networks predicted by Model 1,
Model 2, and Model 3.

of simulated and observed networks. In contrast to ERGMs, however, where738

simulations start from a random network and are made to converge to a sta-739

tionary distribution, SAOMs start from a fixed initial network A(pre), from740

which a finite number of micro-steps leads to the resulting simulated network.741

Consequently, actors are distinguishable by their position and the structure of742

their environment in A(pre). This justifies, in fact, the assessment of model pre-743

dictions on the local level of individuals, as an alternative to the global analysis744

of distributions of statistics. To identify actors or groups of actors deviating745

from model predictions, we turn to the fit of statistics in the neighborhoods746

of individual actors.747
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Let θ denote a model based on objective functions fi =
∑K
k=1 θkski and748

let A(1), . . . , A(R) ∈ AV be network samples resulting from R simulations749

S(θ, A(pre)). As in Section 5.1, these sampled networks are regarded as repre-750

sentative for model predictions. For each actor, we determine sample means751

s̄ki =
1

R

R∑
r=1

ski
(
A(r)

)

of statistics associated with the effects included in the model. To assess model752

predictions for individual actors, we are interested in deviations of these sample753

means from observed values. Differences754

∆ki := ski
(
A(post)

)
− s̄ki

indicate deficiencies of model predictions for actor i in terms of the network755

effect sk. While differences are comparable across actors, they are not compa-756

rable across effects, because the latter operate on variable scales. Therefore,757

relative deviations ∆̃ki are determined by dividing ∆ki by estimated standard758

deviations of corresponding statistics in the entire network, i.e.,759

∆̃ki :=
∆ki√
vark

with760

vark =
1

R

R∑
r=1

(
n∑
i=1

(
ski
(
A(r)

)
− s̄ki

))2

.

This normalization is chosen in analogy to the t-statistics used for checking the761

convergence of the parameter estimation algorithm (see Ripley and Snijders762

2011), which equal the sums
∑n
i=1 ∆̃ki of respective relative deviations.763

As a heuristic summary measure for the quality of model predictions for ac-764

tor i, we here use the sum of absolute values of relative deviations |∆̃ki| of all765

considered statistics,766

‖∆̃i‖1 :=
K∑
k=1

|∆̃ki| ,

although other definitions such as a generalized Mahalanobis distance incor-767

porating covariances between effects are conceivable as well.768
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Figure 12 shows Wave 13 of the acquaintanceship network with vertex ar-769

eas proportional to the associated values ‖∆̃i‖1 resulting from Model 2 (see770

Table 1). Recall that these represent differences of four effects, outgoing771

ties (ot), reciprocated ties (rt), transitive ties (tt), and actors772

at distance 2 (ad2), between the actual statistics in Wave 13 and those in773

simulations starting from Wave 6.774

Fig. 12. Wave 13 of the acquaintanceship network with vertex sizes indicating sums
of absolute deviations of simulated and observed statistics associated with the effects
included in Model 2. The larger a vertex, the larger its lack of fit.

This helps with comparing the quality of predictions across actors and detect-775

ing individuals or groups whose behavior is particularly deviant from model776

predictions. In Figure 12, Z is most salient. But also the bridging vertices Y,777

W, and T are subject to a mismatch between simulated and observed statis-778

tics. From a global viewpoint, vertices of the cohesive group around Z and,779

in attenuated form, vertices of the group next to U exhibit particularly high780

deviations. However, the causes for the observed inhomogeneities and there-781

with possible model improvements are not apparent from this visualization782

since it does not point to the effects that are responsible for poor prediction.783

This motivates the extension of the above idea to separate visualizations for784

different effects with sizes of vertices proportional to their relative deviation785

∆̃ki and colors of vertices indicating the direction of deviation, i.e., whether786

effects are over- or underestimated by model predictions.787
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Applied to effects not yet included in the model, such diagrams may indicate788

whether they are sufficiently represented by already included effects or whether789

they should be included themselves. For effects considered in the model, it is790

expected that the sum of deviations over all actors satisfies791

n∑
i=0

∆̃ki ≈ 0, (7)

since parameters θ are estimated to satisfy Equation (5). But deviations of792

single actors or subgroups can compensate each other mutually, such that (7)793

can be true even though individual deviations are large. Inhomogeneities thus794

require detailed inspection as provided in our visualizations.795

Moreover, there may be actors whose behavior with respect to some effect is796

hardly determined by the model such that deviations from observed values are797

caused by uncertainty rather than poor prediction. For other actors the implied798

probability distribution may admit only slight variations of statistics such that799

deviations from observed values indeed contradict the model predictions. The800

degree of uncertainty is generally indicated by sample standard deviations of801

respective statistics. The ratio ∆ki

ssdki
, where802

ssdki =

√√√√ 1

R− 1

R∑
i=1

(ski(A(r))− s̄ki)2

is the sample standard deviation of local statistics, indicates whether it is803

likely that observed statistics are sampled from the model-implied probabil-804

ity distribution. High values indicate contradictions with model predictions,805

whereas low values can either result from fitting predictions that yield low806

values of ∆ki, or from indefinite predictions that yield high values of ssdki.807

Figure 13 and Figure 14 show Wave 13 with graphical vertex attributes rep-808

resenting the quality of model predictions for individual actors regarding the809

four effects ot, rt, tt, and ad2. Visualizations in left columns illustrate re-810

sults obtained from Model 1. Right columns contain results of Model 2. Areas811

of vertices are proportional to absolute values of relative deviations ∆̃ki. Color812

indicates the sign of ∆̃ki, i.e., whether occurrences of effect-related configu-813

rations are under- (blue) or overestimated (red) by model predictions. Color814

intensity depicts the ratio ∆ki

ssdki
of deviation divided by standard deviation, so815

that intensely red- or blue-colored vertices hint at contradictions with model816

predictions. Light colors are either caused by small deviations ∆ki or by large817

standard deviations ssdki, where the two causes can be distinguished by the818

size of vertices. Vertices are white if the absolute value of deviation is lower819

than the standard deviation. Note that a light-colored vertex does not neces-820

34



(a) Model 1: outgoing ties (ot)∑
i ∆ki = 0.30,

√
vark = 10.41

(b) Model 2: outgoing ties (ot)∑
i ∆ki = 1.45,

√
vark = 10.85

(c) Model 1: reciprocated ties (rt)∑
i ∆ki = 0.49,

√
vark = 11.53

(d) Model 2: reciprocated ties (rt)∑
i ∆ki = 0.60,

√
vark = 12.41

Fig. 13. Goodness-of-fit of Model 1 and Model 2 in terms of inhomogeneity analyzed
for individual network effects.
The framed boxes in each diagram indicate the relation between vertex sizes and
deviations ∆ki. The color-scale

-3 -1 1 3

∆ik
s(sik)

represents values ∆ki
ssdki

.

sarily indicate a correct prediction but, depending on its size, rather indefinite821

predictions about the associated actor.822

Figures 13b, 13d, 14b, and 14d, which represent Model 2, allow to distinguish823

effects responsible for remarkable deviations in Figure 12. While all effects824

contribute to the deviations of strikingly prominent Actors Z and T by under-825

estimating their activity, W is only underestimated in terms of effects ot, tt,826

and ad2, but not in terms of rt. Likewise, effect ad2 does not contribute to827

the overestimation of Y.828
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(a) Model 1: transitive ties (tt)∑
i ∆ki = −79.80,

√
vark = 12.85

(b) Model 2: transitive ties (tt)∑
i ∆ki = 1.48,

√
vark = 13.03

(c) Model 1: actors at distance 2 (ad2)∑
i ∆ki = 362.87,

√
vark = 58.36

(d) Model 2: actors at distance 2 (ad2)∑
i ∆ki = 1.40,

√
vark = 54.61

Fig. 14. Goodness-of-fit of Model 1 and Model 2 in terms of inhomogeneity analyzed
for individual network effects.
The framed boxes in each diagram indicate the relation between vertex sizes and
deviations ∆ki. The color-scale

-3 -1 1 3

∆ik
s(sik)

represents values ∆ki
ssdki

.

The balanced coloring in the graphs representing Model 2 implies that (7)829

approximately holds for all effects. 3 Regarding Model 1, the same applies to830

Figures 13a and 13c representing effects ot and rt. For these effects, which831

are included in both models, differences between the two models are hardly832

perceivable (see Figure 13). For tt and ad2, in contrast, the two models yield833

widely differing results (see Figure 14). Visualizations obtained from Model 1,834

3 Actually, the graphs exhibit a few more red than blue vertices but most blue
vertices are slightly larger. Hence, absolute values of positive deviations are larger
so that the higher number of negative deviations is still balanced.
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which includes neither of the two effects, are highly imbalanced. Compared835

to visualizations of Model 2, shifts to the extreme range of the color scale are836

noted. According to the algebraic signs of estimates in Model 2, the dominant837

blue in Figure 14a indicates that the observed data contains considerably more838

transitive ties than Model 1 predicts, whereas the dominant red in Figure 14c839

indicates an overestimation of the number of indirect neighbors. It is remark-840

able that many vertices indeed have an intense coloring but their moderate841

sizes indicate at the same time only small relative deviations ∆̃ki. Thus, model842

predictions for these actors must be quite definite which results in high values843

∆ki

ssdki
due to minor standard deviations.844

A closer look at the visualizations reveals that Model 2 outperforms Model 1845

not only in terms of tt and ad2 but also in terms of ot and rt. Especially,846

predictions for actors with considerably more incoming than outgoing ties in847

both observations such as U, S, or X are improved. This is in line with the848

parameter estimates of the two models. Actor S, for example, has six incoming849

but no outgoing ties in Wave 6 and Wave 13, which results in an objective850

function value of zero. In Model 1, this value is increased by 1.03 for S, if an851

incoming tie is reciprocated. Hence, reciprocation is likely, and this leads to an852

overestimation of ot and rt. In Model 2, any new tie that S builds decreases853

his objective function because of the negative parameter estimate for ad2.854

Since no newly created tie would be a transitive tie but most would increase855

the number of indirect neighbors, the observed behavior of S gets more likely856

under Model 2, as conveyed in the visualizations.857

The apparent improvement of model predictions after inclusion of tt and858

ad2 implies that these effects are not represented indirectly in Model 1. This859

is further substantiated by the fact that for ot and rt model predictions are860

hardly affected by the addition of the two other effects. Obviously, correlations861

between the effects are only moderate, so that it seems advisable to include862

tt and ad2 in the model. A similar comparison between Model 2 and Model 3863

reveals that the additional inclusion of the effects transitive triplets and864

3-cycles yields only slightly improved predictions for a few actors.865

6 Discussion866

We have presented methods for explorative and diagnostic visualization of867

longitudinal social networks.868

Exlporative visualization of longitudinal social networks was treated as an of-869

fline dynamic graph-drawing problem, and proposed a corresponding instan-870

tiation of the generic stress-minimization framework for graph layout. Using871

anchoring at reference positions from a layout of the aggregate graph, inter-872
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mediate layouts produced by our method represent a compromise between873

individual layout quality and persistence of an overall organization.874

In summary, this method serves to visually explore the evolution of a dy-875

namic network. Aggregation facilitates getting an overview of global structure,876

whereas anchoring provides explicit control over the balance of readability and877

stability, and therefore allows to put emphasis on the specifics of individual878

networks in the sequence. It should be noted, though, that the approach is879

based on the implicit assumption that there actually exists a relatively con-880

stant global organization.881

Directions for future work therefore include the development of variant ap-882

proaches for other scenarios by taking advantage of the flexibility of stress883

minimization. Also, more experimentation is needed to guide tuning of in-884

volved parameters by considering the type of structural change present in the885

longitudinal network at hand.886

In the modeling-related part of the paper, we have shown that layouts repre-887

senting predictions from stochastic actor-oriented models can be obtained by888

aggregating over a set of simulated networks rather than a sequence of obser-889

vations. By combining all information on dyadic predictions into one layout,890

an impression of the predicted global structure is conveyed. Our approach891

does assume that simulation results exhibit a certain degree of similarity in892

terms of their global structure, although this is not directly ensured by the893

model’s inferential goal of identifying local processes. We argued, however,894

that conditioned on the initial structure in the first observation and because895

of dependencies of dynamics on previous changes, local processes often do896

yield globally similar patterns. This may no longer hold if observations differ897

in, say, more than half of the dyads, but this would also be a problem for the898

models themselves.899

Our second diagnostic method focuses on the correspondence of predictions900

and observations on the actor level by visualizing discrepancies between simu-901

lated and observed local statistics. The aim is to either evaluate homogeneity902

assumptions or to detect outliers or groups of actors with deviant behavior in903

order to analyze their shared characteristics. The latter may indirectly suggest904

model alterations, and one particular use-case is to experiment with additional905

effects not yet included in a model. Note that, because of the Markov property906

of SAOMs, both diagnostic methods extend to more than two observations.907

The visualization methods presented here are to facilitate visual exploration of908

data and models. Clearly, experimentation and further refinement will be nec-909

essary to better assess their utility. The inherent flexibility of the basic layout910

engine, stress minimization, may carry over to related visualization problems,911

and we plan to look at exponential-family random graph models (ERGM; see,912
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e.g., Snijders, Pattison, Robins, and Handcock 2006) in particular.913

Most of the methods described here are already available within visone, 4 a914

software tool for network analysis and visualization, and more will be added.915
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