
Engineering Graph Clustering: Models and
Experimental Evaluation

ULRIK BRANDES

University of Konstanz

and

MARCO GAERTLER and DOROTHEA WAGNER

Universität Karlsruhe

A promising approach to graph clustering is based on the intuitive notion of intracluster density
versus intercluster sparsity. As for the weighted case, clusters should accumulate lots of weight,
in contrast to their connection to the remaining graph, which should be light. While both for-
malizations and algorithms focusing on particular aspects of this rather vague concept have been
proposed, no conclusive argument on their appropriateness has been given. In order to deepen the
understanding of particular concepts, including both quality assessment as well as designing new
algorithms, we conducted an experimental evaluation of graph-clustering approaches. By combin-
ing proved techniques from graph partitioning and geometric clustering, we also introduce a new
approach that compares favorably.

Categories and Subject Descriptors: G.2.3 [Discrete Mathematics]: Applications; H.3.3 [Infor-
mation Search and Retrieval]: Clustering

General Terms: Algorithm, Design

Additional Key Words and Phrases: Graph clustering, experimental evaluation, quality measures,
clustering algorithms

ACM Reference Format:
Brandes, U., Gaertler, M., and Wagner, D. 2007. Engineering graph clustering: Models
and experimental evaluation. ACM J. Exp. Algor. 12, Article 1.1 (2007), 26 pages DOI =
10.1145/1227161.1227162 http://doi.acm.org/10.1145/1227161.1227162

A previous version appeared as Experiments on Graph Clustering Algorithms, at the European
Symposium on Algorithms (ESA 2003).
This work was partially supported by the DFG under grant BR 2158/2-3 and WA 654/14-3 and EU
under grant IST-2001-33555 COSIN and DELIS (contract no. 001907).
Authors’ addresses: Ulrik Brandes, Department of Computer and Information Science, Univer-
sity of Konstanz, Box D 67, 78457 Konstanz, Germany; email: ulrik.brandes@uni-konstanz.de,
http://www.inf.uni-konstanz.de/algo/; Marco Gaertler and Dorothea Wagner, Department of
Computer Sciences, Universität Karlsruhe (TH), Box 6980, 76128 Karlsruhe, Germany; email:
{gaertler,wagner}@informatik.uni-karlsruhe.de, http://i11www.informatik.uni-karlsruhe.
de/.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-6654/2007/ART1.1 $5.00 DOI 10.1145/1227161.1227162 http://doi.acm.org
10.1145/1227161.1227162

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

2 • U. Brandes et al.

1. INTRODUCTION

Clustering is an important issue in the analysis and exploration of data. There
is a wide area of applications, e.g., data mining, VLSI design, computer graphics,
and gene analysis. (See also Jain and Dubes [1988] and Jain et al. [1999] for
an overview.) Roughly speaking, clustering means discovering natural groups
of similar elements in data sets. An interesting and important variant of data
clustering is graph-clustering. On the one hand, similarity is often expressed by
a graph. On the other hand, there is, in general, a growing interest in network
analysis.

A natural notion of graph clustering is the separation of sparsely connected
dense subgraphs from each other. Several formalizations have been proposed.
However, the comprehension of current algorithms and indices is still rather
intuitive. As a first step toward a deeper understanding, we performed a prelim-
inary study in Brandes et al. [2003] using unweighted graphs. The experiments
verified that algorithms, as well as quality measures, behave very well in the
case of almost disjoint cliques. These cases have an incontrovertible clustering
structure. However, the results became ambiguous as soon as intracluster den-
sity decreased or intercluster sparsity increased. Algorithms as well as quality
measurements reacted quite differently. In the case of weighted graphs, the
simple paradigm gains additional ambiguities, namely, the interpretation of
sparse, yet heavy, or dense, yet light, subgraphs. These potential groups fulfill
the density or weight criterion, while failing the other. Thus their relevance as
clusters is questionable or at least depends on the application. Along the lines
of Brandes et al. [2003], we concentrate on indices and algorithms that focus
on the relation between the number of intra- and intercluster edges.

In Vempala et al. [2000], some indices measuring the quality of graph clus-
tering are discussed. Conductance, an index concentrating on the intracluster
edges is introduced and a clustering algorithm that repeatedly separates the
graph is presented. A graph-clustering algorithm incorporating the idea of per-
forming a random walk on the graph to identify the more densely connected
subgraphs is presented in van Dongen [2000] and the index performance is
considered to measure the quality of a graph clustering. The idea of random
walks is also used in Harel and Koren [2001], but only for clustering geo-
metric data. Obviously, there is a close connection between graph clustering
and the classical graph problem minimum cut. A purely graph-theoretic ap-
proach using this connection, more or less directly, is the recursive minimum
cut approach presented in Hartuv and Shamir [2000]. Other more advanced
partition techniques involve spectral information as in Vempala et al. [2000],
Spielman and Teng [1996], and Chung and Yau [1994, 1997]. Very recently,
the physics community presented techniques based on centralities and statis-
tical properties. For example, an algorithm that iteratively prunes edges based
on betweenness centrality was introduced as a clustering technique in New-
man and Girvan [2004]. A related quality measure named modularity was pre-
sented in Clauset et al. [2004]. It evaluates the significance of clustering with
respect to the graph structure by considering a random rewiring of the edge
set.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 3

It is not precisely known how well indices that formalize the relation between
the number of intra- and intercluster edges measure the quality of a graph clus-
tering. Moreover, there exists no conclusive evaluation of algorithms that focus
on such indices. Therefore, our main goal is to perform an experimental eval-
uation that deepens the understanding of clustering techniques and quality
assessment. As a partial result, we confirm the claim that all indices show cer-
tain artifical behavior (as presented for the unweighted case in Brandes et al.
[2003]). Thus, it is natural to parameterize algorithms in order to incorporate
different quality aspects. As a consequence, we engineered such an approach.
In this paper, we give a summary of quality indices, including a comparison
of unweighted versus weighted version, and conduct an experimental evalu-
ation of graph-clustering approaches. The algorithms under comparison are
the iterative conductance cut algorithm presented in Vempala et al. [2000],
the Markov clustering approach from van Dongen [2000], and our method
Brandes et al. [2003], which combines spectral embeddings and decomposition-
based minimum spanning trees (MST). The idea of using a MST that way has
been considered before [Zahn 1971]. However, to our knowledge, the MST de-
composition was only used for geometric data or data embedded in metrical
spaces Ho et al. [2003] and not for graphs. Since we consider general graphs
with no additional geometric information and also unweighted ones, the initial
spectral embedding is a neccessary and vital part in the algorithm. In order to
keep the benchmarks and obtained results conclusive, we restricted ourselves
to algorithms and quality measures that were used for similar purposes. In
particular, we excluded the approaches of the physics community because of
unresolved issues, such as the lack of description as an optimization problem,
unknown complexity issues, tremendous increase of parameters for weighted
versions, and artifical behavior. Since many of these approaches cover novel
ideas, they might be subject of future research.

In Section 2, the notation used throughout the paper is introduced and clus-
tering indices considered in the experimental study are presented. Section 3
gives a detailed description of the three algorithms considered. The experi-
ments are described in Section 4, which contains the generator model, imple-
mentational aspects, and the results. A summary and an outlook in Section 5
concludes the article.

2. INDICES FOR GRAPH CLUSTERING

Throughout this paper, we assume that G = (V , E, ω) is a simple, connected,
and undirected graph with a positive edge weighting ω: E → R+. Let |V | =:
n, |E| =: m and C = (C1, . . . , Ck) a partition of V . We call C a clustering of G
and the Ci clusters; C is called trivial if either k = 1, or all clusters Ci contain
only one element. The set of edges, which have one endnode in Ci and the other
endnode in Cj , is denoted by E(Ci, Cj) := {{v, w} ∈ E : v ∈ Ci, w ∈ Cj }. In the
following, we often identify a cluster Ci with the induced subgraph of G, i.e., the
graph G[Ci] := (Ci, E(Ci)), where E(Ci) := E(Ci, Ci). Then, E(C) := ⋃k

i=1 E(Ci)
is the set of intracluster edges and E(C) := E \ E(C) the set of intercluster
edges. The number of intracluster edges is denoted by m(C) and the number of
intercluster edges by m(C). In analogy, the weight of all intracluster edges is

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

4 • U. Brandes et al.

denoted by ω(C) and the weight of all intercluster edges by ω(C). For an edge
subset E ′ ⊆ E, the symbol ω(E ′) is a short-cut for

∑
e∈E ′ ω(e). A clustering C =

(C, V \ C) is also called a cut of G and m(C) the size of the cut. A cut with
minimum size is called a mincut.

The used indices exhibit a general structure that emphasizes the paradigm
of intracluster density versus intercluster sparsity. This structure can be de-
scribed by two independent, nonnegative functions f and g that measure the
density and the sparsity, respectively, and that depend “only” on the clustering.
In order to normalize the range of the index, a third function N , that depends
only on the input graph, is used. An index index(C) is composed as shown in
Eq. (1).

index(C) := f (C) + g (C)
N (G)

(1)

The normalization function N (G) should be set to the maximum of f + g over
all clusterings.

2.1 Coverage

The coverage(C) of a graph clustering C is the fraction of the weight of intra-
cluster edges with respect to the total weight of all edges, i. e., f (C) = ω(E(C)),
g ≡ 0 and N (G) = ω(E) or short:

coverage(C) := ω(C)
ω(E)

= ω(C)
ω(C) + ω(C)

Intuitively, the larger the value of coverage(C), the better the quality of a
clustering C. Notice that a mincut has maximum coverage and, in this sense,
would be an “optimal” clustering. However, in general, a mincut is not consid-
ered to be a good clustering of a graph. Therefore, additional constraints on the
number of clusters or the size of the clusters seem to be reasonable. While a min-
cut can be computed in polynomial time, constructing a clustering with a fixed
number k (k ≥ 3) of clusters and optimal coverage value, as well as finding a
mincut satisfying certain size constraints on the clusters, is NP-hard [Ausiello
et al. 2002; Wagner and Wagner 1993].

2.2 Intra- and Intercluster Conductance

The conductance of a cut compares the size of the cut and the weight of edges
in either of the two induced subgraphs. The conductance ϕ(G) of a graph G
is then the minimum conductance value over all cuts of G. For a clustering
C = (C1, . . . , Ck) of a graph G, the intracluster conductance α(C) is the mini-
mum conductance value over all induced subgraphs G[Ci], while the interclus-
ter conductance δ(C) is the maximum conductance value over all induced cuts
(Ci, V \ Ci). For a formal definition of the different notions of conductance, let
us first consider a cut C = (C, V \C) of G and define conductance ϕ(C) and ϕ(G)
as follows:

a(C) :=
∑
v∈C

∑
cw ∈ V ,

{v, w} ∈ E

ω({v, w}) = 2
∑

e∈E(C)

ω(e) +
∑

f ∈E(C,V \C)

ω(f)

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 5

ϕ(C) :=
⎧⎨
⎩

1, C ∈ {∅, V }
0, C /∈ {∅, V } and ω(C) = 0

ω(C)
min (a(C),a(V \C)) , otherwise

ϕ(G) := min
C⊆V

ϕ(C)

Then a cut has small conductance if its size is small in relation to the density
of either side of the cut. Such a cut can be considered as a bottleneck. Minimiz-
ing the conductance over all cuts of a graph and finding the according cut is
NP-hard [Ausiello et al. 2002], but can be approximated with polylogarithmic
approximation guarantee, in general, and constant approximation guarantee
for special cases [Chung and Yau 1994, 1997]. Based on the notion of conduc-
tance, we can now define intra- α(C) and intercluster conductance δ(C).

α(C) := min
i∈{1,...,k}

ϕ(G[Ci]) and

δ(C) :=
{

1, if C = {V }
1 − maxi∈{1,...,k} ϕ(Ci), otherwise

Expressing both indices in the general framework, we obtain g ≡ 0 for
intracluster conductance and f ≡ 0 for intercluster conductance, while, in
both cases, N ≡ 1, which is also the maximum of f + g . In a clustering with
small intracluster conductance there is supposed to be at least one cluster con-
taining a bottleneck i.e., the clustering is possibly too coarse, in this case. On
the other hand, a clustering with small intercluster conductance is supposed
to contain at least one cluster that has relatively strong connections outside
i.e., the clustering is possibly too fine. To see that a clustering with maximum
intracluster conductance can be found in polynomial time, first consider m = 0.
Then, α(C) = 0 for every nontrivial clustering C, since it contains at least one
cluster Cj with ϕ(G[Cj]) = 0. If m
= 0, consider an edge {u, v} ∈ E and the
clustering C with C1 = {u, v}, and |Ci| = 1 for i ≥ 2. Then, α(C) = 1, which is
the maximum.

Thus, intracluster conductance has some artifical behavior for clusterings
with many small clusters. This justifies the restriction to clusterings satisfying
certain additional constraints on the size or number of clusters. However, under
these constraints, maximizing intracluster conductance becomes an NP-hard
problem. Finding a clustering with maximum intercluster conductance is NP-
hard as well, because it is at least as hard as finding a cut with minimum
conductance.

2.3 Performance

The performance(C) of a clustering C counts the number of “correctly inter-
preted pairs of nodes” in a graph. More precisely, it is the fraction of intracluster
edges together with nonadjacent pairs of nodes in different clusters within the
set of all pairs of nodes. The function f counts the number of edges within all
clusters while the function g counts the number of nonadjacent pairs belonging

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

6 • U. Brandes et al.

to different clusters (Eq. 2).

f (C) =
k∑

i=1

|E(Ci)|

g (C) =
k∑

i=1

∑
j>i

|{{u, v}
∈ E | u ∈ Ci, v ∈ Cj }| (2)

performance(C) := f (C) + g (C)
1
2 n(n − 1)

Calculating the performance of a clustering according to this formula would
be quadratic in the number of nodes. Especially if the performance has to be
computed for a sequence of clusterings of the same graph, it might be more
efficient to count the number of “errors” instead (Eq. 3).

1 − performance(C) = 2m(1 − 2 coverage(C)) + ∑k
i=1 |Ci|(|Ci| − 1)

n(n − 1)
(3)

Maximizing the performance is NP-hard [Shamir et al. 2002]. There are sev-
eral ways to extend the definition of performance for weighted graphs. For exam-
ple, one can use more complex models for classifications, however, such models
highly depend on the underlying application. Thus, we engineered two alter-
natives that integrate the weights in their counting schema. Since, a weighted
analogon needs to assign a weight to node pairs that are not connected with
an edge, an estimate or a corresponding interpretation is required. Therefore,
let M be a meaningful upper bound on the values of ω (see Gaertler [2005] for
a detail discussion of the meaning of M). The first version uses:

f (C) :=
k∑

i=1

ω(E(Ci))

g (C) :=
k∑

i=1

∑
j>i

M |{{u, v}
∈ E | u ∈ Ci, v ∈ Cj }|

The normalization factor is 1/2n(n−1)M . The idea is to count the weight of the
edges and assuming that not-existing edges “have” maximum weight. However,
the weight of the intercluster edges is neglected. This can be integrated by
modifying g :

g ′(C) := g (C) + M |E(C)| − ω(E(C))

By scaling this addition term accordingly, we can define the influence of the
intercluster edges. Let ϑ ∈ [0, 1] be a scaling parameter, then the complete
formula is given by:

performancew(C) := f (C) + g (C) + ϑ · (M |E(C)| − ω(E(C)))
1
2 n(n − 1)M

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 7

This process can also be applied to Eq. (3) that results in:

f̃ (C) :=
k∑

i=1

(
M

1
2

|Ci|(|Ci| − 1) − θω(E(Ci))
)

g̃ (C) := ω(E(C))

where θ ∈ [0, 1] is a scaling parameter controlling the influence of the intra-
cluster edges. We used different symbols f̃ and g̃ to clarify that these functions
count errors. The complete formula is:

performancem(C) = 1 − f̃ (C) + g̃ (C)
1
2 n(n − 1)M

Note that both versions are the same for ϑ = θ = 1. In general, this is not true
for other choices of ϑ and θ . In the following, we will only use performancew
with scaling parameter ϑ = 1.

More information about quality indices can be found in Gaertler [2005].

3. GRAPH-CLUSTERING ALGORITHMS

Two graph-clustering algorithms that are assumed to perform well with respect
to the indices described in the previous section are outlined. The first one it-
eratively emphazises intra- over intercluster connectivity and the second one
repeatedly refines an initial partition based on intracluster conductance. While
both essentially operate locally, we also propose another, more global method.
In all three cases, the asymptotic worst-case running time of the algorithms
depend on certain parameters given as input. However, notice that for mean-
ingful choices of these parameters, the time complexity of the new algorithm
GMC is better than for the other two.

All three algorithms employ the normalized adjacency matrix of G i.e.,
M (G) = D(G)−1 A(G), where A(G) is the weighted adjacency matrix and D(G)
the diagonal matrix of the weighted node degrees. In order to define D(G)−1,
we require that G contains no isolated nodes.

3.1 Markov Clustering (MCL)

The key intuition behind Markov clustering (MCL) [van Dongen 2000, p. 6] is
that a “random walk that visits a dense cluster will likely not leave the cluster
until many of its vertices have been visited.” Rather than actually simulating
random walks, MCL iteratively modifies a matrix of transition probabilities.
Starting from M = M (G) (which corresponds to random walks of a length of at
most one), the following two operations are iteratively applied:

� expansion, in which M is taken to the power e ∈ IN>1 thus simulating e steps
of a random walk with the current transition matrix (Algorithm 1, Step 1)

� inflation, in which M is renormalized after taking every entry to its rth power,
r ∈ IR+. (Algorithm 1, Steps 2–4)

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

8 • U. Brandes et al.

Algorithm 1. Markov Clustering (MCL)

Input: G = (V , E, ω), expansion parameter e, inflation parameter r
M ← M (G)
while M is not fixed point do

1 M ← M e

2 forall u ∈ V do
3 forall v ∈ V do Muv ← Mr

uv

4 forall v ∈ V do Muv ← Muv∑
w∈V Muw

H ← graph induced by non-zero entries of M
C ← clustering induced by connected components of H

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities
within a row, while for r < 1, homogeneity is emphasized. The iteration is
halted upon reaching a recurrent state or a fixed point. A recurrent state of
period k ∈ IN is a matrix that is invariant under k expansions and inflations,
and a fixed point is a recurrent state of period 1. It is argued that MCL is most
likely to end up in a fixed point [van Dongen 2000]. The clustering is induced by
connected components of the graph underlying the final matrix. Pseudocode for
MCL is given in Algorithm 1. Except for the stop criteria, MCL is deterministic,
and its complexity is dominated by the expansion operation, which essentially
consists of matrix multiplication.

3.2 Iterative Conductance Cutting (ICC)

The basis of iterative conductance cutting (ICC) [Vempala et al. 2000] is to
iteratively split clusters using minimum conductance cuts. Finding a cut with
minimum conductance is NP–hard, therefore, the following polylogarithmic
approximation algorithm is used. Consider the node ordering implied by an
eigenvector to the second largest eigenvalue of M (G). Among all cuts that split
this ordering into two parts, one of minimum conductance is chosen. Splitting
of a cluster ends when the approximation value of the conductance exceeds an
input threshold α∗ first. Pseudocode for ICC is given in Algorithm 2. Except for
the eigenvector computations, ICC is deterministic. While the overall running
time depends on the number of iterations, the running time of the conductance
cut approximation is dominated by the eigenvector computation, which needs
to be performed in each iteration.

3.3 Geometric MST Clustering (GMC)

Geometric MST clustering (GMC) is a new graph-clustering algorithm combin-
ing spectral partitioning with a geometric-clustering technique. A geometric
embedding of G is constructed from d distinct eigenvectors x1, . . . , xd of M (G)
associated with the largest eigenvalues less than 1. The edges of G are then
weighted by a distance function induced by the embedding and a minimum
spanning tree (MST) of the weighted graph is determined. A MST T implies
a sequence of clusterings as follows: For a threshold value τ let F (T, τ) be the
forest induced by all edges of T with weight at most τ . For each threshold τ ,

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 9

Algorithm 2. Iterative Conductance Cutting (ICC)

Input: G = (V , E, ω), conductance threshold 0 < α∗ < 1
C ← {V }
while there is a C ∈ C with ϕ(G[C]) < α∗ do

x ← eigenvector of M (G[C]) associated with second largest eigenvalue
S ←

{
S ⊂ C| max

v∈S
{xv} < min

w∈C\S
{xw}

}
C′ ← arg min

S∈S
{ϕ(S)}

C ← (C \ {C}) ∪ {C′, C \ C′}

the connected components of F (T, τ) induce a clustering. Note that there are,
at most, n−1 thresholds resulting in different forests. The resulting clustering
of F (T, τ) does not depend on the actual MST T (see Lemma 3.4), therefore,
we denote it with C(τ). In order to verify this statement, we prove the following
three lemmas, which handle locality in the connected components (Lemma 3.1),
very similar MSTs (Lemma 3.2), and sequences of MSTs (Lemma 3.3).

LEMMA 3.1. Let G = (V , E, ω) be an undirected weighted graph with ω: E →
R+. Let T = (V , E ′) be a spanning tree and V ′ the node set of a connected
subtree T ′ in T. Then the following equation holds for every threshold τ :

F (T, τ) � V ′ = F (T ′, τ) . (4)

PROOF. The clustering F (T, τ) � V ′ of V ′ can be rewritten as

F (T, τ) � V ′ = {C ∩ V ′|C ∈ F (T, τ) ∧ C ∩ V ′
= ∅}
We prove Eq. (4) by using mutual inclusion. First, we show that the left side is
included in the right one. Let C′ ∈ F (T, τ) � V ′ and C ∈ F (T, τ) such that ∅
=
C′ = C∩V ′. Then, for every pair of nodes contained in C′, there exists an unique
path p in T such that each edge has a weight less than τ . Since T ′ is connected
and spans V ′, every path in T connecting two nodes in V ′ is totally contained
in T ′. Thus, there exists a C′′ ∈ F (T ′, τ) such that C′ ⊆ C′′. For every node pair
in C′′ there exists an unique path in T ′ such that each edge has a weight less
than τ . This path is also a path in T with the same property; therefore C′ = C′′.

Second, we show that the right side is included in the left one. Let C ∈
F (T ′, τ), then there exists a unique path in T ′ between every pair in C such
that each edge has weight less than τ . This path is also a path in T with the
same property; thus, there exists a cluster C′ ∈ F (T, τ) with C ⊆ C′. Moreover
the following inclusion holds:

C = C ∩ V ′ ⊆ C′ ∩ V ′

Thus, it is sufficient to show that C′ ∩ V ′ = C. Suppose otherwise and let u be
a node in C and v a node in (C′ ∩ V ′) \ C. Then there exists a unique path p
connecting u and v in T such that every edge in p has weight less than τ . Since T ′

is connected and u, v ∈ V ′, the path p has to be contained in T ′ as well. However,
every path connecting u and v in T ′ contains an edge weight greater or equal
to τ , otherwise v would be in C. This contradicts C � C′ ∩ V ′.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

10 • U. Brandes et al.

LEMMA 3.2. Let G = (V , E, ω) be an undirected weighted graph with ω: E →
R+. Let T = (V , E ′) and T ′ = (V , E ′′) be two MSTs such that E ′′ = E ′ \{e′}∪{e′′}.
Then, the clusterings F (T, τ) and F (T ′, τ) are the same.

PROOF. Since both trees T and T ′ are MST, both edges e′ and e′′ have the
same weight. Furthermore, let C = (V ′, EC) denote the cycle formed by e′′

and the path (in T) connecting its endnodes. This cycle also contains e′. The
subgraph (V ′, EC \ {e′′}) is the unique path in T connecting the two endnodes
of e′′. Suppose this path does not contain e′, then it is also a path in T ′. Thus C
is contained in T ′, which contracts T ′ being a tree.

Using Lemma 3.1, it is sufficient to show the following equality

F (T, τ) � C = F (T ′, τ) � C

In the case that ω(e′) < τ , both clusterings equal {V ′} and are thus the same.
Therefore, let us assume that ω(e′) ≥ τ . We divide the cycle into subpaths pi

such that each edge in the paths has weight less than τ . Since this division is
independent of e′ and e′′, we obtain the following equation:

F (T, τ) � C = {Vi|Vi is the node set of path pi} = F (T ′, τ) � C

which concludes the lemma.

LEMMA 3.3. Let G = (V , E, ω) be an undirected weighted graph with ω: E →
R+, T = (V , E ′) and T ′ = (V , E ′′) be two different MSTs. Then there exists an
MST T̃ = (V , Ẽ) such that

∃ e′′ ∈ E ′′ \ E ′, e′ ∈ E ′: Ẽ = E ′ \ {e′} ∪ {e′′}
PROOF. Let 	E ′ := E ′′ \ E ′ be the set of tree edges (in T ′) that are not

contained in T . If |	E ′| = 1 then T̃ = T ′ suffices. Otherwise, let e′ ∈ 	E ′. This
edge splits T ′ and thus partitions V into two nonempty parts V1 and V2. Since T
is a spanning tree that does not contain e′, there exists an edge e that connects V1
and V2. Both edges e′ and e have the same weight, otherwise not both trees T
and T ′ could have minimum weight. We define T̃ := (V , E ′ \ {e} ∪ {e′}), it is still
spanning, and has the same weight as T ; therefore, it is an MST.

LEMMA 3.4. The clustering induced by the connected components of F (T, τ)
is independent of the particular MST T.

PROOF. Let T and T ′ be two different MSTs. By Lemma 3.3, we can construct
a sequence of MSTs such that every two consecutive MSTs differ in exactly one
edge. Using Lemma 3.2, the clusterings induced by such a pair are the same,
therefore, the clustering of T and T ′ are the same.

Among the C(τ) we choose one optimizing some measure of quality. Potential
measures of quality are e.g., the indices defined in Section 2 or combinations
thereof. This universality allows targeting of different properties of a clustering.
Pseudocode for GMC is given in Algorithm 3. Except for the eigenvector compu-
tations, GMC is deterministic. Note that, opposite to ICC, they form a prepro-
cessing step with their number bounded by a (typically small) input parameter.
Assuming that the quality measure can be computed fast, the asymptotic time

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 11

Algorithm 3. Geometric MST Clustering (GMC)

Input: G = (V , E, ω), embedding dimension d, clustering valuation quality
(1, λ1, . . . , λd) ← d + 1 largest eigenvalues of M (G)
d ′ ← max{i|1 ≤ i ≤ d , λi > 0}
x(1), . . . , x(d ′) ← eigenvectors of M (G) associated with λ1, . . . , λd ′

forall e = (u, v) ∈ E w(e) ←
d ′∑

i=1

∣∣x(i)
u − x(i)

v

∣∣
T ← MST of G with respect to w
C ← C(τ) for which quality(C(τ)) is maximum over all τ ∈ {w(e)|e ∈ T }

and space complexity of the main algorithm is dominated by the MST computa-
tion. GMC combines two proved concepts from geometric clustering and graph
partitioning.

4. EXPERIMENTAL EVALUATION

First, we describe the general model used to generate appropriate instances for
the experimental evaluation. We then present the experiments and discuss the
results of the evaluation.

4.1 Random Uniform Clustered Graphs

It is possible to obtain a random clustered graph with n nodes with (almost) uni-
form cluster size by the following process Brandes et al. [2003]: First, a random
partition generator P(n, s, v) determines a partition (P1, . . . , Pk) of {1, . . . , n}
with |Pi| being a normal random variable with expected value s and standard
deviation s

v . The parameter k depends on the choice of n, s, and v. Given a par-
tition P(n, s, v) and probabilities pin and pout, a uniformly random clustered
graph (G, C) is generated by inserting intracluster edges with probability pin
and intercluster edges with probability pout. In case a generated graph is not
connected, additional edges combining the components are added.

A disadvantage of this process is that the “last” cluster Pk is possibly sig-
nificantly smaller than the others in order to achieve a graph with exactly n
nodes. Correspondingly, indices that depend on cluster size, such as intercluster
conductance can produce artefacts. In order to obtain an undisturbed behavior,
we relaxed the size constraint i.e., if the last cluster size variable |Pk| is too
small or too large but the number of unassigned or additional nodes is less
than one-third of the expected cluster size, we add or delete the corresponding
nodes. However, if the gap exceeds one-third, we reject the partition and gener-
ate a new one. This may bias the generation process, yet we observed only few
rejections during our experiments.

In order to judge both weighted and unweighted versions of the indices,
we extended the above generation process to produce random weights as well.
Since the weight should reflect the given partitioning, a weight from [0, pout] for
each intercluster edge and from [pin, 1] each for intracluster edge is uniformly
at random selected and assigned. In Addition, small disturbances or shuffles

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

12 • U. Brandes et al.

could yield more realistic weightings. However, we chose not to perform such
postprocessings in order to be independent of the used model and to keep the
parameter set small.

4.2 Technical Details of the Experiments and Implementation

For our experiments, randomly generated instances with the following values
of (n, s, v), respectively, pin, pout are considered. We set v = 4 and choose s
uniformly at random from {n

�
| log n ≤ � ≤ √

n}. Experiments are performed
for n = 1000. On the one hand, all combinations of probabilities pin and pout
at a distance of 0.05 are considered. On the other hand, a second group of
experiments used a dynamic adaptation of pout. Partial results of the tests with
the above given parameters is that the ratio of pin and pout hardly reflect the
ratio of potential intra- and intercluster edges. Therefore, a scaling parameter f
is introduced to replace pout, which estimates a suitable pout value to bound the
number of expected intercluster edges in terms of expected intracluster edges.
The experiments are performed with n = 1000, inner probability pin between
0.7 and 0.95, with a step size of 0.05, and the scaling parameter f between 0.25
and 2.25 with a step size of 0.25.

The free parameters of the algorithms are set to e = 2 and r = 2 in MCL,
α∗ = 0.4 and α∗ = 0.2 in ICC, and dimension d = 2 in GMC. As objective
function quality in GMC, coverage, performance, intercluster conductance δ, as
well as the geometric mean of coverage, performance and δ is considered.1

All experiments are repeated at least 30 times and until the maximal length
of the confidence intervals is not larger than 0.1 with high probability. The
implementation is written in Java (1.4.2). In addition, we used yFiles.2 and
colt.3 The experiments were performed on an AMD Opteron 248 with 2.2 GHz
on a Linux 2.6 platform.

4.3 Computational Results

We concentrate on the behavior of the algorithms with respect to running time,
the values for the initial clustering in contrast to the values obtained by the
algorithms for the indices under consideration, and the general behavior of the
algorithms with respect to the variants of random instances.

4.3.1 Running Time. All presented clustering algorithms were imple-
mented using sophisticated data structure and software engineering tech-
niques. However, there are certain limitations, especially with respect to run-
time measurements in Java, which are very difficult. Since such measurements
are rarely significant on small scales, none of the implementations were es-
pecially optimized with respect to running time. Nevertheless, the following
results show certain tendencies.

1Experiments considering the geometric mean of all four indices showed that incorporation of in-
tracluster conductance did not yield significantly different results. We, therefore, omit intracluster
conductance, because of efficiency reasons.
2http://www.yworks.com
3http://hoschek.home.cern.ch/hoschek/colt/

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 13

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) GMC

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) ICC

Fig. 1. Running time of GMC and ICC, where the x axis represents the inner probability pin and
the y axis shows the outer probability pout.

The experimental study confirms the theoretical statements in Section 3
about the asymptotic worst-case complexity of the algorithms. MCL is signifi-
cantly slower than ICC and GMC. Not surprisingly as the running time of ICC
depends on the number of splittings, ICC is faster for α∗ = 0.2 than for α∗ = 0.4.
Note the coarseness of the clustering computed by ICC depends on the value
of α∗. In contrast, all versions of GMC were equally fast, except those versions
that included intracluster conductance.

On sparse graphs, GMC and ICC perform equally will, while ICC was
up to two times faster on dense graphs. The complete results are given in
Figure 1. ICC performs on dense graphs so well since the approximation of
intracluster conductance yield large values and, thus, only a few number of
cuts are calculated. In other words, the divisive structure of the ICC is more
suitable for dense graphs than for sparse ones, while the agglomerative GMC
benefits from a sparse edge set. Not very surprisingly the runtime depends
much more on the outer probability pout than on the inner probability pin,
which results from the fact that the number of potential intercluster edges is
much larger than the number of potential intracluster edges (for most values
of k).

4.3.2 Indices for the Initial Clustering. Studying coverage, performance,
intra- and intercluster conductance of the initial clustering gives some use-
ful insights about these indices. Of course, for coverage and performance the
highest values are achieved for the combination of very high pin and very
low pout (Figure 2a–d). The performance value is greater than the coverage
value and the slope of the performance-level curves remains constant, while
the slope of the coverage-level curves decreases with increasing pout. This
is because performance considers both, edges inside and nonedges between

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

14 • U. Brandes et al.

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) coverage

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) unweighted coverage

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) unweighted performance

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(e) intercluster conductance

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(f) unweighted intercluster conductance

Fig. 2. Indices of the initially generated clustering I/II.

clusters, while coverage measures only the fraction of intracluster edges within
all edges.

Both conductance versions have a very different behavior. Intercluster con-
ductance is very homogenous for large ranges of the parameters. However, it
still performs according to the general intuition, i.e., it has smaller values for al-
most uniformly random graphs (instances close to the dashed lines) than those
instances with significant clustering. In contrast to the other three indices, in-
tracluster conductance shows a completely different behavior with respect to
the choices of pin and pout. Actually, intracluster conductance does not depend

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 15

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) intracluster conductance

inner probability

o
u
te

r
p
ro

b
a
b
ili

ty

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) unweighted intracluster conductance

Fig. 3. Indices of the initially generated clustering II/II.

on pout (Figure 3a and b). This is not very surprising, since the bottleneck cuts
of the clusters should be independent of pout. Although the two indices show
some artifical behavior with respect to the generated instances, it does not deny
their usability for clusterings and qualitative evaluation.

4.3.3 Comparing the Algorithms. Figures 4, 5, and 6 show the different
quality indices for the different algorithms for the first group of experiments. All
diagrams show the inner probability pin as x axis and the outer probability pout
as y axis. A significant observation when comparing the three algorithms with
respect to the quality indices regards their behavior for dense graphs. All algo-
rithms (Figure 4a, 5a, and 6a) have a tendency to return trivial or very coarse
clusterings containing only few clusters. As mentioned previously, this is be-
cause of the fact that the number of potential intercluster edges is much larger
than the number of potential intracluster edges. In contrast for sparse graphs,
ICC and MCL only find clusterings with many clusters. This suggests modi-
fications to at least incorporate bound for the number of clusters in order to
avoid too coarse clusterings. However, for ICC such a modification would be a
significant deviation from its intended procedure. The consequences of forcing
ICC to split, even if the condition for splitting is violated, are not clear at all.
On the other hand, the approximation guarantee for intra-cluster conductance
is no longer maintained if ICC is prevented from splitting, even if the condi-
tion for splitting is satisfied. For MCL, it is not even clear how to incorporate
the restriction to nontrivial clusterings. In contrast, it is easy to modify GMC
in such a way that only clusterings with bounded (from below, above, or both)
numbers of clusters are computed. This is accomplished by limiting the search
space of τ .

Both ICC and MCL are comparably good with respect to performance, al-
though neither of them optimizes it explicitly. While GMC is not as good with
respect to performance, it outperforms MCL with respect to intercluster con-
ductance and ICC with respect to coverage. Still, all three algorithms find
clusterings with acceptable quality. Further more, the calculated clusterings
similarly react to changes in the generation parameters, i.e., the quality drops

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

16 • U. Brandes et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. 4. GMC using geometric mean of coverage, performance, and intercluster conductance.

when approaching random graphs (diagonal). More precisely, GMC (Figure 4d)
and ICC (Figure 5d) are more sensitive (with respect to intercluster conduc-
tance) than the initial clustering (Figure 2e).

Further variations of the algorithms, e.g., ICC with α = 0.2 and different
versions of the GMC can be found in Appendix A.

The results of the second group of experiments are shown in Figures 7–9. All
diagrams show the inner probability pin as x axis and the scaling parameter f
as y axis. Recall that f roughly estimates the ratio of (expected) inter- to (ex-
pected) intracluster edges. Intuitively speaking, the parameter f is inversely
proportional to the significance of the initial clustering. Figures 7–9 clearly il-
lustrate that both GMC and ICC find a clustering that is very similar to the
initial one with respect to quality.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 17

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. 5. ICC with α = 0.4.

5. CONCLUSION

The experimental study confirms the promising expectations about MCL, i.e., in
many cases MCL seems to perform well with respect to quality. However, MCL
often generates clusterings of inappropriate size. Moreover, MCL is very slow.
The theoretical result on ICC is reflected by the experimental study, i.e.,ICC
computes clusterings that are also good with respect to other indices. However,
there is the suspicious that the index intracluster conductance does not measure
the quality of a clustering appropriately. Indeed, the experimental study shows
that all four cluster indices have weaknesses. Comparing the original versions
of the measures to the new weighted formulations, which need not to be straight
forward or unique, the study further demonstrates that both sets exhibit a
similar behavior. Optimizing only with respect to one of the indices often leads
to unintended effects. Considering combinations of those indices is an obvious
attempt for further investigations. Although the indices exhibited weaknesses,

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

18 • U. Brandes et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. 6. MCL.

GMC (with different quality functions) performed comparably well with respect
to the other algorithms. More precisely, the obtain evaluation with the original
four indices partially reflected the different optimization criteria. Moreover,
refinement of the embedding used by GMC offers additional potential. Thus,
only the embedding canonically induced by the eigenvectors is incorporated. By
choosing different weightings for the distances in the different dimensions, the
effect of the eigenvectors can be controlled.

Actually, because of its flexibility with respect to the usage of the geometric
clustering and the objective function considered, GMC is superior to MCL and
ICC. Finally, because of its small running time, GMC is a promising approach
for clustering large, yet sparse, graphs.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 19

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(a) number of clusters

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(b) coverage

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(c) performance

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(d) intercluster conductance

Fig. 7. initial clustering.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

20 • U. Brandes et al.

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(a) number of clusters

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(b) coverage

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(c) performance

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0

.5
0

.7
5

1
1

.2
5

1
.5

1
.7

5
2

2
.2

5

(d) intercluster conductance

Fig. 8. GMC using geometric mean of coverage, performance, and intercluster conductance.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 21

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0
.5

0
.7

5
1

1
.2

5
1
.5

1
.7

5
2

2
.2

5

(a) number of clusters

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0
.5

0
.7

5
1

1
.2

5
1
.5

1
.7

5
2

2
.2

5

(b) coverage

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0
.5

0
.7

5
1

1
.2

5
1
.5

1
.7

5
2

2
.2

5

(c) performance

0.7 0.75 0.8 0.85 0.9 0.95

0
.2

5
0
.5

0
.7

5
1

1
.2

5
1
.5

1
.7

5
2

2
.2

5

(d) intercluster conductance

Fig. 9. ICC with α = 0.4.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

22 • U. Brandes et al.

APPENDIX. COMPARING FURTHER ALGORITHMS

This section contains results of further parameter variations of the presented
algorithms.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. A1. GMC using 3
√

coverage · performance3.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 23

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. A2. GMC using 3
√

inter-cluster conductance · performance3.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

24 • U. Brandes et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. A3. GMC using performance.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

Engineering Graph Clustering: Models and Experimental Evaluation • 25

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) number of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) performance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) intercluster conductance

Fig. A4. ICC with α = 0.2.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

26 • U. Brandes et al.

REFERENCES

AUSIELLO, G., CRESCENZI, P., GAMBOSI, G., KANN, V., AND MARCHETTI-SPACCAMELA, A. 2002. Complexity
and Approximation—Combinatorial Optimization Problems and Their Approximability Proper-
ties, 2nd ed. Springer-Verlagn New York.

BRANDES, U., GAERTLER, M., AND WAGNER, D. 2003. Experiments on graph clustering algorithms.
In Proceedings of the 11th Annual European Symposium on Algorithms (ESA’03). Lecture Notes
in Computer Science, vol. 2832. 568–579.

CHUNG, F. R. K. AND YAU, S.-T. 1994. A near optimal algorithm for edge separators. In Proceeding
of the 26th Annual ACM Symposium on Theory of Computing. ACM Press, New York. 1–8.

CHUNG, F. R. K. AND YAU, S.-T. 1997. Eigenvalues, flows and separators of graphs. In Proceeding
of the 29th Annual ACM Symposium on Theory of Computing. ACM Press, New York. 1–8.

CLAUSET, A., NEWMAN, M. E. J., AND MOORE, C. 2004. Finding community structure in very large
networks. Physical Review E 70, 066111.

GAERTLER, M. 2005. Clustering. In Network Analysis: Methodological Foundations, U. Brandes
and T. Erlebach, Eds. Lecture Notes in Computer Science, vol. 3418. Springer-Verlag, New York.
178–215.

HAREL, D. AND KOREN, Y. 2001. On clustering using random walks. In Proceedings of the 21st
Conference on Foundations of Software Technology and Theoretical Computer S. Lecture Notes
in Computer Science, vol. 2245. Springer-Verlag, New York. 18–41.

HARTUV, E. AND SHAMIR, R. 2000. A clustering algorithm based on graph connectivity. Information
Processing Letters 76, 4-6, 175–181.

HO, T. B., KAWASAKI, S., AND NGUYEN, N. B. 2003. Documents Clustering Using Tolerance Rough Set
Model and Its Application to Information Retrieval. Physica-Verlag GmbH, Heidelberg. 181–196.

JAIN, A. K. AND DUBES, R. C. 1988. Algorithms for Clustering Data. Prentice Hall, Englewood,
Cliffs, NJ.

JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. 1999. Data clustering: A review. ACM Computing
Surveys 31, 3, 264–323.

NEWMAN, M. E. J. AND GIRVAN, M. 2004. Finding and evaluating community structure in networks.
Physical Review E 69, 026113.

SHAMIR, R., SHARAN, R., AND TSUR, D. 2002. Cluster graph modification problems. In Proceedings
of the 28th International Workshop on Graph-Theoretical Conecpts in Computer Science (WG).
Lecture Notes in Computer Science, vol. 2573. Springer-Verlag, New York. 379–390.

SPIELMAN, D. A. AND TENG, S.-H. 1996. Spectral partitioning works: Planar graphs and finite ele-
ment meshes. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’96). 96–106.

VAN DONGEN, S. M. 2000. Graph Clustering by Flow Simulation. Ph.D. thesis, University of
Utrecht.

VEMPALA, S., KANNAN, R., AND VETTA, A. 2000. On clusterings—good, bad and spectral. In Pro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS’00).
367–378.

WAGNER, D. AND WAGNER, F. 1993. Between min cut and graph bisection. In MFCS ’93: Proceedings
of the 18th International Symposium on Mathematical Foundations of Computer Science, A. M.
Borzyszkowski and S. Sokolowski, Eds. Lecture Notes in Computer Science, vol. 711. Springer-
Verlag, New York. 744–750.

ZAHN, C. T. 1971. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers C-20, 68–86.

Received February 2006; accepted December 2006

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.1, Publication date: 2007.

