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Abs t r ac t .  For any fixed parameter t _> 1, a t-spanner of a graph G is a 
spanning subgraph in which the distance between every pair of vertices is 
at most t times their distance in G. A minimum t-spanner is a t-spanner 
with minimum total edge weight or, in unweighted graphs, minimum 
number of edges. In this paper, we prove the AlP-hardness of finding 
minimum t-spanners for planar weighted graphs and digraphs if t _> 3, 
and for planar unweighted graphs and digraphs if t _> 5. We thus extend 
results on that problem to the interesting case where the instances are 
known to be planar. We also introduce the related problem of finding 
minimum planar t-spanners and establish its Alp-hardness for similar 
fixed values of t. 

1 I n t r o d u c t i o n  

A t-spanner of a graph G is a spanning subgraph S in which the distance be- 
tween every pair of vertices is at most  t times their distance in G. The main 
idea of this concept is to find a subgraph of a given graph G tha t  is sparse, but 
still guarantees a so-called stretch factor on the ver tex- to -ver tex  distances of 
G. The stretch factor will be bounded by a constant independent of the size of 
G (i.e. in (9(1)). Observe that  the minimum spanning tree does not necessarily 
meet  this specification. Consider, for example, the complete graph Kn with ver- 
tices 1, 2 , . . . ,  n and unit edge weights. Then the simple pa th  1, 2 , . . . ,  n forms a 
minimum spanning tree yielding a stretch factor of t = n - 1. 

The concept of spanners has been introduced by Peleg and Ullman in [PU87], 
where they used spanners to synchronize asynchronous networks. One of many  
other applications for spanners are communication networks, where one is inter- 
ested in finding a sparse subnetwork that  nevertheless guarantees constant delay 
factors. A survey of some results on the existence and efficient constructibility of 
(sparse) spanners is given in [PS89]. Further results and discussions concerning 
t -spanners  and variants thereof can be found in [Soa92]. 

In most  applications the sparseness of a spanner is crucial. The problem of 
finding t -spanners  with a minimum number  of edges has been shown to be 2(7 ) -  
hard for most  values of t by Cai in [Cai94]. Therefore subsequent efforts have 
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concentrated on finding spanners that are maybe not minimum, but sufficiently 
sparse (see for example [ADD+93]). 

Several authors considered variants of t-spanners. In [CC95], Cai and Corneil 
deal with tree t-spanners (i.e. t-spanners that are trees) and also examine the 
complexity status of the corresponding decision problem. Liestman and Shermer 
introduced the notion of additive spanners, which employ an additive instead of 
multiplicative stretch function on the distances [LS93]. 

Here we consider spanners in planar graphs (either weighted or unweighted, 
directed or undirected), i.e. we restrict the set of input instances. We thereby 
(partially) settle a question raised in [Cai94]. We also introduce the notion of 
planar t-spanners. These are subgraphs, which in addition to being t-spanners 
are planar, no matter whether the original graph is planar or not. 

This paper is organized as follows: After introducing some basic notation and 
the examined problems, our resutts of AfT-completeness are stated in Sect. 2. 
Proofs of these in unweighted, weighted, and directed graphs make up for Sects. 3, 
4, and 5, respectively. 

2 P r o b l e m s  a n d  R e s u l t s  

In what follows G = (V,E; w) (respectively G = (V, A; w)) denotes a simple, 
weighted undirected (directed) graph with vertex set V, edge set E (arc set A), 
and edge weights w : E ~ IR + (w : A -+ IR+). If all edges have unit weight, 
i.e. all weights are equal to 1, the graph is said to be unweighted. A directed 
graph (digraph) is said to be an oriented graph, if it does not contain a cycle 
of two arcs. For simplicity, we will use the terminology for undirected graphs 
throughout most of this paper. The terms are naturally extended to digraphs. 
Since spanners of each connected component can be determined independently, 
we only consider connected graphs. The length of a path is the sum of the weights 
of its edges. The distance between two vertices u and v in G, i.e. the length of 
the shortest (directed) path, is denoted by dc.(u, v). A t-spanner is defined as 
follows: 

Def in i t ion  1 ( t -spanner) .  [or any real valued parameter t > 1, a spanning 
subgraph S = (V, E~; w) with E t C E is a t-spanner of an edge-weighted graph 
a = (v, E ;w) ,  i fds(~,v)  <_ t . da (u , v )  for all ",,~ ~ V. 

The parameter t is called stretch factor. We say that an edge e ¢ E is covered 
(by an edge f E S), if in S there exists a path of length at most t .  w(e) (and 
containing f)  that connects the endpoints of e. 

In order to prove that a given spanning subgraph is a t-spanner, we do not 
have to consider all pairwise distances of the vertices. It is sufficient to only look 
at edges of the original graph that are not part of the spanning subgraph. 

L e m m a  2 ([CC95]). Let S = (V,E';w) be a spanning subgraph of a weighted 
graph G = (V~E;w). Then S is a t-spanner ~.f G if and only if ds(u,v) <_ 
t .  w(u, v) for every edge {u, v} e E \ E'. 
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A t-spanner is called a rn#timum t-spanner of a weighted graph G, if it 
has minimum total edge weight among all t-spanners of G. The corresponding 
decision problem is defined as follows: 

M i n i m u m  t -Spanner  Problem (MinSt) 
Given: A graph G with associated (positive real valued) edge weights and a 

positive real value W. 
P r o b l e m :  Does G contain a t-spanner with total edge weight at most W? 

Obviously, for an unweighted graph, the only l-spanner is the graph itself. 
For a weighted graph, Hakimi and Yau [HY64] proved that  there is a unique 
1-spanner with a minimal number of edges. From [CC95] we know that  this 
must also be the unique minimum 1-spanner, and that  it can be determined in 
polynomial time. The N'7)-completeness of MinSt for general graphs has been 
established by Cai [Cai94] for t > 2 in directed and undirected, and t _> 3 in 
oriented graphs, even if they are unweighted. From the transformation used in 
[CC95] to prove the HP-completeness of the Tree t-Spanner Problem it can be 
seen that  MinSt is also YT)-complete for 1 < t < 2. 

Here we will show that  the problem remains N'7)-complete for most values of 
t when G or S are restricted to be planar 1. In particular, we prove the following 
theorems. 

T h e o r e m  3. For any fixed integer t > 5, MinSt is AlP-complete for undirected, 
planar, biconnected graphs with unit edge weights. 

Theor e m 4. For any fixed integer t >_ 3, MinSt is Afg)-complete for undirected, 
planar, biconnected graphs with edge weights equal to 1 or 2. 

T h e o r e m  5. For any fixed integer t > 5 (t > 3), MinSt is YT)-eomplete for 
unweighted (weighted) planar oriented graphs. 

The proofs of the theorems are given in the next three sections. All three 
of them are transformations from the Planar Satisfiability Problem with three 
literals in each clause, and they can be viewed as modifications of each other. 
Therefore we treat the unweighted, undirected case in detail, and outline the 
changes necessary for the other cases. 

Note that  in unweighted graphs every t-spanner is also a It J-spanner, while 
there is no such correspondence in weighted graphs, even if all edges have integer 
weights. At the end of Sect. 4 it will be easy to see how our construction can be 
adjusted to allow arbitrary real values of t _> 3 in the weighted case. Since the 
above results are valid for more specific instances, the following corollary is then 
obtained immediately. 

C o r o l l a r y  6. 
1. For any fixed real valued t > 5, MinSt is YT)-complete for unweighted planar 

graphs, planar oriented graphs, and planar digraphs. 

1 Note that planarity of G implies planarity of S, while the converse is not true. 
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2. For any fixed real valued t >_ 3, MinSt is A/P-complete for weighted planar 
graphs, planar oriented graphs, and planar digraphs. 

We now introduce a new variant of general t-spanners, for which similar 
results are implied by the above theorems. 

Def in i t ion  7 (planar t - spanner ) .  For any real valued parameter t >_ 1, a 
spanning subgraph S = (V,E~;w) with E I C E is a planar t-spanner of a 
weighted graph G = (V,E;w), if ds(u,v) < t .  da(u,v) for all u,v E V, and 
S is planar. 

We now give the decision formulation of the corresponding minimization 
problem for planar t-spanners. 

Minimum Planar t - S p a n n e r  P rob lem (MinPSt) 
Given: A graph G with associated (positive real valued) edge weights and a 

positive real value W. 
Prob lem:  Does G contain a planar t-spanner with total edge weight at most 

W? 

As noted above, the only 1-spanner of an unweighted graph is the graph 
itself. Therefore MinPS1 is in 79 for unweighted graphs, because planarity can 
be tested in linear time (el. [HT74,BL76]). On the other hand, it is A/P-complete 
to decide whether an unweighted graph contains a tree t-spanner, i.e. a t-spanner 
which is a tree, if t >_ 4 [CC95]. Observe that spanning trees are planar spanning 
subgraphs with the least possible number of edges. Together with Theorems 3 
and 5 we have the following consequences: 

Corol lary  8. 
1. For any fixed real valued t > 4, MinPSt is HT)-compIete for unweighted 

graphs. 
2. For any fixed real valued t >_ 5, MinPSt is HT)-complete for unweighted 

graphs, oriented graphs, and digraphs, even if they are planar. 

For weighted graphs the situation is different. The graph itself need not be the 
only 1-spanner. But, as mentioned above, the unique 1-spanner with a minimal 
number of edges also is the unique minimum 1-spanner, and can be determined 
in polynomial time. Since all edge weights are positive, and every subgraph of a 
planar graph is planar, a minimum planar 1-spanner has a minimal number of 
edges. Therefore a minimum planar 1-spanner would have to be identical to the 
minimum 1-spanner, and we can conclude that MinPS1 is also in 7 ) for weighted 
graphs by testing the minimum 1-spanner for planarity. 

In [CC95] the A/P-completeness of the Tree t-Spanner Problem for t > 1 in 
weighted graphs is proven. By a close look at the transformation used there and 
by an appropriate choice of the bound on the total weight of a planar t-spanner, 
the proof can be modified to show the A/7)-completeness of MinPSt for t > 1 in 
weighted, undirected graphs. We omit the details and combine this observation 
with Theorems 4 and 5. 
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Table 1. The complexity status of MinSt and MinPSe in undirected graphs 

t 

1 

(1,2) 
[2,3) 
[3,4) 
[4,5) 

[5, oo) 

i 

MinSt, general graphs [MinPSt, general graphs Min(P)St, planar graphs 
[Cai94,CC95] 

unweighted[ weighted unweighted] weighted unweighted I weighted 
P P P P P P 
P X'PC P HPC P ? 

AfPC 2¢PC * HPC * ? 
HPC HPC ~ NPC ~ X'PC 

Jr'PC X'PC ArPC XPC NPC 
XPC X'PC ..V'PC NPC 

? 

X'PC A/" p c  

Corol lary  9. 

1. For any fixed real valued t > 1, MinP& is AlP-complete for weighted graphs. 
2. For any fixed real valued t >_ 3, MinPSt is AlP-complete for weighted graphs, 

oriented graphs, and digraphs, even if they are planar and the edge weights 
are restricted to be equal to 1 or 2. 

Table 1 summarizes the results for the complexity status of the problems 
considered in this paper in undirected graphs. We give the complexity status 
for MinSt with arbitrary input instances (as shown in [Cai94] and [CC95]), for 
MinPSt with arbitrary input instances, and for both problems with planar input 
instances 2. The results are listed for both the weighted and the unweighted case. 
A "?" indicates that the complexity status is unknown. 

3 MinSt for Unweighted, Planar Graphs 

In this section we prove Theorem 3, so all graphs are unweighted and planar. 
The other theorems are proven along the same lines and therefore this proof is 
described in detail first. Part of the proof modifies ideas of [Cai94]. 

Let t > 5 be an arbitrary fixed integer. Clearly MinSt is in A/'7 ), since the 
test whether a spanning subgraph S is a t-spanner can be done in polynomial 
time. By Lemma 2, we just have to check the (at most linear number of) edges 
of G that do not belong to S. To show the A/'7)-completeness, we transform 
the Planar 3-Satisfiability Problem to MinSt. For this, given an instance of the 
Planar 3-Satisfiability Problem, we construct a planar graph G, choose a weight 
W, and then show the equivalence of both problems for these instances. 

For the construction we use the fact that we can force edges to be in every 
minimum t-spanner by adding some additional edges. So this section first intro- 
duces the Planar 3-Satisfiability Problem and the concept of forcing, then gives 
the reduction. 

2 Observe that MinSt and MinPS~ are the same for planar instances. 
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2 3 

e 
a 

5--- - P~ 
6 ? 

Fig. 1. Forcing edge {a, b} into a 5-spanner 

3.1 The Planar 3-Satisfiability Problem 

The Planar 3-Satisfiability Problem is a variant of the 3-Satisfiability Problem 
with the additional restriction that  the underlying bipartite graph, where clause 
vertices are connected to variable vertices if the corresponding variables appear 
within the clause, is planar. 

Planar 3-Satisfiability Problem (P3SAT) 
Given:  A set U of variables, and a collection C of clauses over U with ]c I = 3 

for all c E C. Furthermore the bipartite graph G = (V, E) where V = U U C 
and E = {{x, e}: x or ~ occurs in c} is planar. 

Problem: Is there a satisfying truth assignment for C? 

The N'I)-completeness proof for this problem can be found in [Man83]. We 
use the planarity of the underlying graph of P3SAT to construct a planar graph 
in which we can easily determine the minimum t-spanner. 

3.2 Forc ing  Edges  in to  a M i n i m u m  t - S p a n n e r  

We can force an edge into a spanner by adding auxiliary edges to the given graph 
such that  every minimum t--spanner of the new graph contains this edge. This 
concept has appeared in [Cai94] and will be used extensively. 

L e m m a  10 ([Cai94]). Let e be an arbitrary edge of an unweighted graph G, 
and let G ~ be ~he graph constructed from G by adding two distinct paths P1 and 
P'2 of length t (all internal vertices of P1 and P2 are new vertices) between the 
two ends of e. Then for any minimum t-spanner S of G t, edge e belongs to S. 

The two auxiliary paths P1 and P2 are called forcing paths, edge e is called 
forced edge. A forced 1-component is a simple path of length I consisting of l 
forced edges together with their forcing paths. ]~br an example of a forced edge 
e = {a, b} with t = 5, see Fig. 1. A minimum t--spanner of this graph contains 
exactly 2. (t - 1) + 1 = 2t - 1 = 11 edges: edge (a, b} and t - 1 = 4 edges from 
the forcing paths (a, 1, 2, 3, 4, b) and (a, 5, 6, 7, 8, b) each. 

3.3 C o n s t r u c t i o n  of  t h e  i n s t a n c e  

We start with the planar, embedded underlying graph of the given instance 
(U, C) of P3SAT and extend the variable and clause vertices to form variable 
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components and clause components. Then these components are combined to 
form truth assignment testing components which reflect the relationship between 
the satisfiability of a clause and the existence of a minimum t-spanner. As a last 
step we choose the bound on the number of edges in the Minimum t-Spanner 
Problem. 

The  Variable Componen t s .  The key idea behind the variable component is 
that it is planar and each of its possible minimum t-spanners reflects exactly 
one truth assignment for the variable. For every variable x E U we construct a 
variable component Tx as follows. Let k be the number of (positive and negative) 
occurrences of the variable x in all clauses. 

1. Create a central vertex x*. 
2. For each occurrence of x in a clause c create a block of four new vertices x~ c), 

~ c )  x~C), and g~c), thus yielding 4k so-called literal vertices in total. Within 
each block, the vertices are positioned in this order, and the blocks are 
arranged circularly around x* according to the embedding of the underlying 
graph of the instance of P3SAT. 

3. Connect eachpair ofneighboringliteral vertices by aforced (t-1)-component 
such that a circle of 4k forced (t - 1)-components is formed altogether. 

4. Connect x* with all literal vertices by an edge, called literal edge. An edge 
,rx!~) x*} is called positive literal edge, an edge t-(c) Ixi , x*} is called negative 
literal edge. 

5. Create new auxiliary vertices between all pairs of neighboring literal edges, 
i.e. in total 4k auxiliary vertices. Connect each of these by an edge with x* 
(called auxiliary edge) and by two distinct forced ( t -  1)-components with 
its neighboring literal vertices. Their literal edges are then called associated 
literal edges of the auxiliary edge and vice versa. 

Figure 2 illustrates this construction. For readability a symbolic represen- 
tation is used later on when larger portions of the graph are drawn. Now, a 
minimum t-spanner can contain only consistent literal edges: 

L e m m a  11. Any minimum t spanner of a variable component T~ contains ei- 
ther all positive or all negative literal edges. 

Proof. Let S be an arbitrary minimum t-spanner of T~. Then S contains all 
forced edges and t -  1 edges from each forcing path. Observe that these edges to- 
gether with either all 2k positive or all 2k negative literal edges form a t-spanner. 
Thus S can contain at most 2k edges out of the 8k literal and auxiliary edges. 

By construction of the variable component, both associated auxiliary edges 
and both neighboring negative (resp. positive) literal edges are covered by a 
positive (resp. negative) literal edge in S. But, by an auxiliary edge in S, only 
the associated literal edges are covered. 

Now assume that S contains an auxiliary edge. Then S also contains either 
the next auxiliary edge, too, or the next not associated literal edge. In total, this 
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(a)  x* ' x x ~  

~, " ] : ' '" l "  / / /i 
I . ! I I 

~xl : ~ lll/l 

- - -  literal edge -(~.) 
• auxiliary edge x 1 

- -- forced (t- l)-component 

(b) x* 

2 

2 

Fig. 2. (a) Part of the variable component T~ ~br the variable x occurring in clause c, 
(b) its symbolic representation 

leads to more than 2k additional edges and thus contradicts the minimatity of 
S. Similarly', assume that  S contains two inconsistent literal edges. Then there 
must be at least one auxiliary edge belonging to S or more than 2k literal edges 
to cover all other edges. Again, this contradicts tile minimality of S. Thus S 
contains exactly every other literal edge. [] 

With this lemma it can easily be deduced that the number of edges of each 
minimum t-spanner of Tx is 4.3k. (t - 1) • (2t - 1) + 2k. 

T h e  C lause  C o m p o n e n t s .  The clause component for each clause e C C is 
basically a quadrilateral consisting of four clause vertices 1,2,3, and 4, where 
the sides are tbrmed by distinct forced (t - 2)-components. Vertices 1 and 3 
are additionally connected by an edge, called clause edge. See Fig. 3(a) for an 
example 3. Observe that  any minimum t-spanner for t _> 5 of such an isolated 
clause component must contain the clause edge. 

T h e  T r u t h  A s s i g n m e n t  T e s t i n g  C o m p o n e n t s .  Now we combine the clause 
components with the variable components according to the given clauses by 
identifying vertices. Three sides of the quadrilateral in the clause component 
each correspond to one of the literals in the corresponding clause. (The fourth 
side is used to make the arguments symmetrical.) The endpoints of each such 
side of the quadrilateral are thus identified with the two corresponding literal 
vertices of the corresponding block in the variable component: if clause c contains 

the positive literal we use the positive literal vertices xl c), and ~i c) otherwise. 
See Fig. 3(b) for an example. 

3 Our construction is a bit more complex than actually needed in the unweighted ease, 
but will not have to be changed much when being modified for the weighted and the 
directed case. 
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(a) (b) y ,  z ~ z 

2 I y / ' /  
/ \ 

z \ 
/ \ 

, - - - forced (t-2)-component 
/ \ 

. . . . . . . .  forced (t- 1 )-component 3,( • 1 
\ / - - - -  literal edge 

\ / 

\ ~ clause edge \ / 

\ \o ,  / 
4 

X 
X 

Fig.  3. (a) Clause component, (b) the truth assignment testing component for clause 
c = x V y V ~ using the symbolic representation for relevant blocks of the variable 
components 

( a )  (b) 

. . . .  .............. 

I \, / .. , ', ' 
- \ ~ / \ , 

"g, . 
: , \ / 

/ - ' - : : \  / - - -  f orced(t-2)-eomponent 

....... ' : :"~ i i ; i ;  ~brced (t- l)-component 
non-spanner edge 

X *  X *  - -  spanner edge 

y *  Z *  

 ii;J 
Fig.  4. The minimum t-spanner in the truth assignment testing component 

Note that the combination of the variable components with the clause com- 
ponents does not affect the validity of Lemma 11. We now have the following 
lemma: 

L e m m a  12. For any fixed integer t > 5, a minimum t-spanner S of a truth 
assignment testing component contains the clause edge if and only if S contains 
no pair of consistent literal edges that is incident to the clause edge. 

Pro@ If  S does not  contain a pair  of l i teral edges t ha t  is incident to the  clause 
edge (cf. Fig. 4(a)) ,  then  every p a t h  connect ing the  endpoin ts  of  the  clause edge 
in S ei ther  uses the  clause edge or has length at  least  2(t - 2) > t, if t >_ 5. 

For the  o ther  direct ion see Fig. 4(b). Assume tha t  S contains a pair  of  incident  
consis tent  l i teral  edges. T h e n  this provides a shor tcu t  for one of the  forced ( t -  2 ) -  
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components, and thus there is a path of length 2 + (t - 2) = t in S connecting 
the endpoints of the clause edge. Hence the clause edge is covered. [] 

Thus the number of edges in a minimum t-spanner of such a t ru th  assignment 
testing component reflects the t ruth value of the corresponding clause. This 
completes the construction of the graph. All isolated components are planar, 
and since we start  from an instance of P3SAT, the whole graph is planar. It 
is also easily seen that  the instance is biconnected, and can be constructed in 
polynomial time. 

C h o i c e  o f  W. We set W, the bound on the number of edges in a t-spanner,  to 

W = 6m + 36m(2t - t )( t  - 1) + 4rn(2t - 1)(t - 2), 

where rn is the number of clauses of the instance of P3SAT. 

3.4 E q u i v a l e n c e  o f  t h e  P r o b l e m s  

In this subsection, let (U, C) be an instance of P3SAT, and (G, W) the instance 
for MinS, constructed as described above. We will show that  there is a satisfying 
t ru th  assignment for (U, C), if and only if G has a t -spanner with at most W 
edges. 

L e m m a  13. If the set of clauses C of (U, C) is satisfiable, then there ezists a 
planar t-spanner of G with at most W edges. 

Pro@ Suppose that  the set of clauses C is satisfiable, and let 0 be a satisfying 
t ru th  assignment. From this we construct the subgraph S of G as follows: 

1. S contains all forced edges. 
2. S contains t - 1 arbitrarily chosen edges from each forcing path. 
3. For each variable z E U, S contains all positive literal edges if 0(x) is true, 

and all negative literal edges otherwise. 

By this construction, S is trivially a spanning subgraph. The number of edges 
W' in S computes as follows. S contains 

- 3- m.  3-4 .  (t - 1) forced edges from the variable components (overall number 
of variable occurrences is 3m), 

- 3 .  m .  3 - 4 .  (t - 1).  2(t - 1) edges from the forcing paths of the variable 
components, 

- 4. m - (t - 2) forced edges from the clause components, 

- 4. m- (t - 2). 2(t - 1) edges from the forcing paths of the clause components, 

and 

- 3. rn • 2 literal edges. 
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Hence S contains exactly W' = 6v; + 36m(2t - 1)(t - 1) + 4 m ( 2 t -  1)(t - 2) = W 
edges. 

It remains to show that S is a t-spanner of G. According to Lemma 2, we 
only have to show that for every edge not contained in S, there exists a path of 
length at most t connecting the endpoints of that edge. This is obvious for the 
variable components. For the clause edges observe that, since 0 is a satisfying 
truth assignment, there is at least one literal in each clause that. is true. Due to 
the construction of S we thus have at least one incident pair of literal edges in 
each clause component. From Lemma 12 it follows that S is a t-spanner. [] 

To show the opposite direction we need another iemma: 

L e m m a  14. Any minimum t-spanner S of G contains at least W edges. 

Proof. Any t-spanner S of G musi; contain all forced edges and t - 1 edges from 
each forcing path. By Lemma 11, S contains at least either all positive or all 
negative literal edges for each variable component. This sums up to W. [] 

Lernma 15. If a has a t-spanner with at most W edges, then there ezists a 
satisfying truth assignment for (U, C), 

Proof. Suppose S is a t-spanner of G with at most W edges. Then by Lemma 14 
S is a minimum t-spanner and contains exactly W edges. All forced edges and 
the according number of edges from the forcing paths must be in S. Hence there 
remain only 6m further edges which can only be consistent literal edges (by 
Lemma 11). Thus we can uniquely define a truth assignment 0 by setting, for 
each x E U, O(x) = true, if S contains the positive literal edges of Tx, and 
O(x) = false otherwise. 

Since S is a t-spanner and S contains no clause edge it follows from Lemma 12 
that there is at least one incident pair of literal edges for every clause edge. Hence 
0 satisfies all clauses. D 

This completes the proof of Theorem 3. 

4 M i n S t  f o r  W e i g h t e d ,  P l a n a r  G r a p h s  

We will now prove Theorem 4. Again, we transform an instance of P3SAT to 
an instance of MinSt by extending variable and clause vertices to appropriate 
components. The fact that we are now allowed to also assign edge weights of 
value 2 will be exploited to lower the bound on t, thus yielding a stronger result 
than in the unweighted case. 

The variable components remain the same with all edges having unit edge 
weight, and the results about minimum t-spanners for these components keep 
valid (Lemma 11). The clause components again consist of four clause vertices, 
but now three sides of the quadrilateral remain unconnected. Only one side is 
connected by two consecutive forced (t - 1)-components with unit edge weights. 
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1 

X* 1 

. . . . .  forced (t-1)-component, unit weight 
1 literal edge, unit weight 
2 clause edge, weight 2 

Fig. 5. The truth assignment testing component in the weighted case 

As before, we have one clause edge, now having edge weight 2. We combine 
the components to form the t ruth assignment testing components as we did in 
the unweighted ease by identifying the corresponding vertices (see Fig. 5 for an 
example). Note that  every edge in the so-constructed instance has unit edge 
weight, except for the clause edges which are assigned a weight of 2. 

To make use of the proof structure from Sect. 3, we provide the ibllowing 
1emma (cf. Lemma 12). 

L e m m a  16. For any fixed integer t > 3, a minimum t-spanner S of a truth 
assignment testing component contains the clause edge if and only if S contains 
no pair of literal edges incident to the clause edge. 

Pro@ If S does not contain a pair of literaI edges that  is incident to the clause 
edge, then every path connecting the endpoints of the clause edge in S either 
uses the clause edge or has length at least 4(t - 1) > 2t, if t > 3. 

Assume that  S contains a pair of incident consistent literal edges. Then 
we can combine these edges with the two forced (t - 1)-components of the 
neighboring side of the quadrilateral to form a path of length 2 + 2(t - 1) = 2t 
connecting the endpoints of the clause edge. Hence in this case the clause edge 
is covered. O 

It is easily seen that  the constructed graph is again planar and biconnected. 
By choosing W = 6m + 36m(t - 1)(2t - 1) + 2 m ( t -  1)(2t - 1) the arguments of 
the previous section can be repeated to complete the proof of Theorem 4. 

Corollary 6 states that  Theorem 4 can be generalized to allow real values of 
t > 3. This can be seen by using forced ([t] - 1)-components in the construction 
described above. All results about minimum t-spanners then keep valid. 
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c 

d 

Fig. 6. Forcing arc (a, b) into a 5-spanner 

5 MinSt for Planar Digraphs 

In this section we turn to Theorem 5. To show the HJ)-completeness for di- 
graphs, we again use a modification of the reduction of the previous sections. 
Here we only give the details of the construction for the unweighted case, since 
the weighted case is then straightforward from what has been established so far. 

F o r c i n g  Arc s  in to  a M i n i m u m  t - S p a n n e r .  Similar to the undirected case, 
an arc (a, b) of a digraph can be forced to be in every minimum t-spanner  as 
described in [Cai94]. For this purpose we create two new vertices c and d, add 
two arcs (c, b) and (d, b), and then add two distinct directed paths of length t -  1 
from c to a and from d to a, respectively. Then a minimum t-spanner  of this 
component consists of are (a, b) and all arcs of the paths of length t - 1. Figure 6 
shows an example for t = 5. 

T h e  Va r i ab l e  C o m p o n e n t s .  A directed variable component consists of a 
central vertex x*, and four literal vertices x~ c), ~ ) ,  x~ ~), and y~c) together with 
four literal arcs for each positive or negative occurrence of variable x in a clause 
c. The orientation of the literal arcs depends on what the connection to the 
clause components will be like (see below). In the following, (x, y) stands for 
exactly one of the arcs (x, y) and (y, x), which will never be present at the same 
time. We add the following components and auxiliary vertices or arcs: 

- All pairs of neighboring literal vertices zl c) and ~I c) are connected by two 
distinct directed forced (t - 1)-components, one in either direction. Their 
literal arcs will be directed both either from or to x*. If they are both directed 
from (resp. to) x*, add an auxiliary vertex ai and an auxiliary arc (x*, ai) 
(resp. (ai,x*)).  Also connect ai with x~ c) and g~c) by two distinct directed 
forced (t - 1)-components directed from the literal vertices to ai (from ai to 
the literal vertices). 

- Between the other pairs of neighboring literal arcs add an auxiliary arc 
(x lC) ,~) ) ,  such that  (xlC),x*), (x*,~c)), (~C),x) do not form a directed cy- 

cle. Additionally connect x~ ~) and ~c)  with x* by directed forced ( t -  1)- 
components parallel to their corresponding literal arcs. 
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(a) 
X* 

X(~ ) 
literal arc 

..... ~'~ auxiliary arc 
- - ~'- directed forced (t-1)-component 

' .... a I ~ I 

j ........... j~c) 
J 2 

(b) X* 
/ 
/ ~ o  

x 

Fig. T. (a) Part of the directed variable component for the variable x occurring in 
clause c, (b) its symbolic representation 

Figure 7 gives an example of a directed variable component  and its symbolic 
representation. As in the undirected case this construction guarantees tha t  every 
minimum t -spanner  of such a variable component only contains consistent literal 
arcs (eft Lemma 11). This can be seen as follows. All positive (or negative, 
respectively) literal arcs together with the appropriate  arcs from the forced arcs 
form a t -spanner .  By the construction of the auxiliary arcs at least every other 
literal arc has to be included into a t -spanner.  No other auxiliary arc is covered 
by an auxiliary arc in the t-spanner.  

T h e  C l a u s e  C o m p o n e n t s .  We define clause components analogously to the 
undirected case, where the clause arc and the forced (t - 2)-components are 
oriented such tha t  they s tar t  and end at the same vertices of the quadrilateral.  

T h e  T r u t h  A s s i g n m e n t  T e s t i n g  C o m p o n e n t s .  Again we combine the vari- 
able and clause components by identifying the corresponding vertices. According 
to the choice of the orientation of the clause arc, the corresponding literal arcs 
are now oriented such that  the literal arcs together with one of the directed 
forced (t - 2)-components of the clause component form a directed pa th  paral- 
lel to the clause arc. The remaining literal arcs of the variable component  are 

oriented such tha t  pairs (xl~) ,x  *) and ( ~ ) , x * )  of corresponding inconsistent 
literal arcs are directed likewise from or to x*. Figure 8 shows an example of 
such a directed t ru th  assignment testing component.  

This completes the construction for the directedi unweighted case. It  is easily 
seen tha t  the graph is planar and oriented. Choosing W as in the undirected case 
(W = 6rn + 36m(t - 1) (2t - 1) + 4rn(t  - 2) (2t - 1)), the proof of the equivalence 
of P3SAT and MinS~ is straightforward as before. 
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y* 

X* 

/*'~ff/ 

- - ~  directed forced (t-2)-component 

. . . .  directed forced (t- 1)-component 

,- literal arc 

clause arc 

Fig. 8. The directed truth assignment testing component for unweighted digraphs 

W e i g h t e d  D i g r a p h s .  In the weighted, directed case the same variable compo- 
nents (with unit arc weights) are used. The clause components are the ones from 
the weighted, undirected case, and orientations are determined analogously. 
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