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Abstract

We consider routing methods for networks when geo-
graphic positions of nodes are available. Instead of using
the original geographic coordinates, however, we precom-
pute virtual coordinates using barycentric layout. Com-
bined with simple geometric routing rules, this greatly re-
duces the lengths of routes and outperforms algorithms
working on the original coordinates. Along with experi-
mental results we proof properties such as guaranteed mes-
sage delivery and worst-case optimality. Our methods ap-
ply to static networks in which short routes are important,
but memory for full routing tables is not available and the
one-time-precomputation is affordable.

1. Introduction

Routing in a communication network G = (V,E) de-
notes the task of sending a message from a source node
s ∈ V to a target node t ∈ V . When no direct connection is
available this means to forward the message on a path from
s to t using intermediate nodes. While in wired networks
the specific path is usually determined by routers, in wire-
less networks each node has to decide how to forward the
message. Specific for geographic routing is the existence
of geographical positions of the nodes. It is assumed that
each node v knows the position of t, its own position and
the positions of all its neighbors. This information can be
used for the search of an s-t-path. Among the simplest rout-
ing algorithms are, e.g., Greedy Routing (see, e.g. [7]) and
Compass Routing [4]. Greedy Routing always forwards the
message from a node v to its neighbor w closest to t. Since
w must be strictly closer to t than v, the method can get
stuck in a dead-lock. Compass Routing chooses the neigh-
bor with least (absolute) deviation angle, but again mes-
sage delivery to t is not guaranteed. The first geographic
routing algorithm with guaranteed delivery was Compass
Routing II [4]. The currently most efficient algorithm is
GOAFR+[5], which we therefore use as a reference. Our
methods employ a mixture of Greedy and Compass Rout-

ing running not on the original geographic coordinates, but
instead on precomputed virtual coordinates. This greatly
reduces the lengths of routes and guarantees message de-
livery. Our choice of virtual coordinates is motivated by a
theorem of W. Tutte [8] on barycentric layouts. The im-
provement of route lengths is mainly due to the following
observation. The number of dead-locks is reduced signifi-
cantly in planar barycentric layouts, since each face is con-
vex. Hence, Greedy Routing, which heuristically delivers
short routes, leads to t more often (see, e.g. [6]). Our rout-
ing methods – presented in detail in Section 3 – with a brief
summary of their properties are:

• BR (Barycentric Routing): simple routing rules, good
in practice for a certain density range of networks,
guaranteed delivery

• GBR (Greedy BR): very short routes for all densities,
outperforming routing methods on geographic coordi-
nates, guaranteed delivery

• AGBR (Adaptive GBR): fixes worst-cases of GBR,
guaranteed delivery

• AGBFR (AGB Face Routing): less consuming pre-
computation, delivery guaranteed after iteration (1)
yields a planar embedding

Since proofs of theoretical results are omitted from this ex-
tended abstract because of space restrictions, we refer to the
full paper for all details. Surveys on geographic routing and
virtual coordinates can be found in [10] and [1].

2. Preliminaries

We consider wireless networks modeled as unit disk
graphs G = (V,E), whose nodes are embedded in the Eu-
clidean plane R2 and two nodes are adjacent iff their dis-
tance is at most 1. We assume that G is connected and
there are no two nodes at the very same position. Geo-
graphic routing uses these positions to route a message from
a source node s to a target node t under the assumptions
that the coordinates of t, the coordinates of all neighbors of



v and its own position are known to each node v. The path
along which a message is routed is called message path.
A mapping p : V −→ R2 is called layout or embedding.
Let R2 be equipped with the common notions of open and
closed sets. Each layout p of a graph G naturally corre-
sponds to a closed set G ⊂ R2 (we do not distinguish be-
tween G and G), where the edges of G are drawn as straight
lines between its incident nodes (not including them). We
call an embedding p planar if its straight-line drawing G is
planar. Instead of using the original geographic coordinates
that will be denoted x̂v, ŷv , we compute virtual coordinates
xv, yv and zv during a precomputation phase of our routing
methods. The Euclidean distance of two nodes v, w in orig-
inal coordinates is d̂(v, w), in virtual coordinates d(v, w).
(For distances in virtual coordinates the z-coordinate is al-
ways neglected.) The distance d(e, t) of an edge is defined
to be the infimum of distances d(pe, t) for all points pe ∈ e.
The angle ϕt(v) is called direction angle to the target node
t, where ϕt(s) is defined to be 0 and for each further node v
on a message path ϕt(v) is increased or decreased accord-
ing to the angle at t to the predecessor on the path. Thus,
ϕt(v) can have arbitrary real values and even have differ-
ent values by multiples of 2π if the message path surrounds
t and hits v again. The angle ψt(v, w) is called deviation
angle and denotes the angle at v from t to w and is defined
to take values in ] − π, π]. Note that all nodes w on the
(open) right hand side of the (infinite) line

−→
vt have nega-

tive deviation angle. During the precomputation phase the
restricted Gabriel Graph GGG will be used. This is a pla-
nar embedded graph that is connected if the original unit
disk graph is connected. Each node v ∈ GGG maintains an
ordered list (counter-clockwise) of its neighbors. To pass
a message right hand rule denotes to pass the message to
the next neighbor in this list after the sender, if a sender
exists. Otherwise, a direction will be given, and to pass a
message right hand rule directed to −→vw denotes to take the
next neighbor after −→vw. Sometimes virtual edges are added
to GGG. These are edges that possibly do not exist in G
and have to be realized as paths. However, by construc-
tion virtual neighbors can easily be reached by sending the
message right hand rule or left hand rule, which has to be
specified for each virtual edge. When adding a virtual edge,
the two incident nodes simply update their lists. Since vir-
tual edges are always inserted within a face ofGGG the pla-
narity of GGG is never destroyed (although the straight-line
embedding of GGG may then contain a crossing). For ease
of simplicity we call a graph that is a subdivision (replac-
ing an edge by edge-node-edge) of a 3-connected graph also
3-connected. Theorem 1 also holds for this class of graphs.

3. Barycentric Routing

In this section we introduce our routing methods BR,
GBR, AGBR and AGBFR working on virtual coordinates
computed during the precomputation phase described in
Section 3.1. We need the following basics. With the def-
initions given in Section 2 the theorem of W. Tutte can be
formulated as follows.

Theorem 1 ([8]) Fixing the nodes of a face of a planar em-
bedded, 3-connected graph onto the corners of a convex
polygon C and setting the remaining nodes to the barycen-
ter of their neighbors, yields a planar embedding.

We call the layout obtained from Theorem 1 barycentric
layout pC . After fixing the nodes of C it is unique (for
every connected graph G) and can be computed using the
Laplacian matrix L of the given graph G = (V,E). The
layout pC = (xv, yv)v∈V is then given by the unique so-
lutions of Lx = 0 and Ly = 0, where the positions of
the nodes of C are fixed and its corresponding lines in the
equation systems deleted, see, e.g. [2]. These equations can
iteratively be solved by the following Jacobi-iteration for all
nodes v ∈ V \ C, see, e.g. [3].

xv ←
∑

w∈N(v)

xw

deg(v)
and yv ←

∑
w∈N(v)

yw

deg(v)
(1)

Note that iteration (1) only needs communication between
adjacent nodes. An equivalent way to define pC is the fol-
lowing, see, e.g. [2].

pC = arg min
p

{ ∑
v,w∈V

d(v, w)2 : nodes of C fixed
}

(2)

Note that this formulation directly implies that all nodes v ∈
V are within the closed set delimited by C.

3.1. Precomputation Phase

The precomputation phase for the following routing
rules is divided into four steps that once have to be executed
to obtain the desired virtual coordinates (xv, yv, zv)v∈V .
After this precomputation phase messages can easily (with
simple Routing Rules 1 to 4) and on very short paths in
practice be routed (see Figure 1).

Step 1 computes the restricted Gabriel Graph GGG and
determines tree children, i.e. nodes that would be deleted if
successively removing degree-one-nodes from GGG.

Step 2 determines the nodes of the outer face of GGG

(i.e. the perimeter nodes) and sets them equidistantly on a
circle enclosing GGG to form the convex polygon C.

Step 3 establishes 2-connectedness of GGG by adding
virtual edges that do not destroy planarity of GGG.

Step 4 establishes 3-connectedness (in the sense given in
Section 2) of GGG, such that Theorem 1 can be applied.



Algorithm 1: BR step 1 (determine tree nodes).
compute restricted Gabriel Graph GGG and declare all
nodes as non-tree nodes
foreach v with exactly one non-tree node neighbor do

denote v a tree child
repeat the last step (at most) n rounds
foreach non-tree child v with tree children do

denote v a tree root
foreach non-tree child v do zv ← 0
foreach tree root v with children v1, . . . , vk do

send message (z, z′) := (i, i+ 1) to vi

foreach tree child v receiving (z, z′) do
set zv ← z and send message(
z+(z′−z)·i/(k+1), z+(z′−z)·(i+1)/(k+1)

)
to its children vi, 1 ≤ i ≤ k

repeat the last step (at most) n rounds

Algorithm 2: BR step 2 (set perimeter nodes).
let M denote all nodes v with minimum ŷv among
their neighbors
foreach v ∈M do

pass message (x̂v, ŷv, c) containing the
coordinates x̂v, ŷv and a counter c = 1 right hand
rule directed straight down

foreach v ∈ V do
if v received message (x̂, ŷ, c) and ŷ ≤ ŷv then

set cv ← c
pass message (x̂, ŷ, c+ 1) right hand rule

if v received message (x̂, ŷ, c) and x̂ = x̂v, ŷ = ŷv

then
pass message (xr, yr, r, c) right hand rule
directed straight down, where xr, yr denotes
the center of a circle of radius r that encloses
all nodes on the outer face (let therefore
minimum and maximum x̂, ŷ values have been
collected on the walk around the outer face)
set xv ← xr, yv ← yr − r

if v received message (xr, yr, r, c) (and xv, yv are
not yet set) then

pass message (xr, yr, r, c) right hand rule
set xv ← xr + r sin(2πcv/c)
set yv ← yr − r cos(2πcv/c)

repeat the last step at most 2n rounds

Starting from degree-one-nodes Algorithm 1 detects all tree
children in GGG and assigns values zv that induce a pre-
fix ordering of each tree. This allows easy addressing by
Routing Rule 1. Note that a precomputation of an upper
bound of the diameter of GGG can replace the n-rounds
repetitions, where n is the number of nodes in G. Let the
next algorithm steps work only on non-tree nodes and tree
roots, i.e. assume there exist no tree children. Algorithm 1
is mainly used to decrease the number of virtual edges in-

serted in the next three steps.

Algorithm 2 has to be extended as follows if the outer
face may contain cut nodes. If a message (x̂v, ŷv, c) initi-
ated from node v with coordinates x̂v, ŷv reaches a node w
more than once (which can only happen if w is a cut node),
w does not set its cw value, but inserts a virtual edge be-
tween its predecessor and its successor on the outer face
and then passes the message (x̂v, ŷv, c) right hand rule (ne-
glecting virtual edges). Note that the inserted virtual edges
may temporarily destroy the planarity of the embedding, but
they do not affect planarity of the barycentric layout after
completion.

Algorithm 3: BR step 3 (establish 2-connectedness).

repeat
foreach v ∈ V do

if v is not a perimeter node then
apply iteration (1)

if v both had neighbors u ∈ U with
d(v, u) < ε and neighbors w ∈W with
d(v, w) ≥ ε for more than κ1 rounds then

insert virtual edge between succeeding
neighbors u ∈ U,w ∈W if this edge not
already exists

until stop criterion is fulfilled

Algorithm 4: BR step 3 (establish 3-connectedness).

repeat
foreach v ∈ V do

if v is not a perimeter node then
apply iteration (1)

if v had neighbors u ∈ U, |U | ≥ 2, all within a
sector S of angle ϑ, for more than κ2 rounds
then

insert virtual edge between u ∈ U and w∗,
the first node that starting from a neighbor
w /∈ U succeeding (preceeding) u right
hand rule (left hand rule), is outside the
sector S rotated by π if such a node w∗

exists

until stop criterion is fulfilled

Parameters ε, κ1 and ϑ, κ2 for the next step, together with
an appropriate stop criterion have to be adapted depend-
ing on the specific scenario. Choosing ε too small and the
stop criterion too weak may result in a non-detection of a
cut node. Choosing ε rather too great (we used 10−2 in
our tests) is the better choice, since unnecessarily inserted
edges do not affect the remaining algorithm. When choos-
ing a weak stop criterion it is helpful to extend the follow-
ing Routing Rules 1 to 4 such that degree-2-nodes simply
pass the message to their other neighbor. Algorithm 3 ter-
minates (i.e. it stops inserting virtual edges) because of the



Euler Formula for planar graphs. In fact, when choosing ε
sufficiently small, virtual edges are inserted unnecessarily
(i.e. if G is already 2-connected) only if the edge is part of
a component G1 that is separated from G by a cut pair.

Lemma 1 Consider the barycentric layout pC of a con-
nected planar graph G. G is 2-connected if Algorithm 3
does not insert a virtual edge.

Lemma 2 Consider the barycentric layout pC of a 2-con-
nected planar graph G. The layout pC is planar if Algo-
rithm 4 does not insert a virtual edge.

Algorithm 4 terminates because each inserted virtual
edge decreases the number of cut pairs (after termination
only cut pairs v, w ∈ C may remain). Thus, the barycentric
layout finally becomes a planar embedding that allows no
more insertion of virtual edges.

The insertion of virtual edges can cause a delay of posi-
tion information during the communication of iteration (1),
if the inserted edges do not exist in the original graph G,
i.e. a node v that has a virtual neighbor w at a distance
k only receives its position after k rounds instead of one
round.

Lemma 3 Iteration (1) also converges to pC with delayed
position information.

3.2. BR Rule

We now present our routing rules. These assume that
virtual coordinates, a barycentric layout pC , have been pre-
computed. The following simple rule is sufficient for guar-
anteed message delivery and already delivers good results
for graphs of certain densities (see Figure 1).

Routing Rule 1 If d(v, t) = 0 pass message to w with
maximum zw ≤ zt.
If d(v, t) > 0 and zv > 0 pass message to the neighbor w
with minimum zw.
If d(v, t) > 0 and zv = 0 pass message to w with minimum
angle ψt(v, w) ≥ 0.

3.3. GBR Rule

For dense graphs BR suffers from its restriction to the
Gabriel Graph. GBR prevents this drawback. Whenever
possible GBR advances in greedy mode to t using the orig-
inal graph G instead of GGG. This leads to an algorithm
with overall good performance on the whole density spec-
trum, outperforming routing algorithms on geographic co-
ordinates (see Figure 1) .

Routing Rule 2 Pass message to a G-neighbor w with
minimum distance d(w, t) < d(v, t) if such a neighbor ex-
ists. Otherwise, pass the message according to Rule 1 until
reaching a node w with d(w, t) < d(v, t) and then again
apply Rule 2.

3.4. AGBR Rules

AGBR needs an additional step 0 during the precom-
putation phase for virtual coordinates to prove Theorem 5
that is analogous to a theorem concerning the message
path lengths of GOAFR+ [5]. Hence, AGBR fixes the un-
bounded message paths of GBR in the worst-case (Theo-
rem 4), while still being good in practice. In fact, in our tests
(Figure 1) we used AGBR instead of GBR, but we chose pa-
rameter ρ sufficiently great, such that AGBR always runs in
GBR mode. Step 0 computes a backbone graph GBG (see,
e.g. [9]), i.e. a subgraph of the original unit disk graph G
forming a dominating set of G. The remaining steps apply
to the backbone graph and routing between the backbone
graph GBG and G is straight-forward.

Routing Rule 3 Pass message according to Rule 2 if it will
thereby be passed to a node w with d̂(w, t) ≤ ρd̂(s, t). Oth-
erwise, walk right hand rule along the outer face of the
graph Gρ formed by all nodes u with d̂(u, t) ≤ ρd̂(s, t)
until returning to v. If t was not surrounded by this walk
set ρ ← 2ρ and again apply Rule 3. Otherwise, set angle
ϕ∗ ← ϕt(v) and v∗ ← v and apply Rule 4.

Routing Rule 4 Pass message according to Rule 1 if it will
thereby be passed to a node w with d̂(w, t) ≤ ρd̂(s, t). Oth-
erwise, walk right hand rule around the outer face of Gρ

until a node w with ϕt(w) ≥ ϕ∗, w 6= v∗ is reached. Set
ϕ∗ ← ϕt(w), v∗ ← w and apply Rule 4.

3.5. AGBFR Rule

AGBFR uses the same rules as AGBR with some modifi-
cations to Rules 1 and 4. The good performance of AGBFR
is only due to improved greedy success rates, i.e. the ratio of
delivered messages only using greedy mode (see Figure 2).

Routing Rule 1a If d(v, t) = 0 pass message to w with
maximum zw ≤ zt.
If d(v, t) > 0 and zv > 0 pass message to the neighbor w
with minimum zw.
If d(v, t) > 0 and zv = 0 walk right hand rule (directed
to
−→
vt) along the face at v until returning to v. For the edge

e with minimum d(e, t) < d(v, t) continue walking right
hand rule (directed to

−→
pet for any point pe ∈ E) along the

face at e.

Routing Rule 4a Apply Rule 2 restricted to Gρ.



4. Theoretical Results

In this section we consider provable properties of the
routing methods just introduced. Experimental results fol-
low in the Appendix. Routing Rule 1 directly implies the
following lemma for tree nodes.

Lemma 4 Routing rule 1 guarantees message delivery if s
and t are in the same tree. Otherwise the message is passed
from s to its root node if s is a tree node. If t is a tree node
the message will be passed from its root node to t.

Theorem 2 BR, GBR and AGBR guarantee message deliv-
ery.

Theorem 3 AGBFR guarantees message delivery after it-
eration (1) yields a planar embedding (respecting the cyclic
order of neighbors from GGG).

Theorem 4 There exists a series of unit disk graphs with a
designated target node t, such that the expected quotient of
the length of the BR-path (and GBR-path) between a ran-
dom source node s and t divided by the length of a shortest
s-t-path is unbounded.

Theorem 5 The length of an AGBR-path is inO(`2), where
` is the length of a shortest s-t-path.

The following and previous theorem together deliver
worst-case optimality of AGBR.

Theorem 6 There exists a series of unit disk graphs with a
designated target node t, such that the expected length of
an AGBR-path between a random source node s and t is in
Ω(`2), where ` is the length of a shortest s-t-path.

5. Conclusion

We presented four routing methods for networks, where
geographic positions of the nodes are available. All meth-
ods make use of virtual coordinates obtained during a one-
time-precomputation phase. Using a barycentric layout as
virtual coordinates allows simple routing rules with guar-
anteed delivery, and very short routes in practice, outper-
forming algorithms working only on geometric coordinates.
Attempts to reduce the consuming precomputation phase
are made with AGBFR. Nevertheless, if guaranteed mes-
sage delivery on short routes is obligatory, our methods
clearly apply to static, long-time-living networks, where
the precomputation is affordable and where short routes are
of great importance, but memory for full routing tables is
not available. Considering AGBFR as a heuristical routing
method on the other hand might also make it a candidate for
dynamic networks, where some few iterations (even only lo-
cal) are used to update the barycentric layout, since in gen-
eral small modifications in the network GGG induce small
modifications in its barycentric layout.
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A. Experimental Results

The mean algorithm cost is defined as the quotient of the
length of the message path divided by the length of a short-
est path. Figure 1 shows the results of tests on random unit
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Figure 2. The number of tree nodes and the
number of virtual edges that were inserted
is displayed. Furthermore, success rates of
greedy routing for GBR and GOAFR+.

disk graphs with 1000 nodes. For each node density from
1.0 to 20.0 in steps of 0.25 we created 100 networks, and
routed messages between 1000 s-t-pairs. Figure 2 shows
the improvement of the greedy success rate, i.e. the ratio
of messages delivered only in greedy mode, due to convex
faces in barycentric layout that make dead-locks unproba-
ble. Furthermore, the numbers of tree nodes and inserted
virtual edges are shown. Figure 3 finally shows mean al-
gorithm costs of AGBFR with various maximum numbers
of applications of iteration (1), restricted to the cases when
delivery was successful. The delivery ratio of successful
AGBFR-routes is also given in Figure 3.
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