
GraphML Progress Report?

Structural Layer Proposal

Ulrik Brandes1, Markus Eiglsperger2, Ivan Herman3, Michael Himsolt4, and
M. Scott Marshall3

1 Department of Computer & Information Science, University of Konstanz.
Ulrik.Brandes@uni-konstanz.de

2 Wilhelm Schickard Institute for Computer Science, University of Tübingen.
eiglsper@informatik.uni-tuebingen.de

3 Centrum voor Wiskunde en Informatica. {ivan|scott}@cwi.nl
4 DaimlerChrysler Research. Michael.Himsolt@daimlerchrysler.com

Abstract. Following a workshop on graph data formats held with the
8th Symposium on Graph Drawing (GD 2000), a task group was formed
to propose a format for graphs and graph drawings that meets current
and projected requirements.
On behalf of this task group, we here present GraphML (Graph Markup
Language), an XML format for graph structures, as an initial step to-
wards this goal. Its main characteristic is a unique mechanism that allows
to define extension modules for additional data, such as graph drawing
information or data specific to a particular application. These modules
can freely be combined or stripped without affecting the graph structure,
so that information can be added (or omitted) in a well-defined way.

1 Introduction

Graph drawing tools, like all other tools dealing with relational data, need to
store and exchange graphs and associated data. Despite several earlier attempts
to define a standard, no agreed-upon format is widely accepted and, indeed,
many tools support only a limited number of custom formats which are typically
restricted in their expressibility and specific to an area of application.

Motivated by the goals of tool interoperability, access to benchmark data
sets, and data exchange over the Web, the Steering Committee of the Graph
Drawing Symposium started a new initiative with an informal workshop held
in conjunction with the 8th Symposium on Graph Drawing (GD 2000) [1]. As
a consequence, an informal task group was formed to propose a modern graph
exchange format suitable in particular for data transfer between graph drawing
tools and other applications.

On behalf of this group we propose GraphML (Graph Markup Language),
an XML format that takes a unique approach to represent graphs and graph
drawings by specifying
? The latest information on GraphML is maintained on the GraphML homepage [2].

1. core elements to describe graph structures together with
2. an extension mechanism that allows to independently build application-

specific graph data formats on top of them.

In particular, such extensions can be freely combined or ignored without af-
fecting the graph data itself. Thus, drawing information can be added to an
application-specific format, and graphs can be extracted from foreign applica-
tion data. These features seem to be essential requirements for today’s and future
graph data formats, since graph models are ubiquitous and there will certainly
be no agreement on a single general format across all disciplines.

This report is organized as follows. In Sect. 2, we outline the guidelines used
in the design of GraphML. The core of the language is described in Sect. 3 and
in Sect. 4 we outline how to add non-structural data and thus bind GraphML
to specific applications. We conclude with future plans in Sect. 5.

2 Usage Scenarios and Design Goals

A modern graph exchange format cannot be defined in a monolithic way, since
graph drawing services are used as components in larger systems and Web-
based services are emerging. Graph data may need to be exchanged between
such services, or stages of a service, and between graph drawing services and
systems specific to areas of applications.

The typical usage scenarios that we envision for the format are centered
around systems designed for arbitrary applications dealing with graphs and other
data associated with them. Such systems will contain or call graph drawing ser-
vices that add or modify layout and graphics information. Moreover, such ser-
vices may compute only partial information or intermediate representations, for
instance because they instantiate only part of a staged layout approach such as
the topology-shape-metrics or Sugiyama frameworks. We hence aimed to satisfy
the following key goal.

The graph exchange format should be able to represent arbitrary graphs
with arbitrary additional data, including layout and graphics informa-
tion. The additional data should be stored in a format appropriate for
the specific application, but should not complicate or interfere with the
representation of data from other applications.

GraphML is designed with this and the following more pragmatic goals in mind:

– Simplicity : The format should be easy to parse and interpret for both humans
and machines. As a general principle, there should be no ambiguities and thus
a single well-defined interpretation for each valid GraphML document.

– Generality : There should be no limitation with respect to the graph model,
i.e. hypergraphs, hierarchical graphs, etc. should be expressible within the
same basic format.

– Extensibility : It should be possible to extend the format in a well-defined
way to represent additional data required by arbitrary applications or more
sophisticated use (e.g., sending a layout algorithm together with the graph).

– Robustness: Systems not capable of handling the full range of graph models
or added information should be able to easily recognize and extract the
subset they can handle.

There was no arguing that the format be based on XML (eXtensible Markup
Language) [7] to stay compatible with other emerging standards such as, e.g.,
SOAP (Simple Object Access Protocol) [8], but also to enable use of the many
widely supported tools for parsing and handling XML-formatted data. Another
principal decision was to conceptually separate different layers of information,
such as graph structure, application data, topology, geometry, or graphics. Fig-
ure 1 sketches the conceptual units of our design.

properties

data

algorithms
topology geometry

graphics

labeled mixed multigraph

hyperedgesports nesting

Fig. 1. The basic graph model of GraphML are labeled mixed multigraphs with op-
tional node ports, hyperedges, and nesting. Graph drawing information is planned to
be separated into topological and geometric, with a graphics layer on top. Like any
other associated data, it will be encapsulated in a special tag

To date, the GraphML group has specified the structural layer, i.e. the core
elements of the format describing the incidence structure of arbitrary graphs,
and an extension mechanism to add non-structural data. Using this extension
mechanism, it is possible to define application-specific modules that can be added
to the structural layer common to all variants thus created. Information relevant
to graph drawing services will later be defined within one or more such modules.

3 Structural Layer

In this section, we describe how graphs are represented in GraphML. This part
of GraphML is called the structural layer and constitutes the essence of the
format. The fundamental graph model underlying our design is a labeled mixed
multigraph, which may, but need not, include node ports, hyperedges, and nested
graphs. When these concepts are not supported by an application, they can
be easily identified and may simply be ignored without losing the remaining
structural information.

3

1

4

2

Fig. 2. Example graph in which the shaded area represents a hyperedge with three
incident vertices

We describe separately the XML constructs defined to represent mixed multi-
graphs, ports, hyperedges and nesting, and use the graph in Fig. 2 as our running
example. How to define and include additional data is explained in the next sec-
tion, and the actual DTD (Document Type Definition) of GraphML is given in
the appendix.

3.1 Mixed multigraphs

2

3 4

1

<graph edgedefault="directed">
<desc>This is a mixed multigraph</desc>

<node id="v1"/>
<node id="v2"/>
<node id="v3"/>
<node id="v4"/>

<edge source="v1" target="v2"/>
<edge source="v1" target="v3"/>
<edge source="v2" target="v4"/>
<edge source="v2" target="v4" directed="false"/>

</graph>

Fig. 3. The graph of Fig. 2 as represented in the most basic layer of GraphML

A mixed multigraph is a graph which may contain both directed and undi-
rected edges and may have loops and multi-edges. The representation chosen
for GraphML is a simple list if nodes and edges. GraphML defines XML tags
<graph>, <node>, and <edge> for this purpose.

– A GraphML document may contain any number of <graph>s.
– The mandatory XML attribute edgedefault of <graph> specifies whether

<edge>s are directed or undirected by default. The optional XML attribute
directed of <edge> can be used to overwrite the default.

– An <edge> refers to a source and a target node, regardless of whether it is
directed or not.

– A <graph> tag may contain <node>s and <edge>s in any order.

Tools supporting only mixed multigraphs may describe and view the example
graph as shown in Fig. 3. Note, however, that they may also choose to represent
the features they do not support in a different way (e.g., by adding a dummy
node for each hyperedge). Although there is a single well-defined interpretation
for each GraphML document, no prescriptions are made on the representation
of more complex graph models when only basic elements are supported.

3.2 Ports

3

1
2

4

<graph edgedefault="directed">
<desc>Mixed multigraph with node ports</desc>

<node id="v1">
<port name="north"/> <port name="east"/>

</node>
<node id="v2"/>
<node id="v3"/>
<node id="v4"/>

<edge source="v1" sourceport="east" target="v2"/>
<edge source="v1" target="v3"/>
<edge source="v2" target="v4"/>
<edge source="v2" target="v4" directed="false"/>

</graph>

Fig. 4. Ports have local names at vertices, and can be referenced separately by edges

A port is a subset of the incidence relations of a node and can be viewed as
a part of a node to which edges may attach. In electrical circuits for instance
ports can be legs of a chip, and in graph drawing they may be used to specify
points at which edges connect to a node. In GraphML <port>s appear as nested
subelements of <node>s, and <edge>s may specify <port>s they attach to for
both of their endpoints. See Fig. 4 for an example.

3.3 Hypergraphs

A hyperedge is a subset of nodes, together with a classification of these nodes
into inputs, outputs, or neither of the two. A GraphML tag <hyperedge> may

4

1 2

3

<graph edgedefault="directed">
<desc>Mixed multigraph with a hyperedge</desc>

<node id="v1"/>
<node id="v2"/>
<node id="v3"/>
<node id="v4"/>

<edge source="v1" target="v2"/>
<edge source="v1" target="v3"/>
<edge source="v2" target="v4"/>
<edge source="v2" target="v4" directed="false"/>

<hyperedge>
<endpoint node="v1" type="out"/>
<endpoint node="v2" type="in"/>
<endpoint node="v4"/>

</hyperedge>
</graph>

Fig. 5. A hyperedge incident to v1, v2, and v4, where v1 is a source and v2 is a sink

therefore contain any number of <endpoint>s which, in turn, refer to <node>s,
but also classify these nodes using the XML attribute type. See Fig. 5 for the
addition of hyperedges to a mixed multigraph.

Hyperedges are generalizations of edges, and edges could hence be represented
as hyperedges. We have chosen to separate the two concepts for the benefit
of applications that do not support hyperedges. By using two different XML
tags, parsers can easily distinguish the two cases and invoke special treatment
of <hyperedge>s if needed. Such applications may choose, e.g., to represent
hyperedges using dummy nodes or to ignore them altogether.

3.4 Nested graphs

1 2

3

4

<graph edgedefault="directed">
<desc>Mixed multigraph with a nested graph</desc>

<node id="v1"/>
<node id="v2"/>
<node id="v3">

<graph id="G8local">
<locator xlink:href="http://domain.tld/graphs.xml#G8"/>

</graph>
</node>
<node id="v4"/>

<edge source="v1" target="v2"/>
<edge source="v1" target="v3"/>
<edge source="v2" target="v4"/>
<edge source="v2" target="v4" directed="false"/>

</graph>

Fig. 6. A nested graph (located in another document)

A nested graph is a graph occurring in an element of another graph. There are
many models of hierarchical graphs, e.g., allowing more than one nested graph
per element or a graph to be contained in more than one element.

Each item of a graph, i.e. each <node>, <edge>, or <hyperedge> may contain
one nested <graph> element. Though simple, this model is sufficiently general
to support all of the above variants. More than one contained graph can be
expressed by defining a single contained graph which has a node for each of
the child elements, and a contained graph appearing in different places can be
referenced using a <locator> element.

For generality, we make no restrictions in the format as to which elements may
be adjacent. GraphML supports edges between graphs, edges between elements
of graphs at different levels of the containment hierarchy, etc., and leaves it to
the application to detect inconsistencies with respect to its own model.

See Figure 6 for an example of a nested mixed multigraph.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE graphml SYSTEM "graphml.dtd">

<graphml>

<graph edgedefault="directed">

<desc>The entire example graph</desc>

<node id="v1">

<port name="north"/>

<port name="east"/>

</node>

<node id="v2"/>

<node id="v3">

<graph id="G8">

<locator xlink:href="http://domain.tld/graph.xml#G8"/>

</graph>

</node>

<node id="v4"/>

<edge source="v1" sourceport="east" target="v2"/>

<edge source="v1" target="v3"/>

<edge source="v2" target="v4"/>

<edge source="v2" target="v4" directed="false"/>

<hyperedge>

<endpoint node="v1" port="north" type="out"/>

<endpoint node="v2" type="in"/>

<endpoint node="v4"/>

</hyperedge>

</graph>

</graphml>

Fig. 7. A complete GraphML document representing the graph of Fig. 2

In this section, we have described how mixed multigraphs, possibly with
node ports, hyperedges and nested graphs, are represented in GraphML and
thus completed the structural layer. The entire graph of Fig. 2 is stored in the
GraphML document in Fig. 7. It remains to show how data not related to the
structure of the graph is incorporated into a GraphML document.

4 Additional Data

The structural layer described in the previous section separates – both concep-
tually and in XML terms – the structure of a graph from every other type of
data related to it. We propose the placement of additional data in well-defined
locations without prescribing the representation of of the data. These locations
are defined with the help of <key> and <data> tags. Furthermore, we propose
means to structure and type the content of <data> tags.

4.1 Unstructured data

Data labelings are considered to be (partial) functions that assign values in an
arbitrary range to elements of the graph (which usually have the same type).
Edge weights, for instance, can be viewed as a function from the set of edges
into, say, the real numbers. For each such function, GraphML requires a <key>,
providing a name and a domain (via the XML attribute for) for the class of
labels. The optional content of a <key> tag is used as the function’s default
value.

Each element in the GraphML structural layer – except for <locator> –
may contain any number of <data> tags, representing data values assigned to
the corresponding graph item. A <data> tag refers to its <key>, i.e. the function,
for which it provides a value, which in turn is defined by its content. If no <data>
tag is present for an element in the domain of a given <key>, the default value
is assumed.

Unless explicitly defined otherwise, the range of data labels is not restricted
(i.e. #PCDATA).

4.2 Structured data

More structured content can be defined by replacing the XML content model
shared by <key> and <data> tags with a self-defined one. The mechanism pro-
posed for such variations mimicks the W3C Recommendation for XHTML Mod-
ularization [5], which is currently implemented with DTDs only. The W3C is
working on an implementation using XML Schema (see [9] for a primer), which
we will adapt as soon as it becomes a Recommendation.

The DTD implementation is as follows. A parameter entity %GRAPHML.data.
content, initially defined to be #PCDATA, is used to specify the content model
of <key> and <data> tags. A GraphML extension module, say EXT, would
define new XML tags to represent data specific to the corresponding application

and a parameter entity %EXT.data.content specifying a content model for this
module.

Recall that there may be more than one module. A driver file therefore de-
fines the GraphML variant resulting from a specific combination of modules by
importing them into GraphML and overwriting the content models of <key> and
<data> with a combination of the content models defined in the modules. For
details and examples see the GraphML homepage [2] and the XHTML Modu-
larization Tutorial [6].

In effect, arbitrary variants of GraphML can be created by specifying valid
XML for the content of <key> and <data> tags in extension modules, but the
structural definition of the graph remains unaltered, regardless of the structure
and type of data associated with it.

4.3 Typed data

A second issue important for parsers and human interpretation alike is the typing
of data labels. While the mechanism outlined in the previous subsection ensures
that the XML content of <data> tags is any valid data item defined in an
extension module, we suggest a way to infer the intended data type prior to
having read all <data> tags that refer to the same <key>.

Each GraphML tag has an associated parameter entity in its list of XML
attributes. This parameter is empty by default, but can be overwritten by ex-
tensions, thus adding new XML attributes to GraphML tags. In particular, one
can define new XML attributes for <key>s. A GraphML extension module can
therefore define an XML attribute with enumeration type values that correspond
to meaningful types to content. It is likely that, when modularization via XML
Schema becomes available, part of the type-checking can be delegated down to
the XML level.

In summary, extensions can define any XML format to describe additional
data and they can also provide typing information for parsers to deal with data
in an efficient and type-safe manner. Multiple extensions can be combined freely,
and extensions need not be supported by a parser to correctly extract contained
graphs, since extensions are confined to subtrees of the Document Object Model
(DOM) rooted at <data> tags and therefore cannot interfere with the structural
layer.

5 Summary and Future Work

We have proposed GraphML, an XML format for the exchange of graph data.
GraphML has been designed to be simple, general, robust, and, in particu-
lar, extensible. Application developers may define GraphML variants to include
application-specific data, thereby making full use of XML’s capabilities, but the
design of GraphML ensures that such extensions are transparent to systems
unaware of the extension. A tutorial on extending GraphML is in preparation.

Up-to-date information on GraphML is available on the Web [2], together
with experimental parsers and graph editors using them. After a public review
period, the specification will be finalized and published in full. To avoid even
further diversification of formats, we aim towards the integration of GraphML
with GXL (Graph Exchange Language) [3].

GraphML lays the ground towards an exchange format for graph visualiza-
tions. Future work will concentrate on defining GraphML extension modules for
various applications, in particular graph drawing and information visualization.
An important option considered in our preliminary designs for such modules is
to make use of SVG (Scalable Vector Graphics) [4] in some form or another.

Acknowledgments. Many people have contributed to the current proposal. We
would especially like to thank Stephen North and Roberto Tamassia for their con-
tinuing support and expertise, Jürgen Lerner and Sascha Meinert for implement-
ing experimental parsers, John Punin for translating the GraphML DTD into
XML Schema, Giuseppe Liotta for running the graph format panel discussion at
GD 2001, and Petra Mutzel for including it into the program as well as giving
us the opportunity to publish this progress report in the proceedings. We would
also like to express our thanks to all members active or passive of the GraphML
mailing list for their support of the project. In addition to all those mentioned
before these are Vladimir Batagelj, Anne-Lise Gros, Carsten Gutwenger, David
Jensen, Serban Jora, Michael Kaufmann, Guy Melançon, Maurizio Patrignani,
Tim Pattison, Matthew Phillips, John Punin, Susan Sim, Adrian Vasiliu, Vance
Waddle, and Andreas Winter.

References

1. Ulrik Brandes, M. Scott Marshall, and Stephen C. North. Graph data format work-
shop report. In Joe Marks, editor, Proceedings of the 8th International Symposium
on Graph Drawing (GD 2000), volume 1984 of Lecture Notes in Computer Science,
pages 407–409. Springer, 2001.

2. GraphML homepage. http://www.graphdrawing.org/graphml/.
3. Ric Holt, Andy Schürr, Susan Sim, Andreas Winter. GXL – Graph eXchange Lan-

guage. http://www.gupro.de/GXL/. Also refer to the article in this volume.
4. W3C. Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG.
5. W3C. XHTMLTM 1.1 – Module-based XHTML. http://www.w3.org/TR/2001/

REC-xhtml11-20010531/.
6. W3C. XHTML Modules and Markup Languages. http://www.w3.org/MarkUp/

Guide/xhtml-m12n-tutorial/.
7. W3C. Extensible Markup Language (XML). http://www.w3.org/XML/.
8. W3C. XML Protocol Activity. http://www.w3.org/2000/xp/.
9. W3C. XML Schema Part 0: Primer. http://www.w3.org/TR/xmlschema-0/.

http://www.graphdrawing.org/graphml/
http://www.gupro.de/GXL/
http://www.w3.org/Graphics/SVG
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/MarkUp/Guide/xhtml-m12n-tutorial/
http://www.w3.org/MarkUp/Guide/xhtml-m12n-tutorial/
http://www.w3.org/XML/
http://www.w3.org/2000/xp/
http://www.w3.org/TR/xmlschema-0/

A GraphML Document Type Definition

The following is a simplified version of the proposed Document Type Definition
(DTD) for GraphML. The omitted details are relevant only for extension module
developers and given on the GraphML homepage [2].

<!-- documents --
GraphML documents start with an optional content description,
followed by the declaration of any number of keys and a sequence of graphs.
--->

<!ELEMENT graphml ((desc)?,(key)*,(graph)*)>

<!-- comments ---
A description element contains human-readable text
describing the content of the element it appears in.
--->

<!ELEMENT desc (#PCDATA)>

<!-- remote definitions ---
A locator may be used instead of other content of a graph or data element
to refer to the location of the actual definition of the enclosing item’s
content.
--->

<!ELEMENT locator EMPTY>
<!ATTLIST locator

xmlns:xlink CDATA #FIXED "http://www.w3.org/TR/2000/PR-xlink-20001220/"
xlink:href CDATA #REQUIRED
xlink:type (simple) #FIXED "simple"

>

<!-- graphs ---
A graph contains an optional description, keys local to this graph,
and either a locator indicating that the graph is defined elsewhere,
or lists of nodes, (hyper)edges, and data associated with the graph
(in any order).
A graph may be identified using the "id" attribute. The mandatory attribute
"edgedefault" indicates whether edges are directed or undirected by default;
this can be overwritten locally by every edge.
--->

<!ELEMENT graph ((desc)?,(key)*,((((data)|(node)|(edge)|(hyperedge))*)|(locator)))>
<!ATTLIST graph

id ID #IMPLIED
edgedefault (directed|undirected) #REQUIRED

>

<!-- nodes --
Each node in a graph has to have a (unique) id.
It may contain a description, followed by a sequence of ports and node
data in any order, and may contain another graph. Alternatively,
it can be defined in another location, including a different file.
Ports are identified by a name which does not have to be unique throughout
the document, but within a node. They can be nested hierarchically.
--->

<!ELEMENT node ((desc)?,((((data)|(port))*,(graph)?)|(locator)))>
<!ATTLIST node id ID #REQUIRED>

<!ELEMENT port ((desc)?,((data)|(port))*)>
<!ATTLIST port name NMTOKEN #REQUIRED>

<!-- edges --
Similiar to nodes, edges may contain a separate description, followed by
any number of edge data and, potentially, a nested graph.
An edge must refer to a source and a target node, and may specify ports
it attaches to. However, such ports are not implicitly created and must
therefore be defined at the corresponding node.
Using the attribute "directed", the default value defined for the enclosing
graph can be overwritten.
--->

<!ELEMENT edge ((desc)?,(data)*,(graph)?)>
<!ATTLIST edge

id ID #IMPLIED
source IDREF #REQUIRED
sourceport NMTOKEN #IMPLIED
target IDREF #REQUIRED
targetport NMTOKEN #IMPLIED
directed (true|false) #IMPLIED

>

<!-- hyperedges ---
Since the number of nodes incident to a hyperedge is arbitrary, they are
not referred to via attributes of hyperedge. Rather, a child element
endpoint is created for each incident node, which refers to the node and,
optionally, the port it is incident to. For each incidence, it can be
specified separately whether the node is a source ("out"), a target ("in"),
or neither ("undir").
--->

<!ELEMENT hyperedge ((desc)?,((data)|(endpoint))*,(graph)?)>
<!ATTLIST hyperedge id ID #IMPLIED>

<!ELEMENT endpoint ((desc)?)>
<!ATTLIST endpoint

id ID #IMPLIED
node IDREF #REQUIRED
port NMTOKEN #IMPLIED
type (in|out|undir) "undir"

>

<!-- additional data --
Additional data can be attached to any GraphML item by inserting data tags.
To distinguish different sorts of data, those of the same sort refer
to a common key tag. A key may specify the domain it is valid for,
and may contain a default value for that domain. A key can thus be seen
as the declaration of an array, non-default values of which are defined
by the respective element.
Extension modules may overwrite the common content model of key and data
and add new attributes to keys to provide data type information.
--->

<!ENTITY % GRAPHML.key.attrib "">
<!ENTITY % GRAPHML.data.content "(#PCDATA)">

<!ELEMENT key %GRAPHML.data.content;>
<!ATTLIST key

id ID #REQUIRED
for (graph|node|edge|hyperedge|port|endpoint|all) "all"
%GRAPHML.key.attrib;

>

<!ELEMENT data %GRAPHML.data.content;>
<!ATTLIST data

key IDREF #REQUIRED
id ID #IMPLIED

>

	Introduction
	Usage Scenarios and Design Goals
	Structural Layer
	Mixed multigraphs
	Ports
	Hypergraphs
	Nested graphs

	Additional Data
	Unstructured data
	Structured data
	Typed data

	Summary and Future Work
	GraphML Document Type Definition

