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Abstract. Spectral methods are naturally suited for dynamic graph
layout, because moderate changes of a graph yield moderate changes of
the layout under weak assumptions. We discuss some general principles
for dynamic graph layout and derive a dynamic spectral layout approach
for the animation of small-world models.

1 Introduction

The main problem in dynamic graph layout is the balance of layout quality and
mental-map preservation [17]. Typically, the problem is addressed by adapting a
static layout method such that it produces similar layouts for successive graphs.
While these adaptations are typically ad-hoc [8], others [2, 1] are based on the
formally derived method [3] of integrating difference metrics [5] into the static
method. See [4] for an overview of the dynamic graph drawing problem.

Spectral layout denotes the use of eigenvectors of graph-related matrices such
as the adjacency or Laplacian matrix as coordinate vectors. See, e.g., [15] for an
introduction. We argue that spectral methods are particularly suited for dy-
namic graph layout both from a theoretical and practical point of view, because
moderate changes in the graph naturally translate into moderate changes of the
layout, and updates can be computed efficiently.

This paper is organized as follows. In Sect. 2, we define some basic notation
and recall the principles of spectral graph layout. The dynamic graph layout
problem is reviewed briefly in Sect. 3, and methods for updates between layouts
of consecutive graphs are treated in more detail in Sect. 4. In Sect. 5, our ap-
proach for small worlds is introduced, and we conclude with a brief discussion
in Sect. 6.

2 Preliminaries

For ease of exposition we consider only two-dimensional straight-line represen-
tations of simple, undirected graphs G = (V,E) with positive edge weights
ω : E → IR+, although most techniques and results in this paper easily carry
over to other classes of graphs.

In straight-line representations, a two-dimensional layout is determined by a
vector (pv)v∈V of positions pv = (xv, yv). Most of the time we will reason about
one-dimensional layouts x that represent the projection of p onto one component.



For any graph-related matrix M(G), a spectral layout of G is defined by
two eigenvectors x and y of M(G). For simplicity, we will only consider layouts
derived from the Laplacian matrix L(G) of G, which is defined by elements

`v,w =

{∑
u∈V ω(u, v) , v = w ,

−ω(v, w) , v 6= w ,

The rows of L(G) add up to 0, thus, the vector 1 = (1, . . . , 1)T is a trivial
eigenvector for eigenvalue 0. Since L(G) is symmetric all eigenvalues are real,
and the theorem of Gershgorin [13] yields, that the spectrum is bounded to the
interval [0, g], for an upper bound g ≥ 0. Hence, the spectrum can be written
as 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ g with corresponding unit eigenvectors 1/

√
n =

v1, . . . , vn.
Based on the Laplacian, a spectral layout is defined as p = (v2, v3), where

v2 and v3 are unit eigenvectors to the second and third smallest eigenvalues of
the corresponding Laplacian matrix L(G). This has already been used for graph
drawing in 1970 by Hall [14].

For sparse graphs of moderate size, a practical method to determine the
corresponding eigenvectors is power iteration. For an initial vector x the matrix
multiplication L(G)x/||L(G)x|| is iterated until it converges to a unit eigenvector
associated with the largest eigenvalue. Since we are not interested in vn, we use
matrix L̂ = g · I−L(G), which has the same eigenvectors with the order of their
eigenvalues g = g − λ1 ≥ g − λ2 ≥ . . . ≥ g − λn reversed. To obtain v2 and
v3, respectively, x is orthogonalized with v1 (and in the case of v3 also with v2)
after each iteration step, i.e., the mean value

∑n
i=1 xi/n is subtracted from every

element of x to ensure x⊥1. Spectral layouts of larger graphs can be computed
efficiently using multiscale methods [16].

3 Dynamic Layout

In our setting, a dynamic graph is a sequence G(1), . . . , G(r) of graphs with, in
general, small edit distance, i.e. G(t) is obtained from G(t−1), 1 < t ≤ r, by
adding, changing, and deleting only a few vertices and edges.

There are two main scenarios for the animation of a dynamic graph, depend-
ing on whether the individual graphs are presented to the layout algorithm one
at a time, or the entire sequence is known in advance. Layout approaches for
the offline scenario (e.g., [7]) are frequently based on a layout of the union of all
graphs in the sequence. A variant are 2.5D representations in which all graphs
are shown at once (e.g., [9]). In the online scenario, the typical approach is to
consider only the previous layout (e.g., [8]). A variant in which provisions for
likely future changes are made is presented in [6].

Since, typically, spectral layouts of similar graphs do not differ much anyway,
it is reasonable to ignore the fact that a graph is but one graph in a sequence
altogether and compute static layouts for each of them. We rather concentrate
on the update step between consecutive layouts.



4 Updates

Assume we are given a sequence of layouts p1, . . . , pr for a dynamic graph
G(1), . . . , G(r). The step from pt to pt+1 is called logical update, whereas the
actual animation of the transition is referred to as the physical update.

While simple, say, linear interpolation of two layouts is most frequently
used in graph editors, more sophisticated techniques for morphing are avail-
able (see, e.g., [11, 12, 10]. General morphing strategies do not take into account
the method by which origin and target layout are generated.

For dynamic spectral layout, at least two additional strategies are reasonable.

4.1 Iteration

If the target layout xt+1 is a spectral layout, the iteration for its own computation
can and should be initialized with xt, that will usually be close to the target
layout. The power iteration then produces intermediate layouts which can be
used for the physical update. A way to enhance the smoothness of morphing
is needed because of the observation, that the first steps of the iteration yield
greater movement of the vertices when compared to later steps. Let L̂ = g · I −
L(G(t+1)). An iteration step then consists of computing the new layout L̂x/||L̂x||
from a given layout x⊥1. Let g = λ1 ≥ λ2 ≥ . . . ≥ λn and 1/

√
n = v1, v2, . . . , vn

be the eigenvalues and unit eigenvectors of L̂, respectively. Then if λ1 > λ2 > λ3

(otherwise just proper eigenvectors and eigenvalues would have to be chosen in
what follows) and x =

∑n
i=2 aivi, a2 6= 0 we have

L̂kx

||L̂kx||
−→ v2 and

∣∣∣∣∣∣v2 −
L̂kx

||L̂kx||

∣∣∣∣∣∣ =
∣∣∣∣∣∣v2 −

∑n
i=2 λk

i aivi

||L̂kx||

∣∣∣∣∣∣
≤ 1− λk

2a2

||L̂kx||
+
∑n

i=3 λk
i ai

||L̂kx||
= O

(
(λ3/λ2)k

)
.

One way to handle this non-linear decay is to use layouts after appropriately
spaced numbers of steps, or to use layouts only if the difference to the last used
layout exceeds some threshold c in some metric, e.g., if ||x−x′||2 > c. Both ways
will enhance the smoothness of morphing by avoiding the drawing of many small
movements at the end of the iteration process.

4.2 Interpolation

If both origin and target layout xt and xt+1 are spectral layouts, intermediate
layouts can also be obtained by computing eigenvectors of some intermediate
matrices from L(G(t)) to L(G(t+1)). We interpolate linearly by

αL(G(t)) + (1− α)L(G(t+1)), 1 ≥ α ≥ 0 .



Layouts are computed for a sequence of breakpoints 1 ≥ α1 > α2 > . . . >
αk ≥ 0 (αj+1 − αj constant, or proportional to sin(πj/k), depending on what
kind of morphing seems to be appropriate, the latter one slowing down at the
beginning and end). For every breakpoint αj the iteration is initialized with the
layout of αj−1, which allows fast convergence and small movements between two
succeeding breakpoints. Deletion and insertion of vertices have to be handled in
a different manner, since the matrix dimension changes. See Sect. 5 for details.

Figs. 2 and 4 show smooth animations of this method. Theoretical justifi-
cation for smoothness comes along with a theorem by Rellich [18] applied to
the finite dimensional case. Matrix αL(G(t))+(1−α)L(G(t+1)) can be seen as a
perturbed self-adjoint operator L(ε) = L(G(t))+ε(L(G(t+1))−L(G(t))) with cor-
responding eigenvalues λi(ε) and eigenvectors vi(ε), that are holomorphic with
respect to ε, i.e.

L(ε)vi(ε) = λi(ε)vi(ε), (1)

where vi(0) are eigenvectors at time t and vi(1) can be permuted by a permu-
tation π, such that vπ(i)(1) are (ordered) eigenvectors at time t + 1. Note that
two eigenvectors may only have to be exchanged if its corresponding eigenvalues
intersect during the time from t to t + 1. And even then the power iteration ex-
changes these eigenvectors sufficiently smooth for pleasing animations, because
the corresponding eigenvalues remain within the same range for some time due
to smooth functions λi(ε). Consider λ2 and v2 of the following small-world ex-
ample with n = 100 vertices and k = 7, where starting from a circle each vertex
is connected to its 2k nearest neighbors. Both λ2(ε) and v2(ε) can locally be
written as power series

λ2(ε) = µ0 + εµ1 + ε2µ2 + . . . ,

v2(ε) = w0 + εw1 + ε2w2 + . . . . (2)

We show that ||wi|| ≤ 1 and |µi| ≤ 2/
√

n for i > 0, hence λ2(ε) and v2(ε) will
be smooth functions, say, within [0, 1/2] (and by the same construction within
the remaining interval, too). We write L(ε) = L + εP , where P is the insertion
of an edge between two non-adjacent vertices (with indices 1 and r), and denote
by I the identity matrix. From (1) and (2) we get

Lw0 = µ0w0 ,

(L− µ0I)wj =
j−1∑
i=0

µj−iwi − Pwj−1 , (j > 0) , (3)

where we can recursively choose wj , (j > 0) such that wj⊥w0. Since the right
hand sides of (3) need to be orthogonal to w0 for j > 0 this yields

µj = 〈Pwj−1, w0〉 , (j > 0) .

Now we can recursively compute upper bounds for |µj | and ||wj ||. Note that λ2

has multiplicity 2, and the right hand sides of (3) are also orthogonal to v1, such



that 1/(λ4 − λ2) is the least upper bound of the inverse mapping of L − µ0I
applied to the right hand side.

|µ1| = (w0,1 − w0,r)2 ≤ 2/n ≤ 2/
√

n ,

||w1|| ≤
2|w0,1 − w0,r|

λ4 − λ2
≤

2
√

2/n

1.568
=: c ≤ 1/4.35 ,

|µj | ≤ 2κj−1c
j−1/

√
n ≤ 2/

√
n ,

||wj || ≤ κjc
j ≤ 1 ,

where κj is defined by κ0 = 1 and κj =
∑j−1

i=0 κiκj−i−1 for j > 0.

Lemma 1. κj ≤ 4.35j .

Proof. We show κj ≤ 4.35j/(j +1)2, which holds for all j < 144 (by evaluating).
For j ≥ 144

κj ≤
j−1∑
i=0

4.35i

(i + 1)2
· 4.35j−i−1

(j − i)2
≤ 2 · 4.35j−1

bj/2c∑
i=0

1
(i + 1)2

· 1
(j − i)2

≤ 2 · 4.35j−1

(
1

(j − 9)2

10∑
i=1

1
i2

+
4
j2

(
ζ(2)−

10∑
i=1

1
i2

))
≤ 4.35j−1

(j + 1)2
· 4.348 .

ut

Note that ||wj || ≤ 1 could also be shown for much weaker assumptions than
c ≤ 1/4.35, which was sufficient for our example. Lemma 1 is only very close to
optimal, the least upper bound of 1/(λ4 − λ2) is in general not achieved, and
|µj | = | 〈Pwj−1, w0〉 | can in general be better bounded than by ||wj−1||

√
4/n.

5 Application to Small Worlds

Spectral layout methods are naturally suited for smooth dynamic layout, because
the influence of vertices and edges that are subject to change can be increased or
decreased gradually. Moreover, each can be determined by iterative computations
that benefit from good initialization, so that moderate changes leads to moderate
and efficient updates.

Watts and Strogatz [19] introduced a random graph model that captures
some often-observed features of empirical graphs simultaneously: sparseness, lo-
cal clustering, and small average distances. This is achieved by starting from a
cycle and connecting each node with its 2k nearest neighbors for some small,
fixed k. The resulting graph is sparse and has a high clustering coefficient (av-
erage density of vertex neighborhoods), but also high (linear) average distance.

The average distance drops quickly when only a few random edges are rewired
randomly. If each edge is rewired independently with some probability p, there
is a large interval of p in which the average distance is already logarithmic while
the clustering coefficient is still reasonably high.



5.1 Dynamic Laplacian layout

Interestingly, spectral layouts highlight the construction underlying the above
model and thus point to the artificiality of generated graphs. This is due to the
fact that spectral layouts of regular structures display their symmetry very well,
and are only moderately disturbed by small perturbations in the graph (mirror-
ing the argument for their use in dynamic layout). The initial ring structure of
the small world in Fig. 5 is therefore still apparent, even though a significant
number of chords have been introduced by random rewiring. In fact, the lay-
out conveys very well which parts of the ring have been brought together by
short-cut edges.

Figs. 1 and 2 point out differences between the two approaches using interme-
diate layouts obtained from the power iteration and from matrix interpolation.
It can be seen that the power iteration first acts locally around the changes. This
stems from the fact that in the first multiplication only the neighborhood of the
change, i.e., the two incident vertices of an edge with changed weight or the
neighbors of a deleted or inserted vertex, is affected. The next step also affects
vertices at distance 2, and so on. Hence, the change spreads like a wavefront.
The matrix interpolation approach acts globally at every step. Interpolating the
Laplacian matrices corresponds to gradually changing edge weights. The anima-
tion therefore is much more smooth.

Fig. 1. Update by iteration (read top left to top right to bottom right to bottom left).
Note the spread of change along the graph structure



Fig. 2. Update by interpolation. Layout anomalies are restricted to modified part of
graph

Figs. 3 and 4 show differences between simple linear interpolation of the
positions and matrix interpolation. In Fig. 3 can be seen, that the symmetry of
the graph to its vertical axis is not preserved during the animation, whereas in
Fig. 4 each intermediate layout preserves this symmetry.

Fig. 5 finally shows some snapshots of a small world evolving from a torus.
The layouts were obtained by using matrix interpolation (one intermediate step
per change shown). Note that deletion and insertion of vertices requires some
extra efforts, in particular, if the deletion of a vertex disconnects the graph.

5.2 Deletion and insertion of vertices

Consider deletion of a single vertex v, that does not disconnect the graph. Ma-
trix L(G(t+1)) is then expanded by one row and column of zeros corresponding
to vertex v, such that L(G(t)) and L(G(t+1)) have the same dimension. This
derived matrix has a double eigenvalue 0. A new corresponding eigenvector is,
e.g., (0, . . . , 0, 1, 0, . . . , 0)T, where the 1 is at position corresponding to v. This
eigenvector will cause vertex v to drift away during power iteration, and thus
all other vertices stick together. This can be prevented by defining `v,v = g in
matrix L(G(t+1)), leading to a movement of v towards 0. But in practice, the
following method proved to be successful. After every matrix multiplication re-
set the position of v to the barycenter of its neighbors. This either prevents a
drifting away or an absorbing to 0, which would otherwise be hard to manage.
Apart from using matrix αL(G(t)) + (1 − α)L(G(t+1)) for the power iteration,



Fig. 3. Update by simple linear interpolation. Intermediate layouts are less symmetric

Fig. 4. Interpolation updates maintain symmetry



Fig. 5. Evolution of a small world (read top to bottom, left to right)



orthogonalization and normalization also have to be adapted. For time t + 1 we
only need xt+1⊥(1, . . . , 1, 0, 1, . . . , 1), instead of xt+1⊥1, and only the restriction
to the elements not corresponding to v have to be normalized. Both can be done
by linear interpolation of these operations.

Insertion of a vertex v is treated analogously. Expand matrix L(G(t)) by one
row and column of zeros as above. Orthogonalization and normalization again
have to be adapted.

5.3 Disconnected graphs

The deletion of a cut vertex (or a bridge) disconnects the graph G(t+1) into k ≥ 2
components G1, . . . , Gk. Each component is drawn separately by spectral meth-
ods and afterwards these layouts are merged to a layout for G(t+1). Basically,
there are three parameters for each component, that have to be determined af-
ter a layout xj for each Gj was computed. The first one determines the size of
each component, i.e., find a constant sj , that scales xj to sjxj . The second one
determines where the barycenter of each component is set to. The rotation angle
of each component could also be considered, but we concentrate on the first two
parameters only.

The removal of a cut vertex (or a bridge) yields a matrix L(G(t+1)), that,
after rearranging, consists of k blocks L1, . . . , Lk, which are Laplacian matrices
of lower dimensions

L(G(t+1)) =


L1 0

L2

. . .
0 Lk

 .

Each of the components is now drawn separately, simply by the common power
iteration of the whole matrix L(G(t+1)), where only normalization and orthogo-
nalization have to be modified appropriately. The barycenter cj of each compo-
nent thus is 0, which we now reset to a new position. For notational purposes
identify the 2-dimensional plane with complex numbers. Let the current barycen-
ters cj be sorted increasingly by their angle to the positive real axis and reset
them to

cj :=
η

2
√

2
exp

(2πi

η

(
− ηj

2
+

j∑
`=1

η`

))
, ηj =

√
|Gj |

|G(t+1)|
, η =

k∑
j=1

ηj .

Together with a normalization sj = ηj , this has the effect, that the components
are distributed on a circle with radius η/(2

√
2), each on an area proportional to

the size of the component, and none of them overlap. Depending on the shape of
the components the radius can also be decreased. Note that the normalization
is also well suited, because

∑k
j=1 η2

j = 1 – analogous to ||x|| = 1.
Altogether, when removing a cut vertex, new barycenters are computed,

power iteration with modified orthogonalization/normalization is applied, and



meanwhile each component moves to its new barycenter linearly to the chosen
breakpoints.

Further splitting and merging of connected components are handled analo-
gously, see Fig. 6 for an example.

Fig. 6. Drawing connected components (top: left to right, bottom: right to left)

6 Discussion

We have proposed a dynamization scheme for spectral layout and applied it to
changing small-world graphs. While there is no need to make special provisions
for logical updates, it turns out that matrix interpolation is the method of choice
for the physical update. Despite its simplicity, the scheme achieves both static
layout quality and mental-map preservation, because it utilizes stability inherent
in spectral layout methods.

Much of the dynamization scheme directly applies to force-directed methods
as well, and is in fact driven by common practices [8].

For both spectral and force-directed layout update computations are rather
efficient, since the preceding layouts are usually very good initializations for iter-
ative methods. For large graphs, it will be interesting to generalize the approach
to multilevel methods, possibly by maintaining (at least part of) the coarsening
hierarchy and reusing level layouts for initialization.



In general, spectral layouts are not suitable for graphs with low connectivity,
even in the static case. However, our dynamic approach is likely to work with
any improved methods for static spectral layout as well.
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