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Abstract

We show how to utilize the cactus representation of all minimum cuts of a graph to visualize the minimu
of a planar graph in a planar drawing. In a first approach the cactus is transformed into ahierarchical clustering
of the graph that contains complete information on all the minimum cuts. This approach is then exte
drawings in which the two vertex subsets of every minimum cut are separated by a simple closed curve
both approaches work with any embedding-preserving drawing algorithm, we specifically discuss bend-m
orthogonal drawings.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The edge connectivity is a fundamental structural property of a graph. Dinitz et al. [5] discovere
the set of all minimum cuts of a connected graphG with positive edge weights has a tree-like structu
It can be represented by a cactus, i.e., by a connected graph in which every edge is contained in
one cycle. Although the number of minimum cuts in a graph can be in�(n2), the size of the cactus
linear in the numbern of vertices ofG. From the cactus representation, the bipartitions of the verte
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can easily be extracted, but it contains almost no information about the edges inG. We want to visualize
a graphG together with the cactus representation of its minimum cuts in one drawing.

A simple closed curve divides the plane into two connected regions. A minimum cut divides the set of
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vertices of a graph into two connected subsets. Thus, it is natural to visualize a minimum cut in a d
of a graph by a simple closed curve separating the two subsets. This leads to our general defi
drawings of sets of cuts in a graph. Each cut is represented by a simple closed curve that sepa
corresponding two subsets of the vertex set. By requiring that only edges that connect the two
of the vertex set may cross the drawing of a cut, we guarantee that also these cut-edges are vi
Finally, to avoid ambiguities, we require that each simple closed curve in the union of the drawing
represented cuts also represents a cut of the given set. We show how to construct a planar drawin
set of all minimum cuts of a weighted connected planar graph that meets these requirements.

The construction uses the model of hierarchically clustered graphs. This model was introdu
Feng et al. [13]. Since then algorithms for testing whether a hierarchically clustered graph has a
drawing [4,13,18] for constructing planar drawings of hierarchically clustered graphs [8–12,22
triangulating planar hierarchically clustered graphs [20] and for finding clusterings of graphs that
its planarity [7] have been developed. In a drawing of a hierarchically clustered graph, a set of v
of a graph is represented by a region that is bounded by a simple closed curve. The set of su
the vertex set that is represented simultaneously in this way has to have tree structure. In terms
this means that we can represent a set of pairwise non-crossing cuts as a hierarchically clustere
Graphs having no crossing minimum cuts are, for example, maximal planar graphs and chordal g

If there are crossing cuts, the structure of the set of minimum cuts implies that they are repre
at least implicitly in a drawing of the pairwise non-crossing cuts. We show, however, that the
of hierarchically clustered graphs can be extended to cactus-clustered graphs such that the
visualizing every minimum cut by a simple closed curve is achieved. This extension is mainly
on the fact that for two crossing minimum cuts, the four corner cuts are also minimum.

The contribution of this paper is as follows. Drawings of families of cuts are defined in Sect
In Sections 3 and 4, we provide some background on the cactus representation and on hiera
clustered graphs, respectively. In Section 5, we show how to construct a hierarchically clustere
from a cactus representation such that its c-planar drawing represents the set of pairwise non-
minimum cuts and we state our main theorem. Finally, our method for drawing planar graphs t
clustered according to all minimum cuts is presented in Section 6.

2. Drawings of families of cuts

Let G = (V ,E) be an undirected connected graph withn vertices. WithE(G) we denote the se
E of edges ofG and with V (G) the setV of vertices ofG. A cycle c : v1, . . . , vk is a sequence o
k � 3 distinct vertices, such thatE(c) := {{v1, v2}, . . . , {vk−1, vk}, {vk, v1}} ⊆ E. For a subsetE′ ⊆ E, we
denote byG − E′ the graph(V ,E \ E′).

A graphG together with a positive edge weight functionω :E → R+ is a weighted graph. For two
subsetsS andT of V , let E(S,T ) := {{v,w};v ∈ S andw ∈ T } be the set of edges betweenS andT ,
and letω(S,T ) := ∑

e∈E(S,T ) ω(e) be the total weight of the edges between the two subsets.
A cut is an unordered pair{S,�S} where∅ � S � V and�S := V \S. A setS inducesthe cut{S,�S}. The

weightof this cut isω(S,�S). With λ := min∅�S�V ω(S,�S) we denote the minimum of all these weigh
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and a cut{S,�S} of G satisfyingω(S,�S) = λ is called aminimum cut. With M(G) we denote the set
of minimum cuts ofG. By G(S) we denote the subgraph ofG induced by a setS. For an arbitrary cut
{S,�S}, we do not require thatG(S) is connected. Note, however, thatG(S) is always connected if{S,�S}
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Let C be a set of cuts ofG. A drawing of a cut should visualize both the partition of the vertex

into two parts and the edges with end-vertices in different parts. So, we define a (planar) drawingD of
(G,C) to be a map from elements ofV , E andC on subsets ofR2. Each vertexv of G is represented as
distinct pointD(v) and each edgee = {v,w} as a simple curveD(e) betweenD(v) andD(w). (Drawings
of edges do not intersect but in common end points.) Each cutC = {S,�S} ∈ C is represented by a simp
closed curveD(C) such that

(1) D(S) andD(�S) are in different connected regions ofR2 \D(C),
(2) for every simple closed curveγ in

⋃
C∈CD(C)

(a) there is a cut{T , �T } ∈ C such thatT and�T areseparatedby γ , i.e.,D(T ) andD(�T ) are contained
in different connected regions ofR2 \ γ ,

(b) and for every edgee ∈ E it holds that

∣∣D(e) ∩ γ
∣∣ =

{
1, if |T ∩ e| = 1,
0, else.

Condition (2) guarantees (a) that it is clear from a drawing of(G,C) which cuts are inC and which are
not and (b) that also thecut-edgesof a cut{T , �T } ∈ C, i.e., the edges inE(T, �T ) are visualized—they ar
exactly the edges that cross the drawing of{T , �T }.

For example, let the dashed edges in the graph below have weight 1 and the solid edges wei
this caseλ = 2 and the picture below is a drawing for the set of all cuts of weight 2, 3 or 4. But the
no drawing for the setC = {{{u,w}, {v, x}}, {{u, v}, {w,x}}, {{u, v,w}, {x}}, {{x, v, u}, {w}}, {{u, x,w},
{v}}} of cuts of weight 2 or 3: The union of the drawings of{{u,w}, {v, x}} and{{u, v}, {w,x}} would
contain a simple closed curveγ with the property that{u} and {v,w,x} are contained in differen
connected regions ofR2 \ γ . But {{u}, {v,w,x}} is not inC.

We will see, however, that the set of all minimum cuts of any weighted connected graph always
a drawing. This fact is based on the almost tree-like structure—the so called cactus representa
the set of all minimum cuts, which we briefly describe in the next section.
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3. The cactus of the set of minimum cuts

Definition 1. A representationfor a setC of cuts of a graphG is a pair(G, ϕ) such thatG is a weighted
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graph andϕ :V (G) → V (G) is a mapping such thatC = ϕ−1(M(G)) := {{ϕ−1(S), ϕ−1(�S)}; {S,�S} ∈
M(G)}. A nodeν ∈ V (G) is calledemptyif ϕ−1(ν) = ∅.

Definition 2. Two cuts{S,�S} and{T , �T } arecrossing, if none of thecorner setsS ∩ T , S ∩ �T , �S ∩ T and
�S ∩ �T is empty. A cut induced by a corner set is acorner cutand the cut induced byS	T := S \T ∪T \S

is thediagonal cut.

In the example in Section 2, the cuts induced by{u, v} and{u,w}, respectively, cross. The corner cu
are the four cuts induced by{u}, {v}, {w} and{x}. The diagonal cut is the cut induced by{v,w}.

A cut is acrossing cutof a family C of cuts, if it crosses any cut inC. If C contains no crossing cut
C can be represented by a tree. Dinitz et al. [5] showed that the set of minimum cuts of an a
weighted connected graph can be represented by a cactus where cycles correspond to sets o
cuts. More precisely:

Definition 3 (Cactus). A cactusis a connected graph in which every edge belongs to at most one
An edge that belongs to no cycle is called atree edge. An edge that belongs to one cycle is called acycle
edge.

In what follows, we assume that a weighted cactus isuniform, i.e., that all cycle edges have the sa
weight and that every tree edge has twice the weight of a cycle edge.

Theorem 4 [5]. The setM(G) of all minimum cuts of a weighted connected graphG has a representation
(G, ϕ) such thatG is a uniform cactus withO(n) nodes.

Fig. 1 shows an example of a weighted graph and its cactus. Dinitz and Nutov characterized al
cuts that can be represented by a cactus.

Theorem 5 [6]. A setC of cuts can be represented by a cactus if and only if for any two crossing cutC

• the four corner cuts are inC and

Fig. 1. (a) A weighted connected graph and (b) the cactus representation of its minimum cuts. In (a), solid edges have
and dashed edges have weight 1. In (b),ϕ is represented by the labels of the nodes.
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• the diagonal cut is not inC.

If a cactus representation exists, there is always one withO(n) nodes.
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If a setC of cuts ofG has a cactus representation(G, ϕ), a (planar) drawing of(G,C) is called a
(planar) cactus-clustered drawingof (G,G, ϕ).

In what follows, let(G, ϕ) be the cactus representation of a set of cuts ofG. Note that there is a
bijection between the set of minimum cuts of a cactusG and the set of tree edges and pairs of cycle ed
belonging to the same cycle. Thus, we can also say that a cut inG is represented by a tree edge or b
pair of cycle edges ofG. The next definition is about relations between edges inG and cycles inG.

Definition 6. For a cyclec : ν1, . . . , νk in G let Vi , i = 1, . . . , k, be the set of vertices in the connect
component ofG −E(c) that containsνi , and letVi := ϕ−1(Vi). We say that the cyclec of G corresponds
to a cycleof G if and only if for 1� i < j � k it holds that

E(Vi,Vj ) �= ∅ ⇔ i − j ≡ ±1 modk.

An example can be found in Fig. 2. There is one cyclec in the cactusG, with corresponding verte
setsV1 = {1,2,3}, V2 = {4,5}, V3 = {6,7} andV4 = {8,9}. This cycle corresponds to a cycle inG1.
SinceE(V1, V2) = ∅ in the graphG2, the cyclec does not correspond to a cycle inG2. It does also no
correspond to a cycle inG3, because thereE(V2, V4) �= ∅.

Fig. 2. The cycle in the cactusG corresponds to a cycle in the graphG1, but not in the graphsG2 andG3. The mappingϕ is
represented by the labels of the nodes.
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For two crossing minimum cuts{S,�S} and {T , �T } of a graph with edge-connectivityλ it holds that
(see e.g. [5,14])

ω(S ∩ T ,S ∩ �T ) = ω(S ∩ �T ,�S ∩ �T ) = ω(�S ∩ �T ,�S ∩ T ) = ω(�S ∩ T ,S ∩ T ) = λ/2
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ω(�S ∩ T ,S ∩ �T ) = ω(S ∩ T ,�S ∩ �T ) = 0.

Hence, there is the following useful property of the cactus of all minimum cuts.

Lemma 7. If G is the cactus of all minimum cuts of a connected graphG, each cycle ofG corresponds
to a cycle ofG.

Fleischer [14] showed that the cactus of all minimum cuts of a weighted connected graph
constructed inO(mn log n2

m
) time. For an unweighted graph, it can be computed inO(λn2) time [24].

Using the linear-time shortest-path algorithm of Henzinger et al. [19] for max-flow computation
cactus of a weighted planar graph can be obtained inO(n2) time with the construction described in [14

4. Hierarchically clustered graphs

Feng et al. [13] introduced the hierarchically clustered graph model and characterized grap
have a planar drawing with respect to the clustering. Such drawings are quite similar to cactus-c
drawings in the special cases where the cactus is just a tree. In this section, we summarize definit
results of [13] and [11] that we will use later.

A hierarchically clustered graph(G,T ) consists of a graphG = (V ,E) and a rooted treeT such that
the set of leaves ofT is exactlyV . Vertices ofT are callednodes. Each nodeν of T represents thecluster
V (ν) of leaves in the subtree ofT rooted atν. T is called theinclusion treeof (G,T ). An edgee of G is
said to beincidentto a clusterV (ν), if |e ∩ V (ν)| = 1.

A hierarchically clustered graph(G,T ) is connected, if each cluster induces a connected subgr
of G.

A c-planar drawing D of a hierarchically clustered graph(G,T ) consists of drawings of th
underlying graphG and the inclusion treeT in the plane. Each vertexv of G is represented as a poi
D(v) and each edgee = {v,w} as a simple curveD(e) betweenD(v) andD(w). The drawing of two
edges may not intersect but in common end points. Each non-leaf nodeν of T is drawn as a simple close
regionD(ν) bounded by a simple closed curve∂D(ν) such that

(1) D(µ) ⊆ D(ν) for all descendantsµ of ν.
(2) D(µ) ∩D(ν) = φ if µ is neither a descendent nor an ancestor ofν.
(3) For every edgee of G it holds that

∣∣D(e) ∩ ∂D(ν)
∣∣ =

{
1, if |V (ν) ∩ e| = 1,
0, else.

Roughly speaking,T is drawn in the inclusion representation and edges ofG may only cross cluste
boundaries if necessary. A hierarchically clustered graph isc-planar, if it admits a c-planar drawing. In
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general, a hierarchically clustered graph does not have to be c-planar if the underlying graph is planar.
Feng et al. characterized connected c-planar hierarchically clustered graphs as follows.
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Theorem 8 [13]. A connected hierarchically clustered graphC = (G,T ) is c-planar if and only if there
exists a planar drawing ofG, such that for each nodeν of T all vertices ofV − V (ν) are in the outer
face of the drawing ofG(ν).

In anOGRC(orthogonal grid rectangular cluster) drawingof a hierarchically clustered graph(G,T ),
curveD(e) is a sequence of horizontal and vertical segments for every edgee of G andD(ν) is an axis-
parallel rectangle for every non-leaf nodeν of T . Fig. 1 shows a connected hierarchically clustered gr
with a c-planar OGRC-drawing.

Theorem 9 [11]. For a c-planar connected clustered graph with n vertices of degree at most4, a c-planar
OGRC-drawing withO(n2) area and with at most3 bends per edge can be constructed inO(n) time.

In the following we will also use the notation OGRC-drawing for drawings of a familyC of cuts
of graphG in the corresponding sense, i.e., the drawingD(e) of an edgee of G is again a sequenc
of horizontal and vertical segments and every simple closed curveγ ⊆ ⋃

C∈CD(C) is an axis-paralle
rectangle.

5. From cactus representations to hierarchically clustered graphs

Both the cactus representation of a set of cuts of a graph and the inclusion tree of a hierar
clustered graph represent structural information of a graph. Let(G, ϕ) be a linear sized cactu
representation of a setC of cuts of a graphG with n vertices. As an intermediate step toward a cac
clustered drawing, we transform the cactus representation into an inclusion tree such that a
drawing of the corresponding hierarchically clustered graph yields a planar drawing of the setCnc of
pairwise non-crossing cuts ofC.

(1) For every cyclec : ν1, . . . , νk in G, delete all edges inc and add a new (empty) nodeνc and edges
{νi, νc}, i = 1, . . . , k.

(2) For every vertexv of G, add a new nodeνv and an edge{ϕ(v), νv}.
(3) Find a suitable rootr .

We call the thus constructed rooted treeT = T (G, ϕ, r). In the special case where(G, ϕ) is the cactus
of all minimum cuts we refer toT by T (G). Note that(G,T ) is now a hierarchically clustered grap
Also note that there might be nodes of degree two inT , thus some clusters might be represented twic
(G,T ), but the number of nodes inT is still in O(n): By Theorem 5, we have|V (G)| ∈O(n). In step 1,
we add a new node for every cycle inG and in step 2, we addn new nodes. Thus|V (T )| is in O(n), as
well.

Fig. 3 shows the inclusion treeT (G) of the graphG from Fig. 1. There are several options for choos
a root. We have chosen the root such that|V (ν)| � |V (ν)| for every inner nodeν of T (G). This has the
advantage that the most balanced minimum cut{S,�S}, i.e., the cut such that||S| − |�S|| is minimal, is
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Fig. 3. (a) White nodes in the inclusion treeT (G) of the graphG in Fig. 1 represent nodes that were added for a cycle iG.
(b) The corresponding cluster boundaries are drawn as dashed grey rectangles in the c-planar OGRC-drawing of(G,T (G)).

seen on the top level. Another possibility is to take the center of the tree, i.e., to minimize the he
either case, the root can be computed in linear time.

From the construction ofT it follows immediately that

Cnc = {{
V (ν),V (ν)

}; ν �= r is a non-leaf node ofT
}
. (1)

Thus, if D is a c-planar drawing of(G,T ) andD′ is defined byD′(v) = D(v), D′(e) = D(e) and
D′({V (ν),V (ν)}) = ∂D(ν) for verticesv ∈ V , edgese ∈ E, and non-leaf nodesν �= r of T thenD′
is a planar drawing of(G,Cnc).

In the rest of the paper we will show the following theorem and its application to the set of all min
cuts of a weighted planar connected undirected graph.

Theorem 10 (Main theorem).Let (G, ϕ) be a cactus representation of a set of cuts ofG such that each
cycle ofG corresponds to a cycle inG. Then there is a planar cactus-clustered drawing of(G,G, ϕ) if
and only if(G,T (G, ϕ, r)) is c-planar for a suitable choice of the rootr .

If (G,T (G, ϕ, r)) is a c-planar connected hierarchically clustered graph andh is the height of
the inclusion treeT , a bend-minimum planar cactus-clustered OGRC-drawing of(G,G, ϕ) can be
constructed inO((n · h)7/4√logn) time.

To show that we can apply the main theorem to the cactus of all minimum cuts, we show h
construct a c-planar drawing of the hierarchically clustered graph(G,T (G)). The next lemma guarantee
that we can fix an arbitrary embedding ofG and either the root ofT (G) or the outer face ofG and add
cluster boundaries. See also [3,20] for related results.

Lemma 11. Every planar drawing of a weighted connected planar graphG can be extended to a c-plana
drawing of the connected hierarchically clustered graph(G,T (G)).

Proof. If {S,�S} is a minimum cut in a weighted connected planar graph, then the following holds.

(1) G(S) andG(�S) are both connected.
(2) For any embedding ofG, the dual edges ofE(S,�S) induce a cycle.
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These two facts guarantee that for every planar embedding of the weighted connected graphG,
provided either the root ofT (G) or the outer face ofG is chosen in such a way that for each non-
leaf nodeν of T (G), clusterV (ν) is inside the dual cycle ofE(V (ν),V (ν) ), the hierarchically clustered

wing

t the

e

y

s

s.

ne can be
graph(G,T (G)) fulfills the preconditions of Theorem 8 and thus has a c-planar drawing.�
Now, by Theorem 4 and Lemma 7, we have the following corollary of the main theorem.

Corollary 12. There is a planar drawing of(G,M(G)).

It remains to show the main theorem. So let(G, ϕ) be a cactus representation of a setC of cuts ofG
such that no edge ofG crosses a cycle ofG. Suppose first that there is a planar cactus-clustered dra
D of (G,G, ϕ). Choose the rootr of T (G, ϕ, r) in such a way that for any nodeν of T (G, ϕ, r) the
clusterV (ν) is enclosed byD(V (ν),V (ν) ). We construct a c-planar drawingD′ for (G,T (G, ϕ, r))

by extending drawingD of the underlying graphG, i.e., D′(v) = D(v) andD′(e) = D(e) for every
vertexv ∈ V and every edgee ∈ E. To guarantee property 2 for the cluster boundaries, we construc
following setS . Consider the simple closed curves in

⋃
C∈CD(C) ordered such thatγ1 is beforeγ2 if

γ1 is completely contained in the simple closed region bounded byγ2. For every simple closed curv
γ ⊆ ⋃

C∈CD(C) that is completely contained in the closure of a connected region ofR2 \ ⋃
C∈CD(C),

setS contains a simple closed curveγ ′ completely contained in the interior of the region bounded bγ

such that

• γ andγ ′ separate the same vertex sets,
• intersect the same edges in the same order and in the same number of times, and
• such thatγ ′ does not intersect any other curve inS .

By a consequence of the Schönflies theorem1 (see e.g. [23, p. 76]),S is well-defined. Fig. 4 illustrate
the setS .

Fig. 4. Illustration of the setS . Drawings of cuts are solid grey curves and elements ofS are indicated as dashed grey curve

1 The Schönflies theorem says that a homeomorphism of a simple closed curve in the plane onto a circle in the pla
extended to a homeomorphism of the entire plane.
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Lemma 13. {{S,�S}; S and�S are separated by a curve ofS} equals the setCnc of all non-crossing cuts
in C.
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Proof. If S and�S are separated by a curveγ ⊆ C∈CD(C) but not by a curve inS , then C∈CD(C)

contains two paths—one that lies completely insideγ and one that lies completely outsideγ and each
have both end points onγ . These two paths together with non-crossing connections of there end poi
γ form a simple closed cycle in

⋃
C∈CD(C). The corresponding cut crosses{S,�S}. Hence{S,�S} /∈ Cnc.

If, on the other hand, two cuts{S,�S}, {T , �T } ∈ C cross, no simple cycle that separatesS from �S can be
contained in the closure of a connected component ofR2 \ ⋃

C∈CD(C). �
Thus, by Eq. (1), the curves inS together with a simple closed curve that contains the whole g

contain the cluster boundaries for a c-planar drawing of(G,T (G, ϕ, r)).
Now, suppose that(G,T (G, ϕ, r)) is c-planar for some rootr . We want to construct a planar cact

clustered drawing of(G,G, ϕ) via a c-planar drawing of(G,T (G, ϕ, r)). Thus, in the next section, w
first introduce a method for drawing hierarchically clustered c-planar graphs. We will then show h
extend this method to planar cactus clustered graphs.

6. The drawing

6.1. C-planar drawings of hierarchically clustered graphs

As mentioned in Section 4, Eades et al. [11] introduced a method for drawing hierarchically clu
planar graphs orthogonally with rectangularly shaped cluster boundaries. In this method, the un
graph is made directed and edges are allowed to cross cluster boundaries only at the top or b
the boundary rectangle. It might therefore introduce unnecessary bends into the drawing. We pr
different way of drawing a connected c-planar graph(G,T ). We add edges and vertices toG such that
the newly constructed graphG′ remains planar and each cluster boundary corresponds to a cycleG′.
Now any embedding preserving algorithm can be applied to draw graphG′ and thus to obtain a c-plana
drawing of (G,T ). In caseG has maximum degree 4, using the model of Tamassia [25] with s
additional constraints on the flow, this leads to a c-planar OGRC-drawing with the minimum n
of bends. This extension of Tamassia’s model to hierarchically clustered graphs was indepe
described in [22] and is now part of the AGD library [17]. The approach is easily extended to g
with arbitrary degree by using near orthogonal drawings [15,21,26]. Dynamical approaches for d
graphs using a flow model can be found, e.g., in [1,2].

Let (G,T ) be a hierarchically clustered c-planar graph with an embedding in the plane that fulfi
conditions of Theorem 8. Recall, that forT = T (G), by Lemma 11, every embedding of a planar gra
is suitable. For every non-leaf node of the inclusion tree, we add a cycle of new edges and new
to G in the following way: Proceeding from the leaves to the root ofT , for every non-leaf nodeν of
T let e1, . . . , ek be the edges incident to clusterV (ν) in their cyclic order aroundV (ν). Let ek+1 = e1

andei = {vi,wi}, i = 1, . . . , k + 1. Fori = 1, . . . , k, we split edgeei , i.e., we add a vertexvei
to V (G)

and replace edgeei by edges{vi, vei
} and{wi, vei

}. Finally, we add edges{vei
, vei+1}. Thesek edges are

calledboundary edgesof ν. They form a cycle, called theboundary cycleof ν, that model the boundar
of D(ν).
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A special case occurs, if there are only one or two edges incident to a cluster. In that case, two
additional vertices are inserted in this cycle to avoid loops and multiple edges. The added edges
called boundary edges. Let the resulting graph beG′. Letn = |V (G)| andh be the height of the inclusio
treeT .

Lemma 14. |V (G′)| ∈O(n · h).

Proof. Let e = {u, v} ∈ E(G) and letk be the number of vertices on the path inT betweenu andv.
Thenk − 3� 2h vertices are inserted intoe. Thus,|V (G′)| � n + 2|E(G)|h ∈O(n · h). �

Note that in caseT = T (G) andω(e) � 1 for every edgee ∈ E(G) it is also true, that|V (G′)| ∈
O(λ · n): Every cluster is incident to at mostλ edges and the number of clusters is inO(n). For
unweighted planar graphs we haveλ � 5 and this implies|V (G′)| ∈O(n).

Lemma 15. If (G,T ) is a connected hierarchically clustered graph,G′ can be constructed inO(|V (G′)|)
time.

Proof. Proceeding for each edge{u, v} ∈ E(G) along the path inT betweenu andv, splitting the edges
can be done in

O
(∣∣E(G)

∣∣ + |added vertices|) = O
(∣∣V (G′)

∣∣).
From the leave to the root ofT , add the boundary edges along the outer face of each cluster. D

this, every edge can be touched at most twice. Thus, inserting the boundary edges is inO(|E(G′)|) =
O(|V (G′)|). �

In the flow network for an orthogonal or near orthogonal drawing ofG′, we restrict the flow ove
a boundary edge to be zero, if it goes from outside the corresponding boundary cycle into i
guarantees that the boundary cycles are rectangularly shaped in any resulting orthogonal d
Theorem 9 guarantees that there is a feasible flow for the restricted flow network. The resulting dra
a bend minimum c-planarOGRC-drawing. Moreover, all inserted vertices have degree 4 and split ed
alternate with boundary edges. Thus, the corresponding original edges inG have no bends at cluste
boundaries. The restriction on the flow is necessary. Even in the case of unweighted graphs with
chosen in such a way, that|V (ν)| � |V (ν) |, there are examples of planar graphsG such that the ben
minimum solution without restriction of the clustered graph(G,T (G)) have non-rectangularly shape
cluster boundaries. See for example Fig. 5.
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Fig. 5. Drawings of the non-trivial minimum cuts of (a) a weighted and (b) an unweighted graph without rectang
restriction on the cluster shape. Grey edges are boundary edges, thin edges have weight 1 and thick edges have wei

Lemma 16. The area of the thus constructed bend-minimum c-planar OGRC-drawing of(G,T ) isO(n2).

Proof. There areO(n) clusters and each cluster boundary requires two horizontal and two vertical
Those edges inG′ that are not boundary edges correspond toO(n) original edges inG. As the

constructed drawing is bend-minimum, by Theorem 9, there are at most 3· |E(G)| bends on those edge
Thus, the non-boundary edges require at most 4· |E(G)| ∈O(n) horizontal and vertical lines. �

Fig. 3 shows a bend-minimum c-planar OGRC-drawing of the hierarchically clustered
(G,T (G)) whereG is the graph in Fig. 1.

6.2. Planar cactus-clustered drawings

In this subsection(G, ϕ) continues to be a linear sized cactus representation of a set of cuts of the
G andT = T (G, ϕ, r). We show how we can transform a c-planar drawing of(G,T ) into a cactus-
clustered drawing of(G,G, ϕ). We achieve this, roughly speaking, by merging the cluster bound
corresponding to pairs of incident nodes on a cycle in the cactus. In step 1, we replace each cyc
cactus by a star. Thus, the information about the cyclic order of the edges in a cycle ofG is not preserved
in T . However, this order can be reconstructed from a c-planar drawing of(G,T ) by the fact that cycles
in G correspond to cycles inG.

Let c : ν1, . . . , νk be a cycle inG and letVi be defined as in Definition 6. Note that for eachi either
Vi or �Vi is a cluster of(G,T ). More precisely, letνc be the node that was added forc in step 1. If
νi is a descendent ofνc then Vi = V (νi). If νi is a ancestor ofνc then �Vi = V (νc). In what follows,
suppose without loss of generality that the rootr of T is not nodeνc and thatνk is an ancestor ofνc.
To associate every node inT (G) with at most one cycle inG, we will associateνc with c instead of
its ancestorνk and, for an easier notation, we will denoteνc also byνk. For convenience, we will refe
to the indices of nodes inc as if taken modulok. Consider the sequencesdi of edges inE(Vi, �Vi) in
their cyclic order aroundV (νi). Since each cycle ofG corresponds to a cycle ofG, we already know tha
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E(Vi, �Vi) = E(Vi,Vi−1) ∪ E(Vi,Vi+1). The next lemma guarantees that these two sets form intervals
in di .
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Lemma 17. The set of edgesE(Vi, �Vi) ∩ E(Vi+1, Vi+1 ) is consecutive indi anddi+1.

Proof. If not, let e1, . . . , el be the subsequence ofdi such thate1, el ∈ E(Vi+1,Vi+1 ), e2, . . . , el−1 /∈
E(Vi+1, Vi+1 ). Let e ∈ E(Vi, �Vi) \ (E(Vi+1, Vi+1 ) ∪ {e2, . . . , el−1}) be another edge indi and let
e = {v,w} such thatw /∈ V (νi). For j = i, i + 1 let pj be a path on the cluster boundary ofUj from
e1 to el . Let c′ be the simple closed cycle that is induced by edgee1, pathpi , edgeel and pathpi+1.
Without loss of generality we can assume that edgese2, . . . , el−1 are inside or intersect cyclec′. Let
V ′ ⊆ V (G) be the set of vertices that are incident toe2, . . . , el−1 and that are not inVi . Then, since no
edge ofG crosses a cycle ofG, w ∈ Vi−1 andV ′ ⊆ Vi−1. Thus,Vi−1 cannot be bounded by a simp
closed curve that intersects neithere1 nor e	 nor the cluster boundary ofV (νi) or V (νi+1). �

Let vi
e be the vertex that was inserted into an edgee for the boundary cycle ofνi . It follows from

the previous lemma that the boundary cycle ofνi is divided into the following four parts: two pathsp+
i

andp−
i that are induced by the vertex sets{vi

e; e ∈ E(Vi,Vi±1)} and the two remaining edges. The ne
lemma guarantees that pathsp+

i andp−
i+1 are adjacent.

Lemma 18. If e ∈ E(Vi,Vi+1), then{vi
e, v

i+1
e } ∈ E(G′).

Proof. Suppose there was another vertex inserted intoe betweenvi
e andvi+1

e for the cluster boundary o
the cluster represented by a nodeν. Then eitherνi andνi+1 are both descendants ofνc or one of them,
sayνi+1 = νc. In the first case,V (ν) contains exactly one ofV (νi) andV (νi+1), sayV (νi). Thusν is an
ancestor ofνi but not ofνi+1. In the second case,Vi ⊆ V (ν) ⊆ V (νc). Both cases are impossible, sin
νi is adjacent toνc. �

Thus, we have the situation indicated in Fig. 6(a): a path of adjacent clustersV (ν1), . . . , V (νk−1)

surrounded by the boundary cycle ofνc. Now, for eachi = 1, . . . , k and for each edgee ∈ E(Vi,Vi+1),
we can merge verticesvi

e andvi+1
e without loosing planarity. The result is shown in Fig. 6(b). Now,

eachi = 1, . . . , k, pathsp+
i andp−

i+1 are united into one pathpi+1. For i = 2, . . . , k − 1 we add two
vertices topi , one on each end ofpi . We will call these new verticescycle-path end-vertices. We replace
an incidence of a remaining edge of the cluster boundaries ofνi andνi−1 to pi by the corresponding new
cycle-path end-vertex ofpi . Finally, the remaining edges of the boundary cycle ofνc are deleted. The
result is shown in Fig. 6(c). The simple closed cycles contained in the thus modified cluster bou
of ν1, . . . , νk separate exactly the sets

⋃j

	=i V	, 1 � i � j < k, from their complement. These are exac
the sets that are modeled byc in G.
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Fig. 6. Constructing a planar cactus-clustered drawing from a c-planar drawing.

Let G′′ be the graph in which the above described construction is done for every cycle inG. As the
number of cycles inG is in O(n), we addO(n) vertices toG′. Thus,|V (G′′)| ∈ O(|V (G′)|) andG′′ can
be constructed inO(|V (G′)| time.

As in the previous subsection, we can now apply any embedding preserving algorithm to draw
G′′ and thus to get a cactus-clustered drawing of(G,G, ϕ). To achieve a bend-minimum planar cact
clusteredOGRC-drawing, we can apply the flow model of Tamassia [25] toG′′ with similar constraints
on the flow as in the previous subsection. Again, we restrict the flow over a boundary edge to be z
goes from outside the corresponding boundary cycle into it. The flow from a cycle-path end-vertex
cluster is restricted to 1. This has the effect that every simple cycle inG′′ that consists of boundary-edg
is drawn as a rectangle.

Lemma 19. There is a feasible flow for the restricted flow network.

Proof. Let c be a cycle ofG and the notations as above. We modify an orthogonal drawing ofG′ in such
a way that

(1) all edges ofE(Vi,Vi+1) leave the cluster boundary ofνi on the same side and all edges ofE(Vi,Vi−1)

on the opposite side,
(2) for an edgee ∈ E(Vi,Vi+1) edge{vi

e, v
i+1
e } is a straight line.

These two properties are achieved by pushing flow along cycles in the flow network as indic
Fig. 7. In the first step (Fig. 7(a)), the bends in the boundary cycles are moved along the boundar
to the desired place. Now, for eache ∈ E(Vi,Vi+1) the number of bends in{vi

e, v
i+1
e } is the same. In the

second step (Fig. 7(b)), these bends are all moved to the edges{vk
e , v

1
e }. Since the edges inE(Vk,V1) and

E(Vk,Vk−1) leave the cluster boundary ofνc in opposite directions, in the end the edges{vk
e , v

1
e } are also

straight. Doing this for every cycle, results in such a drawing that merging corresponding cluste
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of the
Fig. 7. (a)–(c) Bends in an orthogonal drawing ofG′ are moved along the dashed cycles. (d) A cactus-clustered drawing
graph in Fig. 1.

automatically results in a—not necessarily bend-minimum—planar cactus-clustered OGRC-drawing.
This drawing corresponds to a flow in the restricted flow network.�

An example using the construction of a bend-minimum planar cactus-clusteredOGRC-drawing is
shown in Fig. 7(d). If(G,T ) is connected, the running time of the algorithm is as follows:

• Constructing the inclusion treeT of heighth from the cactus is inO(n).
• ConstructingG′ andG′′ from (G,T ) is in O(n · h).
• Constructing the orthogonal drawing ofG′′ with N := |V (G′)| ∈ O(n · h) vertices is in
O(N7/4√logN ) [16].
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We can finally summarize that the running time is dominated by the orthogonal drawing and is in
O((n · h)7/4√logn ) time.
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7. Conclusion and future work

We outlined a method for representing the minimum cuts of a weighted planar graph in a
drawing of the graph. Utilizing the cactus representation, the set of all mutually non-crossing min
cuts can be shown in a c-planar drawing of a hierarchical clustering of the graph. This approach w
extended to cactus-clustered drawings that visualize all minimum cuts by simple closed curve
approaches have been demonstrated to work for bend-minimum orthogonal drawings, but can
with any drawing algorithm that preserves the embedding of cluster boundaries.

Moreover, our method applies to any setC of, not necessarily minimum, cuts of a planar graphG that
has a cactus representation(G, ϕ) and the additional property that

each cycle ofG corresponds to a cycle ofG.

If T is the inclusion tree constructed fromG as described in Section 5, it holds that(G,G, ϕ) has a plana
cactus-clustered drawing if and only if(G,T ) is c-planar for a suitable choice of the root ofT .

Eades et al. give a linear-time algorithm that constructs a c-planar straight-line hierarchically clu
drawing in which the clusters are drawn as trapezoids [11]. It would be interesting to know whethe
exist cactus-clustered drawings of this kind.
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