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Abstract

We show how to utilize the cactus representation of all minimum cuts of a graph to visualize the minimum cuts
of a planar graph in a planar drawing. In a first approaehdéictus is transformed intohgerarchical clustering
of the graph that contains complete information on all the minimum cuts. This approach is then extended to
drawings in which the two vertex subsets of every minimum cut are separated by a simple closed curve. While
both approaches work with any embedding-preserving drawing algorithm, we specifically discuss bend-minimum
orthogonal drawings.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The edge connectivity is a fundamental structural property of a graph. Dinitz et al. [5] discovered that
the set of all minimum cuts of a connected graphwith positive edge weights has a tree-like structure.
It can be represented by a cactus, i.e., by a connected graph in which every edge is contained in at mos
one cycle. Although the number of minimum cuts in a graph can t(ir?), the size of the cactus is
linear in the numbenr of vertices ofG. From the cactus representation, the bipartitions of the vertex set
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can easily be extracted, but it contains almost no information about the edge¥\la want to visualize
a graphG together with the cactus representation of its minimum cuts in one drawing.

A simple closed curve divides the plane into two connected regions. A minimum cut divides the set of
vertices of a graph into two connected subsets. Thus, it is natural to visualize a minimum cut in a drawing
of a graph by a simple closed curve separating the two subsets. This leads to our general definition of
drawings of sets of cuts in a graph. Each cut is represented by a simple closed curve that separates th
corresponding two subsets of the vertex set. By requiring that only edges that connect the two subsets
of the vertex set may cross the drawing of a cut, we guarantee that also these cut-edges are visualized
Finally, to avoid ambiguities, we require that each simple closed curve in the union of the drawing of all
represented cuts also represents a cut of the given set. We show how to construct a planar drawing for the
set of all minimum cuts of a weighted connected planar graph that meets these requirements.

The construction uses the model of hierarchically clustered graphs. This model was introduced by
Feng et al. [13]. Since then algorithms for testing whether a hierarchically clustered graph has a planar
drawing [4,13,18] for constructing planar drawings of hierarchically clustered graphs [8-12,22], for
triangulating planar hierarchically clustered graphs [20] and for finding clusterings of graphs that respect
its planarity [7] have been developed. In a drawing of a hierarchically clustered graph, a set of vertices
of a graph is represented by a region that is bounded by a simple closed curve. The set of subsets o
the vertex set that is represented simultaneously in this way has to have tree structure. In terms of cuts,
this means that we can represent a set of pairwise non-crossing cuts as a hierarchically clustered graph
Graphs having no crossing minimum cuts are, for example, maximal planar graphs and chordal graphs.

If there are crossing cuts, the structure of the set of minimum cuts implies that they are represented
at least implicitly in a drawing of the pairwise non-crossing cuts. We show, however, that the model
of hierarchically clustered graphs can be extended to cactus-clustered graphs such that the goal of
visualizing every minimum cut by a simple closed curve is achieved. This extension is mainly based
on the fact that for two crossing minimum cuts, the four corner cuts are also minimum.

The contribution of this paper is as follows. Drawings of families of cuts are defined in Section 2.

In Sections 3 and 4, we provide some background on the cactus representation and on hierarchically
clustered graphs, respectively. In Section 5, we show how to construct a hierarchically clustered graph
from a cactus representation such that its c-planar drawing represents the set of pairwise non-crossing
minimum cuts and we state our main theorem. Finally, our method for drawing planar graphs that are

clustered according to all minimum cuts is presented in Section 6.

2. Drawings of families of cuts

Let G = (V, E) be an undirected connected graph wittvertices. WithE(G) we denote the set
E of edges ofG and with V(G) the setV of vertices of G. A cyclec: vy, ..., v, IS a sequence of
k > 3 distinct vertices, such thd(c) := {{v1, vo}, ..., {vi_1, vi}, {vr, v1}} € E. ForasubseE’ C E, we
denote byG — E’ the graph(V, E \ E’).

A graph G together with a positive edge weight functian E — R* is aweighted graphFor two
subsetsS andT of V, let E(S,T) := {{v,w};ve S andw € T} be the set of edges betweSrandT,
and letw (S, T) := ZeeE(”) w(e) be the total weight of the edges between the two subsets.

A cutis an unordered paliS, S} whereg C S C V andS := V \ S. A setS inducesthe cut($, S}. The
weightof this cut isw (S, §). With A := mingcscy (S, §) we denote the minimum of all these weights
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and a cut{S, S} of G satisfyingw(S, S) = A is called aminimum cut With M(G) we denote the set
of minimum cuts ofG. By G(S) we denote the subgraph 6f induced by a sef. For an arbitrary cut
(S, S}, we do not require tha (S) is connected. Note, however, thats) is always connected fS, S}
is a minimum cut of a connected graph.

Let C be a set of cuts of;. A drawing of a cut should visualize both the partition of the vertex set
into two parts and the edges with end-vertices in different parts. So, we defatenarf drawing D of
(G, C) to be a map from elements &f, E andC on subsets dR?. Each vertex of G is represented as a
distinct pointD(v) and each edge= {v, w} as a simple curv®(e) betweerD(v) andD(w). (Drawings
of edges do not intersect but in common end points.) Eaclfeat(S, S} € C is represented by a simple
closed curveD(C) such that

(1) D(S) andD(S) are in different connected regionsf \ D(C),
(2) for every simple closed curvein | J... D(C)
(@) thereisacutl, T} € C such thaf” andT areseparatedy y, i.e.,D(T) andD(T) are contained
in different connected regions & \ y,
(b) and for every edge € E it holds that

1, if [TNel=1,
‘D(e)m/’:{o el|se. ‘

Condition (2) guarantees (a) that it is clear from a drawing@fC) which cuts are irC and which are
not and (b) that also theut-edgef a cut{7, T} € C, i.e., the edges i& (T, T) are visualized—they are
exactly the edges that cross the drawing®fT'}.

For example, let the dashed edges in the graph below have weight 1 and the solid edges weight 2. In
this case. = 2 and the picture below is a drawing for the set of all cuts of weight 2, 3 or 4. But there is
no drawing for the sef = {{{u, w}, {v, x}}, {{u, v}, {w, x}}, {{u, v, w}, {x}}, {{x, v, u}, {w}}, {{u, x, w},

{v}}} of cuts of weight 2 or 3: The union of the drawings{§#, w}, {v, x}} and {{u, v}, {w, x}} would
contain a simple closed curve with the property thafu} and {v, w, x} are contained in different
connected regions @2\ y. But {{u}, {v, w, x}} is notinC.

We will see, however, that the set of all minimum cuts of any weighted connected graph always allows
a drawing. This fact is based on the almost tree-like structure—the so called cactus representation—of
the set of all minimum cuts, which we briefly describe in the next section.
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3. Thecactus of the set of minimum cuts

Definition 1. A representatiorfor a setC of cuts of a graplG is a pair(g, ¢) such tha is a weighted
graph andy: V(G) — V(G) is a mapping such that = ¢ 1(M(G)) := {{¢~X(S), ¢~ X(S)}; {S, S} €
M(G)}. Anodev e V(G) is calledemptyif ¢~1(v) = @.

Definition 2. Two cuts{S, S} and{T, T} arecrossing if none of thecorner setsSN 7, SNT, SN T and
SNT isempty. A cutinduced by a corner set isaner cutand the cut induced byAT :=S\TUT\ S
is thediagonal cut

In the example in Section 2, the cuts inducedbyv} and{u, w}, respectively, cross. The corner cuts
are the four cuts induced Hy}, {v}, {w} and{x}. The diagonal cut is the cut induced fy, w}.

A cut is acrossing cuif a family C of cuts, if it crosses any cut i@. If C contains no crossing cuts,
C can be represented by a tree. Dinitz et al. [5] showed that the set of minimum cuts of an arbitrary
weighted connected graph can be represented by a cactus where cycles correspond to sets of crossir
cuts. More precisely:

Definition 3 (Cactug. A cactusis a connected graph in which every edge belongs to at most one cycle.
An edge that belongs to no cycle is callettee edgeAn edge that belongs to one cycle is calletiale
edge

In what follows, we assume that a weighted cactusigorm, i.e., that all cycle edges have the same
weight and that every tree edge has twice the weight of a cycle edge.

Theorem 4[5]. The setM (G) of all minimum cuts of a weighted connected graphas a representation
(G, @) such thatg is a uniform cactus witl® (n) nodes.

Fig. 1 shows an example of a weighted graph and its cactus. Dinitz and Nutov characterized all sets of
cuts that can be represented by a cactus.

Theorem 5[6]. A setC of cuts can be represented by a cactus if and only if for any two crossing atits in

e the four corner cuts are i and

a)

Fig. 1. (a) A weighted connected graph and (b) the cactus representation of its minimum cuts. In (a), solid edges have weight 2
and dashed edges have weight 1. In {bis represented by the labels of the nodes.
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o the diagonal cut is not iid.
If a cactus representation exists, there is always one @ith) nodes.

If a setC of cuts of G has a cactus representatiof, ¢), a (planar) drawing of G, C) is called a
(planar) cactus-clustered drawingf (G, G, ¢).

In what follows, let(G, ¢) be the cactus representation of a set of cut€&;olNote that there is a
bijection between the set of minimum cuts of a cagitend the set of tree edges and pairs of cycle edges
belonging to the same cycle. Thus, we can also say that a cutisrrepresented by a tree edge or by a
pair of cycle edges of . The next definition is about relations between edges snd cycles irg.

Definition 6. For a cyclec : v, ...,y inGletV;, i =1,...,k, be the set of vertices in the connected
component of; — E(¢) that contains;, and letV; := ¢~1(V;). We say that the cycle of G corresponds
to a cycleof G if and only if for 1<i < j < k it holds that

E(V,V)#¥ < i—j=z1modk.

An example can be found in Fig. 2. There is one cycla the cactugy, with corresponding vertex
setsVy ={1,2,3}, Vo ={4,5}, V3= {6,7} and V, = {8, 9}. This cycle corresponds to a cycle &y.
Since E(V1, Vo) = @ in the graphG, the cyclec does not correspond to a cycledry. It does also not
correspond to a cycle iG'3, because therg (V,, Vy) # @.

3 3
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Fig. 2. The cycle in the cactu$ corresponds to a cycle in the graph, but not in the graph&'»> and G3. The mappingp is
represented by the labels of the nodes.
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For two crossing minimum cutsS, S} and{T, T} of a graph with edge-connectivity it holds that
(see e.g. [5,14)])

o SNT,SNT)=w(SNT,SNT)=w(SNT,SNT)=w(SNT,SNT)=1/2
and
o(SNT,SNT)=w(SNT,SNT)=0.

Hence, there is the following useful property of the cactus of all minimum cuts.

Lemma 7. If G is the cactus of all minimum cuts of a connected gréhleach cycle ofj corresponds
to a cycle ofG.

Fleischer [14] showed that the cactus of all minimum cuts of a weighted connected graph can be
constructed inD(mnlog %) time. For an unweighted graph, it can be computediiin?) time [24].
Using the linear-time shortest-path algorithm of Henzinger et al. [19] for max-flow computations, the
cactus of a weighted planar graph can be obtained(it?) time with the construction described in [14].

4. Hierarchically clustered graphs

Feng et al. [13] introduced the hierarchically clustered graph model and characterized graphs that
have a planar drawing with respect to the clustering. Such drawings are quite similar to cactus-clustered
drawings in the special cases where the cactus is just a tree. In this section, we summarize definitions anc
results of [13] and [11] that we will use later.

A hierarchically clustered grapkiG, T') consists of a graply = (V, E) and a rooted tre& such that
the set of leaves df is exactlyV . Vertices ofT are callechodes Each node of T represents theluster
V (v) of leaves in the subtree @f rooted atv. T is called thenclusion treeof (G, T'). An edgee of G is
said to bencidentto a clusterV (v), if eNV (v)| = 1.

A hierarchically clustered graptG, T) is connectedif each cluster induces a connected subgraph
of G.

A c-planar drawing D of a hierarchically clustered grapfG, T) consists of drawings of the
underlying graphG and the inclusion tre& in the plane. Each vertex of G is represented as a point
D(v) and each edge = {v, w} as a simple curvé®(e) betweenD(v) andD(w). The drawing of two
edges may not intersect but in common end points. Each non-leafrafde is drawn as a simple closed
regionD(v) bounded by a simple closed curd®(v) such that

(1) D(n) € D(v) for all descendantg of v.
(2) D(u) ND(v) = ¢ if uis neither a descendent nor an ancestar.of
(3) For every edge of G it holds that

1 it vv)ynel =1,
D) NIDW)| = { 0, else.
Roughly speakingT is drawn in the inclusion representation and edge& ohay only cross cluster
boundaries if necessary. A hierarchically clustered graghpknar, if it admits a c-planar drawing. In
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general, a hierarchically clustered graph does not have to be c-planar if the underlying graph is planar.
Feng et al. characterized connected c-planar hierarchically clustered graphs as follows.

Theorem 8 [13]. A connected hierarchically clustered gragh= (G, T) is c-planar if and only if there
exists a planar drawing ofs, such that for each node of T all vertices ofV — V (v) are in the outer
face of the drawing of; (v).

In anOGRC(orthogonal grid rectangular clust¢drawingof a hierarchically clustered graghy, T7),
curveD(e) is a sequence of horizontal and vertical segments for everyedfj& andD(v) is an axis-
parallel rectangle for every non-leaf nodef 7. Fig. 1 shows a connected hierarchically clustered graph
with a c-planar OGRC-drawing.

Theorem 9[11]. For a c-planar connected clustered graph with n vertices of degree at4nast-planar
OGRC-drawing withO(n?) area and with at mos3 bends per edge can be constructedlim) time.

In the following we will also use the notation OGRC-drawing for drawings of a fadilyf cuts
of graph G in the corresponding sense, i.e., the drawin@) of an edgee of G is again a sequence
of horizontal and vertical segments and every simple closed quwéd_J._-D(C) is an axis-parallel
rectangle.

5. From cactus representations to hierarchically clustered graphs

Both the cactus representation of a set of cuts of a graph and the inclusion tree of a hierarchically
clustered graph represent structural information of a graph. (Gep) be a linear sized cactus
representation of a sétof cuts of a graphG with n vertices. As an intermediate step toward a cactus-
clustered drawing, we transform the cactus representation into an inclusion tree such that a c-planar
drawing of the corresponding hierarchically clustered graph yields a planar drawing of e sét
pairwise non-crossing cuts 6f

(1) For every cycle : vy, ..., in G, delete all edges in and add a new (empty) node and edges
fvi,v}, i=1,... k.

(2) For every vertex of G, add a new node, and an edgéy (v), v,}.

(3) Find a suitable roat.

We call the thus constructed rooted trée= 7 (G, ¢, r). In the special case wher¢, ¢) is the cactus
of all minimum cuts we refer t@ by 7 (G). Note that(G, 7') is now a hierarchically clustered graph.
Also note that there might be nodes of degree tw® jithus some clusters might be represented twice in
(G, T), but the number of nodes ih is still in O(n): By Theorem 5, we havg/ (G)| € O(n). In step 1,
we add a new node for every cycledhand in step 2, we add new nodes. ThugV (7)| is in O(n), as
well.

Fig. 3 shows the inclusion tréE(G) of the graphG from Fig. 1. There are several options for choosing
a root. We have chosen the root such thatv)| < |V (v)| for every inner node of 7 (G). This has the
advantage that the most balanced minimum{&uts}, i.e., the cut such thatS| — [S]| is minimal, is
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Fig. 3. (a) White nodes in the inclusion trégG) of the graphG in Fig. 1 represent nodes that were added for a cyclg.in
(b) The corresponding cluster boundaries are drawn as dashed grey rectangles in the c-planar OGRC-di@wing:0§.

seen on the top level. Another possibility is to take the center of the tree, i.e., to minimize the height. In
either case, the root can be computed in linear time.
From the construction df it follows immediately that

Crc={{V (), V() }; v#risanon-leaf node of }. (1)

Thus, if D is a c-planar drawing ofG, 7) and D’ is defined byD’(v) = D(v), D'(e) = D(e) and
D'{V(v), V(v)}) = dD(v) for verticesv € V, edgese € E, and non-leaf nodes # r of 7 thenD’
is a planar drawing ofG, Cyc).

In the rest of the paper we will show the following theorem and its application to the set of all minimum
cuts of a weighted planar connected undirected graph.

Theorem 10 (Main theorem)Let (G, ¢) be a cactus representation of a set of cutg;afuch that each
cycle ofG corresponds to a cycle itv. Then there is a planar cactus-clustered drawing @f G, ¢) if
and only if(G, 7 (G, ¢, r)) is c-planar for a suitable choice of the roet

If (G,7(G,e,r)) is a c-planar connected hierarchically clustered graph ainds the height of
the inclusion tree7, a bend-minimum planar cactus-clustered OGRC-drawind®fgG, ¢) can be
constructed inO((n - h)"/*\/logn ) time.

To show that we can apply the main theorem to the cactus of all minimum cuts, we show how to
construct a c-planar drawing of the hierarchically clustered gééplT (G)). The next lemma guarantees
that we can fix an arbitrary embedding Gfand either the root of (G) or the outer face of; and add
cluster boundaries. See also [3,20] for related results.

Lemma11. Every planar drawing of a weighted connected planar grapban be extended to a c-planar
drawing of the connected hierarchically clustered gragh 7 (G)).

Proof. If {S, S} is a minimum cut in a weighted connected planar graph, then the following holds.

(1) G(S) andG(S) are both connected. _
(2) For any embedding af, the dual edges af (S, S) induce a cycle.
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These two facts guarantee that for every planar embedding of the weighted connectedsgraph
provided either the root of (G) or the outer face of; is chosen in such a way that for each non-
leaf nodev of T(G), clusterV (v) is inside the dual cycle af (V (v), V (v)), the hierarchically clustered
graph(G, 7 (G)) fulfills the preconditions of Theorem 8 and thus has a c-planar drawing.

Now, by Theorem 4 and Lemma 7, we have the following corollary of the main theorem.
Corollary 12. There is a planar drawing ofG, M(G)).

It remains to show the main theorem. So(ét ¢) be a cactus representation of a 8eif cuts of G
such that no edge @ crosses a cycle @. Suppose first that there is a planar cactus-clustered drawing
D of (G, G, ¢). Choose the root of 7(G, ¢, r) in such a way that for any node of 7 (G, ¢, r) the
cluster V(v) is enclosed byD(V (v), V(v)). We construct a c-planar drawir’ for (G, 7 (G, ¢,r))
by extending drawingD of the underlying graplG, i.e., D'(v) = D(v) and D'(e) = D(e) for every
vertexv € V and every edge € E. To guarantee property 2 for the cluster boundaries, we construct the
following setS. Consider the simple closed curveslif}._.. D(C) ordered such that, is beforey; if
y1 is completely contained in the simple closed region boundeghb¥or every simple closed curve
¥ € Ucee D(C) that is completely contained in the closure of a connected regi@®? afl ... D(C),
setS contains a simple closed curyé completely contained in the interior of the region bounded by
such that

e y andy’ separate the same vertex sets,
e intersect the same edges in the same order and in the same number of times, and
e such thaty’ does not intersect any other curveSn

By a consequence of the Schonflies thedrésee e.g. [23, p. 76])S is well-defined. Fig. 4 illustrates
the setS.

Fig. 4. lllustration of the sef. Drawings of cuts are solid grey curves and elements afe indicated as dashed grey curves.

1 The Schénflies theorem says that a homeomorphism of a simple closed curve in the plane onto a circle in the plane can be
extended to a homeomorphism of the entire plane.
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Lemma 13. {{S, S}; S and S are separated by a curve &f} equals the sef, of all non-crossing cuts
inC.

Proof. If S andS are separated by a curyeC | ... D(C) but not by a curve ir§, then|J .. D(C)
contains two paths—one that lies completely insijdand one that lies completely outsigleand each
have both end points on. These two paths together with non-crossing connections of there end points on
y form a simple closed cycle i) .. D(C). The corresponding cut crossgs S}. Hence(S, S} ¢ Cnc.

If, on the other hand, two cuts, S}, {T, T} € C cross, no simple cycle that separaseisom S can be
contained in the closure of a connected componei®®f| ... D(C). O

Thus, by Eg. (1), the curves ifi together with a simple closed curve that contains the whole graph
contain the cluster boundaries for a c-planar drawingaf7 (G, ¢, r)).

Now, suppose thaiG, 7 (G, ¢, r)) is c-planar for some root. We want to construct a planar cactus
clustered drawing ofG, G, ¢) via a c-planar drawing ofG, 7 (G, ¢, r)). Thus, in the next section, we
first introduce a method for drawing hierarchically clustered c-planar graphs. We will then show how to
extend this method to planar cactus clustered graphs.

6. Thedrawing
6.1. C-planar drawings of hierarchically clustered graphs

As mentioned in Section 4, Eades et al. [11] introduced a method for drawing hierarchically clustered
planar graphs orthogonally with rectangularly shaped cluster boundaries. In this method, the undirected
graph is made directed and edges are allowed to cross cluster boundaries only at the top or bottom of
the boundary rectangle. It might therefore introduce unnecessary bends into the drawing. We propose &
different way of drawing a connected c-planar grgph 7). We add edges and vertices@such that
the newly constructed graghi’ remains planar and each cluster boundary corresponds to a cy@le in
Now any embedding preserving algorithm can be applied to draw grapind thus to obtain a c-planar
drawing of (G, T). In caseG has maximum degree 4, using the model of Tamassia [25] with some
additional constraints on the flow, this leads to a c-planar OGRC-drawing with the minimum number
of bends. This extension of Tamassia’s model to hierarchically clustered graphs was independently
described in [22] and is now part of the AGD library [17]. The approach is easily extended to graphs
with arbitrary degree by using near orthogonal drawings [15,21,26]. Dynamical approaches for drawing
graphs using a flow model can be found, e.g., in [1,2].

Let (G, T) be a hierarchically clustered c-planar graph with an embedding in the plane that fulfills the
conditions of Theorem 8. Recall, that f6r= 7 (G), by Lemma 11, every embedding of a planar graph
is suitable. For every non-leaf node of the inclusion tree, we add a cycle of new edges and new vertices
to G in the following way: Proceeding from the leaves to the roo'offor every non-leaf node of
T leteq,..., e be the edges incident to cluster(v) in their cyclic order around’ (v). Lete;y 1 = eq
ande; = {v;,w;}, i=1,....,k+ 1. Fori =1,... k, wesplit edgee;, i.e., we add a vertex,, to V(G)
and replace edge by edgedv;, v, } and{w;, v, }. Finally, we add edgeg,, v,,,}. Thesek edges are
calledboundary edgesf v. They form a cycle, called theoundary cyclef v, that model the boundary
of D(v).
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A special case occurs, if there are only one or two edges incident to a cluster. In that case, two or one
additional vertices are inserted in this cycle to avoid loops and multiple edges. The added edges are alsc
called boundary edges. Let the resulting graplhdetrn = |V (G)| andh be the height of the inclusion
treeT.

Lemmal4. |V(G")| € O(n - h).

Proof. Let e = {u,v} € E(G) and letk be the number of vertices on the pathZinbetweenu andv.
Thenk — 3 < 2h vertices are inserted inta Thus,|V(G)| <n+2|E(G)|lhe O(n-h). O

Note that in casd’ = 7(G) andw(e) > 1 for every edger € E(G) it is also true, thatV (G')|
O(x - n): Every cluster is incident to at mogt edges and the number of clusters is(in). For
unweighted planar graphs we havel 5 and this impliegV (G| € O(n).

Lemmals. If (G, T) is a connected hierarchically clustered grapl,can be constructed i@ (|V (G")])
time.

Proof. Proceeding for each edde, v} € E(G) along the path irf’ betweeru andv, splitting the edges
can be done in

O(|E(G)| + |added verticeg = O(|V (G")|).

From the leave to the root df, add the boundary edges along the outer face of each cluster. Doing
this, every edge can be touched at most twice. Thus, inserting the boundary edgéXi& (G")|) =
ov@GHh. o

In the flow network for an orthogonal or near orthogonal drawingzaf we restrict the flow over
a boundary edge to be zero, if it goes from outside the corresponding boundary cycle into it. This
guarantees that the boundary cycles are rectangularly shaped in any resulting orthogonal drawing.
Theorem 9 guarantees that there is a feasible flow for the restricted flow network. The resulting drawing is
a bend minimum c-plan@®GRC-drawing. Moreowveall inserted vertices have degree 4 and split edges
alternate with boundary edges. Thus, the corresponding original edgeshave no bends at cluster
boundaries. The restriction on the flow is necessary. Even in the case of unweighted graphs with the root
chosen in such a way, tha (v)| < |V (v) |, there are examples of planar graphissuch that the bend
minimum solution without restriction of the clustered gragh 7 (G)) have non-rectangularly shaped
cluster boundaries. See for example Fig. 5.
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Fig. 5. Drawings of the non-trivial minimum cuts of (a) a weighted and (b) an unweighted graph without rectangularity
restriction on the cluster shape. Grey edges are boundary edges, thin edges have weight 1 and thick edges have weight 6.

L emma 16. The area of the thus constructed bend-minimum c-planar OGRC-drawiid &) is O(n?).

Proof. There are)(n) clusters and each cluster boundary requires two horizontal and two vertical lines.

Those edges G’ that are not boundary edges corresponddi@) original edges inG. As the
constructed drawing is bend-minimum, by Theorem 9, there are at m5{@3)| bends on those edges.
Thus, the non-boundary edges require at ma$F4G)| € O(n) horizontal and vertical lines. O

Fig. 3 shows a bend-minimum c-planar OGRC-drawing of the hierarchically clustered graph
(G, T (G)) whereg is the graph in Fig. 1.

6.2. Planar cactus-clustered drawings

In this subsectiong, ¢) continues to be a linear sized cactus representation of a set of cuts of the graph
G and7 =7(G, ¢,r). We show how we can transform a c-planar drawing @f 7) into a cactus-
clustered drawing ofG, G, ¢). We achieve this, roughly speaking, by merging the cluster boundaries
corresponding to pairs of incident nodes on a cycle in the cactus. In step 1, we replace each cycle of the
cactus by a star. Thus, the information about the cyclic order of the edges in a cycde bt preserved
in 7. However, this order can be reconstructed from a c-planar drawinG,daf) by the fact that cycles
in G correspond to cycles iG.

Letc:vy,..., v be acycle inG and letV; be defined as in Definition 6. Note that for eachither
V; or V; is a cluster of(G, 7). More precisely, let, be the node that was added foiin step 1. If
v; is a descendent aof, thenV; = V(). If v; is a ancestor of, thenV; = V(v,). In what follows,
suppose without loss of generality that the reaif 7 is not nodev,. and thaty, is an ancestor of,.
To associate every node ih(G) with at most one cycle ig7, we will associatev, with ¢ instead of
its anceston, and, for an easier notation, we will denatealso byv,. For convenience, we will refer
to the indices of nodes in as if taken moduld. Consider the sequencés of edges inE(V;, V;) in
their cyclic order around (v;). Since each cycle @ corresponds to a cycle ¢f, we already know that
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E(V;,V;) = E(V;, Vi_1) U E(V;, Vi11). The next lemma guarantees that these two sets form intervals
ind;.

Lemma 17. The set of edgeB (V;, V;) N E(V;,1, Vi,1) is consecutive ia; andd; 1.

Proof. If not, let eq, ..., ¢; be the subsequence af such thater, e, € E(Vii1, Vii1), €2, ..., €11 ¢
E(Viy1, Vig1). Let e € E(V;, V) \ (E(Vi41,Vij1) U {ea, ..., ¢,_1}) be another edge im; and let

e = {v, w} such thatw ¢ V(v;). For j =i,i + 1 let p; be a path on the cluster boundary @f from

e1 t0 ¢;. Let ¢’ be the simple closed cycle that is induced by edgepath p;, edgee; and pathp; ;.
Without loss of generality we can assume that edges. ., ¢;_; are inside or intersect cycl€. Let
V' C V(G) be the set of vertices that are incidentetg. . ., ¢;_1 and that are not it¥;. Then, since no
edge ofG crosses a cycle af, w € V;_; and V' C V;_;. Thus, V;_; cannot be bounded by a simple
closed curve that intersects neitkgmor e, nor the cluster boundary of(v;) or V(v;11). O

Let v/ be the vertex that was inserted into an edger the boundary cycle of;,. It follows from
the previous lemma that the boundary cycle,ofs divided into the following four parts: two paths™
and p;” that are induced by the vertex s¢t$; ¢ € E(V;, Vi+1)} and the two remaining edges. The next
lemma guarantees that path$ and p;,, are adjacent.

Lemma18.If e € E(V;, Vi31), then{v, vt} € E(G)).

Proof. Suppose there was another vertex inserteddrtetweerv andvi*! for the cluster boundary of
the cluster represented by a nodeThen eithen; andv;,; are both descendants af or one of them,
sayv;.1 = v.. In the first casey (v) contains exactly one df (v;) andV (v;;1), sayV (v;). Thusv is an
ancestor ofy; but not ofv;,;. In the second casé&; C V(v) C V(v.). Both cases are impossible, since
v; is adjacentta,. O

Thus, we have the situation indicated in Fig. 6(a): a path of adjacent clugters, ..., V(vi_1)
surrounded by the boundary cyclef Now, for eachi =1, ...,k and for each edgee E(V;, V1),
we can merge verticeg andv’*! without loosing planarity. The result is shown in Fig. 6(b). Now, for
eachi =1, ...k, pathsp;” and pi,1 are united into one patp; 3. Fori =2,...,k — 1 we add two
vertices top;, one on each end gf;. We will call these new verticesycle-path end-vertice$Ve replace
an incidence of a remaining edge of the cluster boundariesaridv; _; to p; by the corresponding new
cycle-path end-vertex gb;. Finally, the remaining edges of the boundary cycleofre deleted. The
result is shown in Fig. 6(c). The simple closed cycles contained in the thus modified cluster boundaries
of vy, ..., v, Separate exactly the sé;tj;g:i Ve, 1<i < j <k, from their complement. These are exactly
the sets that are modeled byn G.
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Fig. 6. Constructing a planar cactus-ckrstd drawing from a c-planar drawing.

Let G” be the graph in which the above described construction is done for every cyg¢leAs the
number of cycles ir§j is in O(n), we addO(n) vertices toG’. Thus,|V(G")| € O(|V(G’)|) andG” can
be constructed iD(|V (G")| time.

As in the previous subsection, we can now apply any embedding preserving algorithm to draw graph
G” and thus to get a cactus-clustered drawing@®@fg, ¢). To achieve a bend-minimum planar cactus-
clusteredOGRC-drawng, we can apply the flow model of Tamassia [25[X6 with similar constraints
on the flow as in the previous subsection. Again, we restrict the flow over a boundary edge to be zero, if it
goes from outside the corresponding boundary cycle into it. The flow from a cycle-path end-vertex into a
cluster is restricted to 1. This has the effect that every simple cyd# itmat consists of boundary-edges
is drawn as a rectangle.

Lemma 19. There is a feasible flow for the restricted flow network.

Proof. Letc be a cycle ofy and the notations as above. We modify an orthogonal drawiig of such
a way that

(1) alledges of(V;, V;,1) leave the cluster boundary afon the same side and all edgesaiV;, V;_,)

on the opposite side,
(2) for an edger € E(V;, Vi11) edge{vi, vt} is a straight line.
These two properties are achieved by pushing flow along cycles in the flow network as indicated in
Fig. 7. In the first step (Fig. 7(a)), the bends in the boundary cycles are moved along the boundary cycles
to the desired place. Now, for eaete E(V;, V;;1) the number of bends ifv., vé“} is the same. In the
second step (Fig. 7(b)), these bends are all moved to the ¢dges}. Since the edges i (V;, V1) and
E(Vi, Vi_1) leave the cluster boundary of in opposite directions, in the end the edges vj} are also
straight. Doing this for every cycle, results in such a drawing that merging corresponding cluster-sides
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Fig. 7. (a)—(c) Bends in an orthogonal drawing@fare moved along the dashed cycles. (d) A cactus-clustered drawing of the
graph in Fig. 1.

automatically results in a—not necessarily bensiimum—planar cactushesteed OGRCdrawing.
This drawing corresponds to a flow in the restricted flow network.

An example using the construction of a bend-mom planar cactus-citeredOGRC-draving is
shown in Fig. 7(d). I G, 7)) is connected, the running time of the algorithm is as follows:

e Constructing the inclusion treg of height4 from the cactus is i (n).

e ConstructingG’ andG” from (G, 7) isinO(n - h).

e Constructing the orthogonal drawing a&” with N := |V(G')| € O - h) vertices is in
O(N"4/logN) [16].
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We can finally summarize that the running time is dominated by the orthogonal drawing and is in
O((n - h)"*/Togn ) time.

7. Conclusion and future work

We outlined a method for representing the minimum cuts of a weighted planar graph in a planar
drawing of the graph. Utilizing the cactus representation, the set of all mutually non-crossing minimum
cuts can be shown in a c-planar drawing of a hierarchical clustering of the graph. This approach was then
extended to cactus-clustered drawings that visualize all minimum cuts by simple closed curves. Both
approaches have been demonstrated to work for bend-minimum orthogonal drawings, but can be usec
with any drawing algorithm that preserves the embedding of cluster boundaries.

Moreover, our method applies to any getf, not necessarily minimum, cuts of a planar grapkthat
has a cactus representati@i ¢) and the additional property that

each cycle ofj corresponds to a cycle af.

If 7 is the inclusion tree constructed frainas described in Section 5, it holds thiét, G, ¢) has a planar
cactus-clustered drawing if and only(i;, 7) is c-planar for a suitable choice of the rootbf

Eades et al. give a linear-time algorithm that constructs a c-planar straight-line hierarchically clustered
drawing in which the clusters are drawn as trapezoids [11]. It would be interesting to know whether there
exist cactus-clustered drawings of this kind.
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