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Abstract. We introduce the concept of colored simultaneous geometric embeddings as a general-
ization of simultaneous graph embeddings with and without mapping. We show that there exists
a universal pointset of size n for paths colored with two or three colors. We use these results to
show that colored simultaneous geometric embeddings exist for: (1) a 2-colored tree together with
any number of 2-colored paths and (2) a 2-colored outerplanar graph together with any number of
2-colored paths. We also show that there does not exist a universal pointset of size n for paths col-
ored with five colors. We finally show that the following simultaneous embeddings are not possible:
(1) three 6-colored cycles, (2) four 6-colored paths, and (3) three 9-colored paths.

1 Introduction

Visualizing multiple related graphs is useful in many applications, such as software engineering,
telecommunications, and computational biology. Consider the case where a pair of related graphs
is given and the goal is to visualize them so as to compare the two, e.g., evolutionary trees
obtained by different algorithms. When visually examining relational information, such as a
graph structure, viewers construct an internal model called the mental map, for example, using
the positions of the vertices relative to each other. When viewing multiple graphs, the viewer
has to reconstruct this mental map after examining each graph and a common goal is to aid the
viewer in this reconstruction while providing a readable drawing for each graph individually. The
notion of simultaneous embedding [5] was developed to aid in visualizing multiple relationships
between the same set of objects by keeping common vertices and edges of these graphs in the
same positions.

Simultaneous geometric embedding is a generalization of the traditional planar graph em-
bedding problem, where we look for a common embedding of multiple graphs defined on the
same vertex set. Traditional notions of planarity extend to simultaneous planarity, where the
goal is to simultaneously find a plane straight-line drawing for each of the given graphs. There
are two main variations of the problem described in the literature. In simultaneous geometric
embedding with mapping it is assumed that a mapping between the vertices of the graphs is
given as part of the input: i.e., if u and v are two distinct vertices of different graphs and there

⋆ Work on this problem began at the BICI Workshop on Graph Drawing, held in Bertinoro, Italy in March 2006.



is a mapping from u to v, then in a simultaneous embedding of these graphs u and v must be
placed at the same point in the plane. In simultaneous geometric embedding without mapping
the simultaneous embedding consists of straight-line plane drawings for each of the given graphs
on the same set of points, where any vertex can be placed at any of the points in the point set.
As we only consider straight-line drawings here, we will omit the “geometric” clarification in the
rest of the paper.

Only restricted subclasses of planar graphs, such as pairs of paths, pairs of cycles, and pairs of
caterpillars, admit a simultaneous embedding with mapping [5]. There exist pairs of outerplanar
graphs, triples of paths, and even a path—planar pairs that do not always admit a simultaneous
embeddings with mapping [5, 11]. Recently, Kaufmann et al. [12] constructed an example of
two trees which do not allow a simultaneous embedding. Fewer results are known for the less
restricted version of the problem where the mapping is not predefined. Brass et al. [5] proved
that it is possible to simultaneously embed without mapping any planar graph with any number
of outerplanar graphs, but the question whether any pair of planar graphs can be simultaneously
embedded without mapping is still open.

Simultaneous embedding is related to universal pointsets, graph thickness, and geometric
thickness. While de Fraysseix et al. [7] showed that there does not exist a universal pointset of
size n in the plane for n-vertex planar graphs, Bose [4] showed that a set of n points in general
position is a universal pointset for trees and outerplanar graphs. Using simultaneous embedding
techniques, Duncan et al. [9] showed that degree-four graphs have geometric thickness two.

As we show, colored simultaneous embeddings allow us to generalize the problems above
so that the versions with and without mappings become special cases. Formally, the problem
of colored simultaneous geometric embedding is defined as follows. The input is a set of planar
graphs G1 = (V,E1) , G2 = (V,E2), . . . , Gr = (V,Er) on the same vertex set V and a partition
of V into k classes, which we refer to as colors. The goal is to find plane straight-line drawings
Di of Gi using the same |V | points in the plane for all i = 1, . . . , r, where vertices mapped to
the same point are required to be of the same color.

We call such graphs k-colored graphs. Given the above definition, simultaneous embeddings
with and without mapping correspond to colored simultaneous embeddings with k = |V | and
k = 1, respectively. Thus, when a set of input graphs allows for a simultaneous embedding
without mapping but does not allow for a simultaneous embedding with mapping, there must
be a threshold for the number of colors beyond which the graphs can no longer be embedded
simultaneously.

Colored simultaneous embeddings also provide a way to obtain near-simultaneous embed-
dings, where we place corresponding vertices nearly, but not necessarily exactly, at the same
locations. For example, if points with the same colors are clustered together in the plane, then
even if a red vertex v drawn at red point p in G1 has moved to another red point q in G2, the
movement is limited to the area covered by the red points. Finally, near-simultaneous embed-
dings are useful in visualizing dynamic graphs, where the viewer’s mental map is preserved by
limiting the movement of the vertices [10].

In this paper we present the first results about colored simultaneous embeddings. We study
different values of k and show that:

1. There exists a universal pointset of size n for n-vertex 2-colored paths.

2. There exists a universal pointset of size n for n-vertex 3-colored paths.

3. There does not exist a universal pointset of size n for n-vertex 5-colored paths.

4. A 2-colored tree and any number of 2-colored paths can be simultaneously embedded.
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Fig. 1. Embedding a 2-colored path.

5. A 2-colored outerplanar graph and any number of 2-colored paths can be simultaneously
embedded.

6. There exist three 6-colored cycles that cannot be simultaneously embedded.

7. There exist four 6-colored paths that cannot be simultaneously embedded.

8. There exist three 9-colored paths that cannot be simultaneously embedded.

2 Two-Colored Simultaneous Embeddings

We begin by showing the existence of a universal pointset for 2-colored paths. Next we show
how to use this fact in order to obtain simultaneous embeddings for a 2-colored tree and any
number of 2-colored paths. A generalization of this result is that 2-colored outerplanar graphs
can be simultaneously embedded with any number of 2-colored paths.

2.1 Universal Pointset for Paths on Two Colors

The following lemma extends a result of Abellanas et al. [1] on proper 2-colorings of paths.

Lemma 1. Given a 2-colored path P of r red and b blue vertices and a set S of r red and b blue
points separated by a line and in general position, there exists a planar straight-line embedding
of P into S.

Proof. Without any loss of generality we can assume that S is separated by a vertical line, and
that the red points are on the left of that line. Let P = v0, v1, . . . vn and let Pi be the drawing of
the path after the first i vertices of P have been embedded. Let Hi be the lower convex envelope
of the points of S not used by Pi. We maintain the following invariants for all i = 0, . . . , n − 1
for which the colors of vi and vi+1 are different:

1. The drawing of Pi does not intersect Hi.

2. The point pi into which the most recent vertex vi has been embedded can see a point of Hi

of the opposite color and Pi does not intersect the area bounded by this line of sight and the
vertical line from pi upward.

Assume that vi is of different color than vi+1 and let h, 1 ≤ h ≤ n− i, be maximal such that
vi+1, vi+2, . . . vi+h all have the same color. To maintain the above invariants, we find a line that
cuts off the required number h of points of color different from vi from Hi (identified with the
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area on and above it). Assume vi is red (which implies that it has been placed at a point pi in
the left half-plane) and vi+1 is blue.

Consider now the red end-point ri of the unique edge of Hi that crosses the vertical separation
line. We rotate a ray emanating from ri counterclockwise until either h unused blue points
are encountered, or a red point r′i lies on the ray. In the latter case, we continue by rotating
counterclockwise the ray around r′i. We repeat this process until h blue points are found, and
let Bi be the set of identified blue points. Let CBi

be the convex hull of Bi. These points can be
added to the path, as follows: Let a be the first blue point of Hi that is hit by a ray emanating
from pi and rotated counterclockwise. Point a also belongs to CBi

. We can then connect pi to
point a. From point a we move counterclockwise along CBi

until the right-most point of CBi
is

reached, while adding each encountered point to the drawing of the path. The remaining points
of Bi are taken in decreasing value of their x-coordinates until we reach the final point, pi+h.

The resulting path ending at pi+h satisfies the invariants: Pi+h does not intersect Hi+h and
since pi+h is the leftmost point of Bi the second invariant is also satisfied. ⊓⊔

Using Lemma 2 we can embed k 2-colored paths for any k > 0 on a set of 2-colored points
in general position in the plane that are separated by a straight-line, provided we have sufficient
number of points of each color. The resulting set of points is a universal one for these k 2-colored
paths, which yields the following theorem:

Theorem 1. Any number of 2-colored paths can be simultaneously embedded.

2.2 Simultaneous Embedding of a Tree and Paths on Two Colors

We now show that it is always possible to draw a 2-colored tree in such a way that the two
colors are separated by a line. This result together with the theorem above yield the desired
simultaneous embedding of a 2-colored tree with any number of 2-colored paths.

Lemma 2. Any 2-colored tree can be embedded so that the colors are separated by a straight
line.

Proof. We use a divide-and-conquer approach and recursively process the tree from an arbitrary
root node. We begin by drawing a vertical line l and assigning the left side to color 1 and the
right side to color 2. Next we sort the children of the root by their colors. Let j of the children
have color 1 and k children have color 2.

We can assume without loss of generality that the root is of color 1 and can place it on the
left side of line l. The j children of color 1 are placed consecutively, such that the first is strictly
beneath and to the left of the root, the second is strictly beneath and to the left of the first, and
so on. We place the k children of color 2 to the right of line l in a similar fashion. We place the
first child strictly beneath and to the right of the root, the second strictly beneath and to the
right of the first, and so on.

Note that every child has unobstructed line of sight to an horizontal sliver of the plane on
both sides of line l. Thus, we can recursively place the children of the j + k vertices until the
entire tree has been processed; see Fig. 2. ⊓⊔

Now using the result from Lemma 2 we can embed a 2-colored tree on a set of 2-colored
points in the plane that are separated by a straight-line. Then we can perturb the positions of
the vertices until they are in general position. This can be done without introducing crossings
as shown in [5]. From Lemma 1, the resulting set of points is a universal one for 2-colored paths.
Together these two results yield the next theorem:

Theorem 2. A 2-colored tree and any number of 2-colored paths can be simultaneously embed-
ded.
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Fig. 2. Embedding a 2-colored tree.

2.3 Simultaneous Embedding of a Planar Graph and Paths on Two Colors

Using the technique described in Lemma 1, we can obtain even stronger results. As a corollary
of the results in this section we can simultaneously embed a 2-colored outerplanar graph and
any number of 2-colored paths.

In the previous sections, we have seen that in order to simultaneously embed a 2-colored
planar graph G with any number of 2-colored paths it suffices to find a plane drawing of G in
which the vertex sets of the same color, V1 and V2, can be separated by a line. Let G1 and G2

be the two subgraphs induced by the vertex sets V1 and V2 respectively. We call such a partition
a bipartition, and the edges with vertices from both graphs are called bipartition edges.

Next we present a characterization of the class of 2-colored planar graphs that can be sepa-
rated by a line. We make extensive use of the characterization and the embedding algorithm for
the so-called HH layouts by Biedl, Kaufmann and Mutzel [3]. Drawing planar partitions is prob-
lem introduced by Biedl [2]. An HH layout is a drawing of a planar bipartition without crossings
(but not necessarily using straight-line edges), in which the two vertex sets are separated by a
horizontal line. We also rely on a technique for computing upward planar straight-line drawings
by Di Battista and Tamassia [8]. We begin with the characterization of planar bipartitions that
can be drawn as HH layouts.

Lemma 3. [3] Planar bipartitions can be realized as HH layouts only if the subgraph D of the
dual graph induced by the dual edges of the bipartition edges is connected.

Moreover, it is shown in [3] that D is Eulerian and that it is possible to construct y-monotone
HH layouts with few bends in linear time [3]. The construction is roughly as follows: It begins by
routing through D an Eulerian circuit that separates the sets V1 and V2. Then dummy vertices,
that will become bends later, are introduced on the bipartition edges.

The algorithm then processes the chain of dummy vertices in the order of the Eulerian circuit
and applies the straight-line drawing algorithm of Chrobak and Kant [6] to the two subgraphs
separately by placing one of them below (without loss of generality, say, G1) and the other above
the chain. The final result is straight-line planar drawing with the exception of the bipartition
edges which have exactly one bend each; see Fig. 3(a). Thus this approach does not produce
exactly the result that we need. We now show how to obtain a drawing with no bends, while
not introducing any crossings, after applying the above technique to the planar bipartition and
achieving an HH layout (which may have some bends).

Lemma 4. From each HH layout with some bends on the separation line, we can derive a
straight-line drawing, while keeping the two partitions separated by a line.
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(a) A sample HH layout.

t

(b) The extended HH layout
of G1 (vertices adjacent to t

belong to B1).

(c) The resulting embedding.

Fig. 3. HH Layouts.

Proof. We begin by directing all the edges upward with respect to the basic HH layout L in
order to obtain an upward planar embedding E of G. A theorem of Di Battista and Tamassia [8]
states that the upward planar embedding E can be realized by a straight-line upward drawing.
The resulting drawing, however, may not separate the two sets by a straight horizontal line.
Below we show how to obtain the needed straight-line drawing in which the two sets are indeed
separable by a line.

1. Let Γ1 be the upward embedding of the graph G1 with an upper boundary B1 made of
vertices adjacent to the bipartition edges. We extend Γ1 by adding a top vertex t which we
connect to all the boundary vertices by edges (v, t), where v ∈ B1. Now we can apply the
straight line drawing algorithm of Di Battista and Tamassia to the extended embedding and
obtain an upward straight-line drawing, with the vertices on the boundary B1 drawn with
increasing x-coordinates; see Fig 3(b). After removing vertex t, B1 is once again the upper
boundary. Similarly, we can extend the embedding Γ2 of G2 in order to obtain a drawing
with x-monotone lower boundary B2.

2. Next we stretch the two layouts in the x-direction so that the slopes of the boundary edges
become smaller. In particular, we stretch the layouts until all slopes are less than 40◦. Note
that stretching preserves both planarity and upwardness of the layouts.

3. Finally we place the two layouts of Γ1 and Γ2 above each other and at vertical distance twice
the larger of their widths. Now we can safely insert the bipartition edges which connect the
two boundaries B1 and B2. By the choice of separation distance, the slopes of the bipartition
edges are larger than 60◦. Thus the bipartition edges cannot introduce any crossings and
now the two parts can be separated by an horizontal line as desired; see Fig. 3(c). ⊓⊔

The algorithm described above with Lemma 1 yields the following lemma:

Lemma 5. Let G be a planar bipartition graph in which the dual graph of the subgraph induced by
the bipartition edges is connected. (a) Then a straight-line drawing for G can be constructed where
the two parts are separated by a horizontal line. (b) Since the bipartition includes a 2-coloring,
G plus any number of 2-colored paths can be simultaneously embedded.
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Fig. 4. Sets of k-colored graphs for k ∈ {5, 6} on distinctly colored points whose unions form a K5 and a K3,3.

Hence, 2-colored outerplanar graphs fulfill the conditions of Lemma 5 yielding the following
theorem:

Theorem 3. A 2-colored outerplanar graph and any number of 2-colored paths can be simulta-
neously embedded.

3 k-Colored Simultaneous Embeddings

In this section we extend the investigation to more than two colors. We recall that there exist
three paths which do not admit a simultaneous embedding with mapping [5], whereas it is easy to
see that any number of paths have a simultaneous embedding without mapping. Recall also that
these two problems correspond to using |V | and 1 colors, respectively and that in the previous
section we showed that any number of 2-colored paths can be simultaneously embedded. Now
we consider k-colored paths and/or k-colored k-cycles for 3 ≤ k ≤ 9.

3.1 Three Colors

As in the case of 2-colored embeddings we are looking for a universal pointset for paths. A slight
modifications of the original universal pointset for 2-colored paths allows us to extend its utility
to the 3-colored case.

Theorem 4. Any number of 3-colored paths can be simultaneously embedded.

Proof. Let P be any 3-colored path with c1 vertices of color 1, c2 vertices of color 2 and c3

vertices of color 3, where c1 +c2 +c3 = n. Let l1, l2 and l3 be three line-segments with a common
endpoint O and meeting at 120◦ angle. Place c1 points along l1, c2 points along l2, and c3 points
along l3, ensuring that the origin O is not used.

Next map every vertex of the path, in order, to the point of the corresponding color that is
closest to the origin and is not already taken. Since every point has line of sight to any other
point and for a given pi of P the previous path only blocks line of sight to the points already
taken, the result is a plane drawing. ⊓⊔

3.2 Four and Five Colors

While universal pointsets exist for 1-colored paths, 2-colored paths and 3-colored paths, we have
not been able to find one for 4-colored paths. However, we can show that for k > 4 universal
pointsets for k-colored paths do not exist.

Theorem 5. There does not exist a universal pointset for 5-colored paths.
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(a) One 5-colored and three 6-colored
paths
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(b) Three 9-colored paths

Fig. 5. Sets of k-colored graphs for k ∈ {6, 9} on distinctly colored points whose unions form a K3,3 or a subdivision
thereof.

Proof. Consider the following five 5-colored paths on 5 points given in Figure 4(a) whose union
is K5 where each edge in the K5 belongs to exactly two paths:

1. a−c−d−b−e (thin red dashed edges),
2. a−d−e−b−c (thick light purple alternating dash and dot edges),
3. b−a−c−e−d (thick green dotted edges),
4. b−d−a−e−c (thick yellow solid edges), and
5. e−a−b−c−d (thin blue solid edges).

In any drawing of K5 there must be at least one crossing. If this crossing is formed by a pair
of edges from different paths then a simultaneous embedding might be possible. However, the
paths above were chosen in such a way that every pair of edges either belongs to the same path
or is incident. As straight-line incident edges cannot form the crossing pair it suffices to examine
all pairs of non-adjacent edges in order to verify that they occur in at least one of the paths.

(a, b), (c, e) are in path 3; (a, b), (c, d) are in path 5; (a, b), (d, e) are in path 3;
(a, c), (b, d) are in path 1; (a, c), (b, e) are in path 1; (a, c), (d, e) are in path 3;
(a, d), (b, c) are in path 2; (a, d), (b, e) are in path 2; (a, d), (c, e) are in path 4;
(a, e), (b, d) are in path 4; (a, e), (b, c) are in path 5; (a, e), (c, d) are in path 5;
(b, c), (d, e) are in path 2; (b, d), (c, e) are in path 4; and (b, e), (c, d) are in path 1. ⊓⊔

3.3 Six and Nine Colors

In the previous section we showed how five 5-colored paths could not be simultaneously em-
bedded, but our method required at least five paths. In this section, we consider sets of graphs
on pointsets of six or more colors, in which the sets of graphs to simultaneously embed have
cardinality less than five.

Lemma 6. There exist three 6-colored cycles that cannot be simultaneously embedded.

Proof. Consider the following three cycles:

1. e−a−d−c−f−b−e (thin blue solid edges),
2. e−a−f−b−d−c−e (thin red dashed edges), and
3. a−f−c−e−b−d−a (thick green dotted edges).

A visual examination of Figure 4(b) shows that the union of these cycles forms a K3,3.
Moreover, every edge in the K3,3 belongs to two of the three cycles. In any drawing of K3,3 there
must be at least one crossing. Since there are only three paths altogether, every pair of edges in
the K3,3 must share a common 6-cycle, which forces a self-intersecting cycle. ⊓⊔
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Lemma 7. There exist four 6-colored paths that cannot be simultaneously embedded.

Proof. Figure 5(a) depicts the following set of one 5-colored path and three 6-colored paths
whose union forms K3,3:

1. e−a−d−c−f (thin blue solid edges),
2. e−a−f−b−d−c (thin red dashed edges),
3. a−f−c−e−b−d (thick green dotted edges), and
4. a−d−c−e−b−f (thick brown dash-and-dots edges).

Every edge in K3,3 belongs to at least two of the four paths. As a result, since there are
more than three paths, we must manually inspect all 18 pairs of non-adjacent edges in order to
verify that each pair shares a common path. This would force a self-intersecting path. Namely,
we observe that

(a, d), (b, e) are in path 4; (a, d), (b, f) are in path 4; (a, d), (c, e) are in path 4;
(a, d), (c, f) are in path 1; (a, e), (b, d) are in path 2; (a, e), (b, f) are in path 2;
(a, e), (c, d) are in path 1; (a, e), (c, f) are in path 1; (a, f), (b, d) are in paths 2 and 3;
(a, f), (b, e) are in path 3; (a, f), (c, d) are in path 2; (a, f), (c, e) are in path 3;
(b, d), (c, e) are in path 3; (b, d), (c, f) are in path 3; (b, e), (c, d) are in path 4;
(b, e), (c, f) are in path 3; (b, f), (c, d) are in path 4; and (b, f), (c, e) are in paths 3 and 4.⊓⊔

Lemma 8. There exist three 9-colored paths that cannot be simultaneously embedded.

Proof. Figure 5(b) shows that every edge in the subdivided K3,3 union belongs to exactly two
of the following three paths:

1. h−c−f−b−e−a−g−d−i (thin blue solid edges),
2. g−d−h−c−e−a−f−b−i (thin red dashed edges), and
3. g−a−f−c−e−b−i−d−h (thick green dotted edges).

Since there are only three 9-colored paths altogether, every pair of edges in the subdivided
K3,3 must share a common path forcing a self-intersecting path. Note that this result is a
simplified version of Theorem 2 of Brass et al. [5]. ⊓⊔

4 Conclusions and Open Problems

In this paper we initiated the study of colored simultaneous embeddings, as a generalization
of simultaneous embeddings. Table 1 summarizes the current status of the problem. A “X”
indicates that it is always possible to simultaneously embed the type of graphs, a “✗” indicates
that it is not always possible to compute a colored simultaneous embedding for these graphs.
Finally, a question-mark indicates an open problem. Solving any of these open problems would
be an interesting contribution.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 9 k = n

Paths P1 . . . P3 X X X ? ? ? ✗ ✗

Paths P1 . . . P4 X X X ? ? ✗ ✗ ✗

Any number of paths X X X ? ✗ ✗ ✗ ✗

Planar Graph G and Path P X X ? ? ? ? ✗ ✗

Outerplanar Graph G and Path P X X ? ? ? ? ? ?

Tree T and Path P X X ? ? ? ? ? ?

Two trees T1, T2 X ? ? ? ? ? ? ✗

Two planar graphs G1, G2 ? ? ? ? ? ? ✗ ✗

Table 1. k-colored simultaneous embeddings: results and open problems.

9



References
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