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Abstract. A support of a hypergraph H is a graph with the same vertex
set as H in which each hyperedge induces a connected subgraph. We
show how to test in polynomial time whether a given hypergraph has a
cactus support, i.e. a support that is a tree of edges and cycles. While
it is NP-complete to decide whether a hypergraph has a 2-outerplanar
support, we show how to test in polynomial time whether a hypergraph
that is closed under intersections and differences has an outerplanar or
a planar support. In all cases our algorithms yield a construction of the
required support if it exists. The algorithms are based on a new definition
of biconnected components in hypergraphs.

1 Introduction

A hypergraph (see e.g. [2, 28]) is a pair H = (V,A) where V is a finite set and
A is a (multi-)set of non-empty subsets of V . There are basically two different
variants of drawing a hypergraph, the edge-standard (drawing each hyperedge
h ∈ A as a star or a tree whose leaves are the elements of h – see Fig. 1(a)) or the
subset standard (drawing each hyperedge h ∈ A as a simple closed region that
contains exactly the vertices in h and no other vertices of V – see Fig. 2(b)).
For drawings in the edge standard see, e.g., [7, 11, 18, 20]. In this paper, we
concentrate on the second variant which is also called the Euler diagram of the
set of hyperedges. Simultaneous drawings of a graph and a hypergraph in the
subset standard are called clustered graphs. Drawing graphs with overlapping
clusters is discussed in [9, 19]. There are different variants on when a hypergraph
admits a nice drawing in the subset standard. Several of them are based on some
graphs associated with the hypergraph.

A hypergraph H = (V,E) is Zykov-planar [28] if and only if there is a plane
multi-graph M with vertex set V such that each hyperedge equals the set of
vertices of some face of M . The hypergraph H can be represented as a bipartite
graph BH with vertex set V ∪A and an edge between a vertex v ∈ V and h ∈ A
if and only if v ∈ h (see Fig. 1(a)). A hypergraph is Zykov-planar if and only if
its bipartite graph is planar [27]. Thus, Zykov-planarity can be tested in linear
time [13].
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Fig. 1. Three representations of the hypergraph with hyperedges {s, t, v}, {s, t, u},
{q, u, v}, {w, x, z, v}, {x, y, z}, {w, x, y}, {q, s, t, u, v, w, z, y}.

Some work on Euler diagrams and a definition on their well-formedness is
summarized in [12]. The definition is associated with the superdual (or combina-
torial dual) of H. Assuming that no two vertices of H are contained in the same
set of hyperedges, the superdual is a graph on the vertex set V plus an artificial
vertex that is not contained in any hyperedge. There is an edge between two
vertices v and w if and only if the symmetric difference of the set of hyperedges
containing v and the set of hyperedges containing w contains exactly one set h.
Edge {v, w} is then labeled h. Flower et al. [12] show that a hypergraph has a
well-formed Euler diagram if and only if there is a plane subgraph of the super
dual in which each hyperedge and its complement induces a connected subgraph
and in which the labels around each face fulfill some condition. The superdual
of the hypergraph H in Fig. 1 is highly non-connected and, hence, H has no
well-formed Euler diagram. Verroust and Viaud [26] considered Euler diagrams
for hypergraphs with at most 8 hyperedges. The complexity of Euler diagrams
is discussed by Schaefer and S̆tefankovic̆ [21]. Drawings of arbitray hypergraphs
in an extended subset standart where the regions representing the hyperedges
do not have to be connected are discussed by Simonetto and Auber [22, 23].

A support [25, 15] (or host graph [17]) of a hypergraph H = (V,E) is a
graph G = (V,E) with the property that the subgraph of G induced by any
hyperedge is connected. A hypergraph is (vertex-)planar [14] if it has a planar
support. (The partial connectivity graphs of Chow [8] are planar supports of
a dualized version of a hypergraph.) Planar hypergraphs are a generalization
of both, Zykov-planar hypergraphs [25] and hypergraphs having a well-formed
Euler-diagram [12]. It is NP-complete to decide whether a hypergraph has a
planar support [14] even if the set of hyperedges is closed under intersections
and each hyperedge induces a path in the support. However, it can be decided
in linear time whether a hypergraph has a support that is a tree [24], a path, or
a cycle [6]. Tree supports with bounded degrees [6] and minimum weighted tree
supports [16] can be constructed in polynomial time. Equivalent formulations
for hypergraphs having a tree support can be found in [1].



To guarantee that each hyperedge can be drawn by a simple closed region,
Kaufmann et al. [15] required compact supports. A support G = (V,E) of a
hypergraph is compact if G is planar, triangulated and no inner face of the
subgraph of G induced by a hyperedge h contains a vertex not in h. It can be
concluded from [14] that it is NP-complete to decide whether a hypergraph
has a compact support even if it is closed under intersections. However, a hyper-
graph has a compact support if it has an outerplanar support. So it would be
interesting to know whether a hypergraph has an outerplanar support. So far the
complexity of outerplanar supports is open. It is NP-complete to decide whether
a hypergraph has a 3-outerplanar support [6] or a 2-outerplanar support [5].

The Hasse diagram of a hypergraph H = (V,A) is the directed acyclic graph
with vertex set A ∪ V and there is an edge (h1, h2) (or (h1, v) and h2 = {v}) if
and only if h2 ( h1 and there is no set h ∈ A with h2 ( h ( h1. A hypergraph
H = (V,A) has an outerplanar support if its based Hasse diagram, i.e. the Hasse
diagram of A ∪ {V } is planar [15].
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Fig. 2. Two more representations of the hypergraph with hyperedges {s, t, v}, {s, t, u},
{q, u, v}, {w, x, z, v}, {x, y, z}, {w, x, y}, {q, s, t, u, v, w, z, y}.

In this paper, we consider special cases of outerplanar supports. A graph
is a cactus if it is connected and each edge is contained in at most one cycle.
A cactus can be used to represent the set of all minimum cuts of a graph [10].
Cactus supports also have applications in hypergraph coloring [17]. In Sect. 3, we
show that a hypergraph has a cactus support if its based Hasse diagram is planar
but the converse is not true. Further, we show how to decide in polynomial time
whether a hypergraph has a cactus support. The construction is based on a new
definition of biconnected components of a hypergraph introduced in Sect. 2 (see
Fig. 1(b) for an illustration).

When drawing Euler diagrams it is desirable to visualize not only the hy-
peredges itself but also the intersection and the differences of two hyperedges.
Motivated by this fact, we consider hypergraphs closed under intersections and
differences (hcid) in Sect. 4. We show that it can be decided in polynomial time
whether a hcid has an outerplanar or planar support.



In the remainder of the paper let H = (V,A) be a hypergraph with n = |V |
vertices, m = |A| hyperedges, and N =

∑
h∈A |h| equals the sum of the sizes of

all hyperedges. The size of the hypergraph is then N + n+m.

2 Biconnected Components

In this section, we show how to decompose a hypergraph into biconnected com-
ponents that we will call blocks. This decomposition will be constructed in such
a way that there is a support with the property that the blocks of the hypergraph
correspond to the biconnected components of the support.

For a hypergraph H = (V,A) and a subset V ′ ⊂ V the hypergraph induced
by V ′ is H[V ′] = (V ′, A[V ′]) with A[V ′] = {h∩V ′;h ∈ A} \ {∅, {v}; v ∈ V }. I.e.,
A[V ′] contains from each hyperedge the part that is in V ′ omitting the empty set
and the sets of size one to be consistent with the definition for ordinary graphs.
Let H|V ′ = (V ′, A|V ′) with A|V ′ = {h ∈ A; h ⊆ V ′}. Note that H[V ′] does not
have to be planar if H is planar. However, H|V ′ is planar if H is.

The sequence p : v0, h1, v1, . . . , hk, vk is a v0vk-path in H if h1, . . . , hk ∈ A,
v0 ∈ h1, vk ∈ hk, and vi ∈ hi ∩ hi+1, i = 1, . . . k − 1. Vertices v0 and vk are the
end vertices of p. Two vertices v, w of a hypergraph H = (V,A) are connected
if there is a vw-path in H. Connectivity is an equivalence relation on the set of
vertices of a hypergraph and the hypergraphs induced by the equivalence classes
are called connected components [28].

Let v ∈ V . The connected components of H|(V \ {v}) are the parts of v and
v is an articulation point of H if v has more than one part. Note that v is an
articulation point of H if and only if there is a support of H in which v is a cut
vertex. E.g., vertex v is a cut vertex of the hypergraph in Fig. 1 and {w, x, y, z},
{q}, and {u, t, s} are the parts of v.

A decomposition into blocks of a hypergraphH = (V,A) is defined recursively.
H is a block if and only if H is connected and does not contain an articulation
point. If H is not connected then the blocks of H are the blocks of the connected
components of H. If H is connected and contains an articulation point v, let
W1, . . . ,Wk be the parts of v. Then the blocks of H are the blocks of H[W1 ∪
{v}], . . . ,H[Wk ∪ {v}].

Note that the blocks depend on the choices of the articulation points and
are not uniquely defined. E.g., consider the hypergraph H in Fig. 1. Choosing
the articulation points v, w, and t yields the subhypergraphs induced by the
sets {v, w}, {w, x, y, z}, {v, q}, {t, u, v}, and {t, s} as blocks. These are indicated
within the circles of Fig. 1(b). Choosing s instead of t as an articulation point
would yield the block H[{s, u, v}] instead of H[{t, u, v}].

Note that this definition of articulation points and blocks is related to but
different from the definition given in [1]. Further note that the sum of the sizes
of all blocks is at most three times the size of the hypergraph itself.

We will use the terminology analogously for the bipartite graph BH on the
vertex set V ∪ A representing the hypergraph H = (V,A). The connected com-
ponents of H correspond to the connected components of BH . Vertex v is an



articulation point of BH if B[V \ {v} ∪ A \ {h ∈ A; v ∈ h}] contains more than
one connected component which will again be called the parts of v. The blocks
of BH are the bipartite graphs representing the blocks of H. Then the blocks of
BH and, hence, of H can be constructed by determining n times the connected
components of a subgraph of BH .

Lemma 1. The blocks of the hypergraph H can be found in O(nN + n + m)
time.

Proof. Since the connected components of BH can be computed in O(N+n+m)
time, we may assume that H is connected. Let v1, . . . , vn be any ordering of the
vertices of H. The algorithm Blockfinder(B, k) takes as argument a subgraph
B of BH and a k = 0, . . . , n such that v1, . . . , vk are not articulation points of
B. It outputs a link to the list of blocks of B.

Blockfinder(B, k)

– If there is no k′ > k such that vk′ is contained in B return B
– Let k′ > k be minimal such that vk′ is contained in B
– Remove vk′ and all its adjacent vertices h1, . . . , hj from B and compute the

connected components B1, . . . , B` of this bipartite graph.
– For i = 1, . . . , `, add vk′ and those hyperedges among h1, . . . , hj that contain

some vertices of Bi with the corresponding edges to Bi.
– Return Blockfinder(B1, k

′), . . . ,Blockfinder(B`, k
′).

Then Blockfinder(BH , 0) finds a partition of H into blocks represented as
bipartite graphs: Assume that Blockfinder returns a subgraph Bi of BH that
contains an articulation point vk′ . Let P1 and P2 be two parts of vk′ in Bi. Con-
sider the subgraph B of BH such that k′ was chosen while proceeding Block-
finder(B, k). Since in the end P1 and P2 are both in Bi there is a path p in
B connecting P1 and P2 that does not contain vk′ . Let p have minimum length
among all such paths. Then p is a path in Bi: Otherwise let p : w0, h1, . . . , h`, w`

and assume that wj is the first vertex of p not in Bi. Let j′ > j be the smallest
index such that wj′ is in Bi. Then there is an articulation point v`, ` > k′ of Bi

with v` ∈ hj ∩ hj′ . Hence, w0, h1, . . . , wj−1, hj , v`, hj′ , wj′ , . . . , h`, w` is a shorter
path than p connecting P1 and P2. ut

A decomposition of a hypergraph into blocks induces a “block-articulation-point
tree” in the same way as block-cut-point trees for ordinary graphs: Let T be the
bipartite graph that is constructed as follows. The vertices of T are the blocks
of H and those vertices in V that are contained in more than one block. There
is an edge between a vertex v and a block B if and only if v is contained in
B. Then T is the block-articulation-point tree of the chosen decomposition of a
hypergraph into blocks (see Fig. 1(b)).

Lemma 2. A hypergraph has an (outer-)planar support if all its blocks have an
(outer-)planar support.



Proof. Let B1, . . . , Bk be the blocks of a hypergraph H = (V,A). Let Gi =
(Vi, Ei) be a support of Bi for i = 1, . . . , k. Then G = (V,E1 ∪ . . . ∪ Ek) is a
support of H and G1, . . . , Gk are the 2-connected components of G. Proceeding
from the leaves of the block-articulation-point tree one can choose the embedding
of the support of each block such that the articulation point with the parent
block is on the outer face. Hence, if all Gi have an (outer-)planar support then
so does G. ut

v1

vv5

v4

v3

v2 w

(a) blocks not planar

v6v5v4v3v2v1y

xv w

(b) blocks not outerplanar

Fig. 3. Illustration of some examples. Solid edges indicate a support, dashed curves
indicate hyperedges that contain more than two vertices.

The converse of Lemma 2 is not true. Let H be the hypergraph with hy-
peredges {v, v1}, {v, v4}, {v, v5}, {v2, v4, v, w}, {v3, v5, v, w}, {v1, v2}, {v1, v3},
{v1, v4}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5}, {v2, v5}. Then H is planar, v is an
articulation point of H and H[{v1, v2, v3, v4, v5, v}] is a block of H that is not
planar. See Fig. 3(a) for an illustration. In the outerplanar case consider the
hyperedges {v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v, y}, {y, v1}, {v, x},
{x, v1}, {v, x, w, v2, v5}, and {v, y, v1, w, v3, v6} and the articulation point v. See
Fig. 3(b) for an illustration. For hypergraphs closed under intersections, however,
we have equivalence. A hypergraph H = (V,A) is closed under intersections if
h1 ∩ h2 ∈ A ∪ {∅} ∪ {{v; v ∈ V }} for h1, h2 ∈ A.

Lemma 3. A hypergraph that is closed under intersections has an (outer-) pla-
nar support if and only if each block has an (outer-) planar support.

Proof. Let H = (V,A) be a hypergraph that is closed under intersections and let
G = (V,E) be an (outer-)planar support of H. Let v ∈ V and let W be a part
of v. We show by induction on the number of vertices of V \W that H[W ∪{v}]
has an (outer-)planar support. There is nothing to show if V = W ∪ {v}.

So let w ∈ V \ (W ∪ {v}). We construct an (outer-)planar support G′ of
H ′ = (V \{w}, {h′ ∈ A;w /∈ h′}∪{h′\{w}; v ∈ h′ ∈ A}). If there is no hyperedge
containing v and w let G′ be the graph that results from G by deleting w and
all its incident edges. Otherwise let h be the intersection of all hyperedges that
contain v and w. Then there is a wv-path in G[h]. Let w′ be the neighbor of w



on this path. Then G′ is constructed from G by merging w and w′. I.e., for each
neighbor u 6= w′ of w add {u,w′} to the edge set of G. Finally, remove w and
all its incident edges from G.

If V \ {w} = W ∪ {v} then H ′ = H[W ∪ {v}]. Otherwise v is an articulation
point and W is a part of v in H ′. Hence, by the inductive hypothesis H ′[W ∪
{v}] = H[W ∪ {v}] has an (outer-)planar support. ut

3 Cactus Supports

A cactus is a connected graph that has an outerplanar embedding such that each
edge is incident to the outer face. In this section, we relate cactus supports to
planar based Hasse diagrams and we show how to utilize the decomposition into
blocks to construct a cactus support if one exists.

It was shown by Kaufmann et al. [15] that a hypergraph H = (V,A) has an
outerplanar support if its based Hasse diagram is planar. In fact, in that case
H has even a cactus support. In the construction of Kaufmann et al. [15] some
unnecessary edges on the outer face have to be omitted. We briefly sketch their
construction and our modification.

Theorem 1. A hypergraph has a cactus support if its based Hasse diagram is
planar.

Proof. Let H = (V,A) be a hypergraph, let V ∈ A, and let its Hasse diagram D
be planar. Assume that a planar embedding of D is given. Let T be the DFS tree
resulting from a directed left-first DFS and replace each non-tree arc e = (h1, h2)
in D by an arc (h1, v) for some v ∈ h2. According to Kaufmann et al. [15], this
can be done by “sliding down” the arcs and thus maintaining planarity. Let D′

be the thus constructed Hasse diagram and let A′ be the set of vertices of D′ that
are not sinks. Let H ′ = (V, {{v ∈ V ; there is a directed hv-path in D′}; h ∈ A′}.
Then T remains a left-first DFS-tree of D′ and any support of H ′ is a support
of H.

Consider a simple closed curve C that visits the sequence v1, . . . , vn of leaves
of T from left to right. We may assume that the vertex V of D is in the exterior
of C, that C intersects no tree edges and that it intersects non-tree edges at most
once. The support sequence σ : w1, . . . , w` is the sequence of vertices or targets
of intersecting edges as they occur on C. Note that σ contains only vertices of V
and that a vertex of V may occur several times in σ. As mentioned by Kaufmann
et al. [15], each set h ∈ A′ corresponds then to a subsequence of σ.

Let now w`+1 = w1. Then G = (V, {{wi, wi+1}; i = 1, . . . , `}) is a cactus
support of H ′ and, hence, of H. In fact, the edges can be routed along C and the
pieces of the arcs between C and v1, . . . , vn. Then G has a planar embedding in
which each edge is on the outer face. Further, each subsequence of W corresponds
to a walk in G. Hence, G is a cactus support for H ′. ut

However, not only hypergraphs with a planar Hasse diagram have a cactus sup-
port. E.g., A = {{i, i + 1}, i = 1, . . . , 6; {1, . . . , 5}, {2, . . . , 6}, {3, . . . , 7}}. In the
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Fig. 4. Illustration of the proof of Lemma 4. Vertices inside the dashed curve are
contained in a part W of v. Vertices u1 and u2 are close to v. Vertices x and y are end
vertices of pC .

following, we will show how to test efficiently whether any hypergraph has a
cactus support and if so how to construct it in the same asymptotic run time.

Lemma 4. A hypergraph has a support that is a cactus if and only if each block
has a support that is a cycle or an edge.

Proof. The if-part is analogous to Lemma 2. For the only-if-part let H = (V,A)
be a hypergraph and let G = (V,E) be a cactus support of H. Let v be an
articulation point and W a part of v. We show that H[W ∪ {v}] has a support
that is a cactus.

We say that u ∈ W is close to v if and only if there is a path in G from v
to u not containing any edge of G[W ]. Note that G[W ] is a connected subgraph
of a cactus not containing v, hence there are at most two vertices in W that are
close to v. A cactus support GW = (VW , EW ) of H[W ∪{v}] can be constructed
as follows (see Fig. 4 for an illustration):

– Start with GW ← G[W ∪ {v}]
– For each u ∈W that is close to v, add {u, v} to EW

– For each cycle of G, let C = {e1, e2, . . . , ek} be its set of edges . If E[W ]∩C 6=
∅ and C 6⊆ E[W ] then G[W ∩C] is a path pC . If the end vertices x and y of
pC are not both close to v, add {x, y} to EW . ut

A hypergraph H = (V,A) has a support that is a cycle if and only if it has the
circular consecutive ones property, i.e. if and only if there is an ordering v1, . . . , vn

of the vertices such that for each hyperedge h ∈ A there are 1 ≤ j ≤ k ≤ n such
that h = {vj , . . . , vk} or V \h = {vj , . . . , vk}. Summarizing, we have the following
theorem.

Theorem 2. It can be tested in O(nN +n+m) time whether a hypergraph has
a support that is a cactus.

Proof. Compute all blocks in O(nN +n+m) time. Test all blocks in linear time
for the circular consecutive ones property [4]. ut



4 Hypergraphs Closed under Intersections and
Differences

Two hyperedges h1, h2 overlap if h1 ∩ h2 6= ∅, h1 \ h2 6= ∅, and h2 \ h1 6= ∅.
An Euler diagram of two overlapping hyperedges is usually drawn such that
the intersection of the two regions representing the two hyperedges is connected
and such that the part of one of the regions that is not contained in the other
is also connected. See Fig. 5 for an illustration. This motivates the following
definition. A hypergraph H = (V,A) is closed under intersections and differences
if h1∩h2 ∈ A∪{{v}; v ∈ V } and h1 \h2 ∈ A∪{{v}; v ∈ V } for two overlapping
hyperedges h1, h2 ∈ A. In the remainder of this section we show that it is easy
to decide whether a hypergraph closed under intersections and differences has a
planar or an outerplanar support.

For a hypergraph H = (V,A) let H2 = (V, {h ∈ A; |h| = 2}) be the graph of
all hyperedges of H that contain exactly two vertices. We will show that H2 is
a support of H if H is a block.

(a) undesired (b) desired

v

w

h

h1 h2

h’

(c) illustration of Lemma 5

Fig. 5. (a) Undesired and (b) desired drawings of two overlapping hyperedges and (c)
an illustration of the proof of Lemma 5. In (a) the intersection or the difference of two
hyperedges is not connected, while in (b) it is.

Lemma 5. If the hypergraph H is closed under intersections and differences
and does not contain an articulation point then the hypergraph H2 induced by
all hyperedges of size two is a support of H.

Proof. Let H = (V,A) be a hypergraph that is closed under intersections and
differences and assume that H does not contain an articulation point. Let h by a
hyperedge of H. By induction on the size of h, we show that H2[h] is connected.
There is nothing to show if |h| ≤ 2. So assume that |h| > 2.

We first assume that h 6= V . Since H does not contain any articulation point
there are at least two hyperedges h1, h2 with h1∩h 6= h2∩h that overlap with h.
We have h∩ hi, h \ hi ∈ A∪ {{v}; v ∈ V }, i = 1, 2. By the inductive hypothesis,
H2[h ∩ hi] and H2[h \ hi], i = 1, 2 are all four connected. If h ∩ h1 6= h \ h2 then
it follows that H2[h] is connected.



So assume that for all pairs h1, h2 of hyperedges with h ∩ h1 6= h ∩ h2 that
overlap with h it holds that h ∩ h1 = h \ h2. Hence there is a bisection h1, h2 of
h such that for all hyperedges h1 that overlap with h it holds that h ∩ h1 = h1

or h ∩ h1 = h2. See Fig. 5 for an illustration of this part of the proof. Note
again that by the inductive hypothesis H2[hi], i = 1, 2 are both connected. Since
h contains more than two vertices, we may assume without loss of generality
that h1 contains at least two vertices. If |h2| = 1 there has to be a hyperedge
h′ ⊂ h that overlaps h1 and contains h2. Otherwise every vertex in h1 would be
an articulation vertex. Similarly, if |h2| > 1 there has to be a hyperedge h′ that
overlaps both, h1 and h2. Let h′ be the smallest hyperedge with this property.
Assume that |h′ ∩ hi| > 1 for i = 1 or i = 2. Since H2[hi] is connected there
have to be vertices v ∈ hi ∩ h′, w ∈ hi \ h′ such that {v, w} is a hyperedge.
But then h′ \ {v, w} ∈ A is a smaller hyperedge than h′ with the required
property – a contradiction. It follows that |h′| = 2. Hence, H2[h] contains the
connected subgraphs H2[hi], i = 1, 2 and the edge h′ connecting them. Thus,
H2[h] is connected.

Assume finally that h = V . If H contains more than two vertices then the
hypergraph (V,A\{V }) has to be connected. Otherwise all but at most one vertex
of H would be articulation points. Since H2[h′] is connected for all hyperedges
h′ 6= V it thus follows that also H2[V ] is connected. ut

Note that the hyperedges of size two have to be contained in every support
of a hypergraph. So we have the following corollary.

Corollary 1. It can be decided in O(nN + n + m) time whether a hypergraph
closed under intersections and differences has a planar or outerplanar support.

Proof. First, decompose the hypergraph into blocks. Then test for each block
whether the graph induced by the hyperedges of size two is planar or outerplanar,
respectively (Lemma 3). ut

5 Conclusions

In this paper, we newly defined a decomposition of a hypergraph into blocks.
For any such decomposition there is a support with the property that the blocks
of the hypergraph correspond to the biconnected components of the support.
We then give two applications of the decomposition into blocks. A hypergraph
has a cactus support if and only if each block has the cyclic consecutive one’s
property. A hypergraph that is closed under intersections and differences has an
(outer-)planar support if and only if for each block the graph induced by the
hyperedges of size two is (outer-)planar.

As a future work, we want to improve the run time of the decomposition into
blocks and to solve the problem of testing whether an outerplanar support exists
in more general cases.
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