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Abstract. We propose a visualization approach for large dynamic graph
structures with high degree variation and low diameter. In particular, we
reduce visual complexity by multiple modes of representation in a single-
level visualization rather than abstractions of lower levels of detail. This
is useful for non-interactive display and eases dynamic layout, which we
address in the online scenario.
Our approach is illustrated on a family of large networks featuring all
of the above structural characteristics, the physical Internet on the au-
tonomous systems level over time.

1 Introduction

Visualization of large evolving relational data sets is a challenging task, because
the size of the data and dynamics are difficult to deal with even in isolation.
A visualization problem that encompasses these features simultaneously is the
macroscopic view of the evolving Internet topology on the autonomous-systems
(AS) level. To the best of our knowledge, there are no dynamic visualization
approaches that can produce purely structure-based drawings of a sequence of
AS graphs in reasonable time.

In this paper we propose to attack this problem by first applying a few com-
plexity reduction operations, which lead to both considerably smaller graphs and
savings of screen space. However, instead of hiding the less important parts of
a graph, which is a common approach to reduce complexity, we still show them
in the drawing with different representation modes. The reduced graphs are laid
out with a stress majorization approach [14] enhanced with a novel scheme for
calculating distances between nodes that is specially suited for graphs with ex-
tremely skew degree distributions. Also, the flexibility of the stress majorization
technique allows to adapt it for the dynamic setting. This is demonstrated in
the online scenario, where the previous drawing is respected during the layout
for the next time point.

The paper is structured as follows. In Sect. 2, we give a brief review of
the AS-level Internet topology and related work. The layout method for static
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snapshots of the graph and our complexity reduction operations are the subject
of Sect. 3 and the extension of this approach to dynamic graph visualization and
its application to AS graphs are presented in Sect. 4. Section 5 concludes the
paper with a short discussion.

2 AS-Level Internet Topology and Related Work

An autonomous system, or AS for short, is a group of computer networks typ-
ically under the same administrative authority, using the same routing policy.
The Internet can thus be analyzed in terms of connections and interactions be-
tween ASes. The AS graph is then a model for the Internet, having ASes as
nodes and AS-to-AS connections as edges.

In recent years, analysis of the AS-level Internet topology has attracted in-
terest of many researchers. The common goal is to keep track of structure and
dynamics of the Internet, to develop meaningful and robust models explaining
such observations, and to come to reasonable interpretations. Technically and
economically, the analysis has manifold practical aspects, e.g. for improving re-
liability, routing efficiency, and fairness.

Interest in the AS graph excelled when power-laws and scale-free distribu-
tions were observed to be characteristic features [12]. Since then, various aspects
of autonomous systems have been investigated, such as inferring AS graphs from
collected data [15], modeling and generating artificial AS graphs [16], and com-
parison of measured and generated data [23], to name just a few examples. The
dynamics of the AS graph are analyzed in [13]; models for the AS graph evolution
and a comparison of AS graph inference methods from different data sources are
given in [18].

Visualization and visual analysis of AS graphs have been attempted as well,
though to a lesser extent. Probably best known are the circular drawings from the
Skitter project of CAIDA [9]. HERMES [7] is a system for orthogonal drawings
of the Internet hierarchy or parts thereof. Force-directed generation of Internet
maps is the approach taken in the Internet Mapping Project [8]. The two-and-
a-half dimensional drawings of AS graphs in [3] are based on a hierarchy of
increasingly denser cores, which is also used in [2]. Dynamics in the routing
behavior of autonomous systems are visualized by LinkRank [17], animations
for network performance assessment are described in [6]. To the best of our
knowledge, only the layouts in [3] consider the complete AS graph and are purely
structure-based.

A number of approaches for drawing general dynamic graphs have been pro-
posed [5], but few principles and frameworks are prevalent [4, 10, 11].

As a test ground for the methods we developed, we have constructed AS
graphs at various time points from the BGP (Border Gateway Protocol) route
data available in the archives of the Route Views project [21]. The structure of
each AS graph is inferred from a collection of AS paths consisting of a sequence
of numbers. Two ASes are connected by an undirected edge if their numbers
appear consecutively in at least one of the AS paths.
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3 Static Layout and Complexity Reduction

Although our ultimate goal is to visualize a sequence of AS graphs, we first
restrict ourselves to visualizing a single snapshot G = (V,E).

3.1 Layout Method

We have chosen the stress majorization approach as the graph layout method
[14]. This choice was motivated by the quality of the resulting drawings, the
flexibility of the approach facilitating adaptations for the dynamic setting, ex-
isting speed-up techniques, and simplicity of implementation at least when the
localized stress minimization is used. Note, however, that other methods with
similar properties, e.g. variants of force-directed methods, could be used equally
well.

The basic idea is an iterative minimization of the stress function

stress(X) =
∑

wuv(‖Xu −Xv‖ − duv)2 , (1)

where the sum extends over all unordered pairs of nodes {u, v} in V . Here Xv ∈
R2 is the position of the node v ∈ V , duv is the ideal distance between the nodes
u and v, which is usually the length of a shortest path in G, and wuv is a non-
negative weight allowing different pairs of nodes influence the stress measure
differently. Weights wuv = d−2

uv are a common choice.
We can confirm the claim that the above strategy “makes the neighborhood

of high degree nodes too dense” [14] unless appropriate lengths are assigned to
edges (Fig. 1(a)). This is due to the extremely skewed degree distribution of AS
graphs; the AS graph in Fig. 1 has 4271 nodes, 75% of which have a degree one
or two, while a few extreme nodes have degrees as large as 924, 673, and 470.
The problem is somewhat remedied if the geometric mean

√
dudv of the degrees

of nodes u and v is used as the length of an edge e = {u, v} ∈ E, because then
the high-degree nodes strive to push their neighbors further away (Fig. 1(b)).
In Sect. 3.3 we propose a novel method for calculating distances that further
improves the quality of drawings.

We use the following graphical conventions throughout the paper.

– The area of a node is proportional to the squared logarithm of its degree.
– The opacity of an edge is proportional to the radius of its smaller end-

node. In effect, edges between high-degree nodes attract more attention of
an observer.

– The nodes are colored according to the continents the corresponding ASes
belong to: we use blue to represent Europe, red for North America, yellow
for Asia, purple for South America, brown for Africa, and green for Oceania.

3.2 Visual Complexity Reduction

This section presents our attempts to allay the visual clutter of drawings by
using different representation modes without loosing any information.
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(a) (b)

Fig. 1. A snapshot of the AS graph in the year 1998 – (a) uniform edge length, (b)
degree-dependent edge length.

First, consider the typical AS graph in Fig. 1 with its many nodes of degree
one. In a standard representation, these result in large fans that form domi-
nant visual features that consume large areas but represent the least interesting
structures. To remove this effect, we use radial clustergrams [1, 20], a compact
representations of trees, as follows:

– Let T ⊂ V be the set of nodes in the attached trees of G, which can be
obtained by an iterative removal of the leaves of G until all remaining nodes
have degrees two or more.

– Draw the induced graph G[V \T ] in the standard representation with nodes
as circles and edges as straight lines.

– Draw the nodes of T as radial clustergrams around the nodes in V \ T they
are attached to.

Our radial clustergrams are slightly different from those in [1, 20] to maintain
the degree-area correlation. Suppose that the children v1, v2, . . . , vk of a node v
have to be drawn inside an annulus wedge with the radius r and the angle α
(Fig. 2(a)). The desired area Si of each node vi is fixed because it is derived from
its degree. Moreover, we require that the radial width w of the children of the

same node is equal. Clearly, w cannot be less than wmin =
√

2
α

∑k
i=1 Si + r2−r.

On the other hand, we would also like to avoid very thin nodes, so li/w ≤ c
must hold for some constant c > 0, where li is the length of the outer arc of vi.
A possible solution to this inequality is given by the largest root wi of the cubic
equation cw3 + 2crw2 − 2Siw − 2Sir = 0, and consequently the common layer
width for all children of v is calculated as w = max{wmin, w1, w2, . . . , wk}. Note,
that the annulus wedge is not filled completely if w > wmin (Fig. 2(b,c)).
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(a) (b) (c)

Fig. 2. (a) Children of the same node drawn in a specified annulus wedge. (b) A radial
clustergram without restrictions on the radial width of nodes. (c) A radial clustergram
of the same tree when the radial width of nodes is bounded from below.

Figure 3 shows a layout of the AS graph with the attached trees drawn as
radial clustergrams. Although the clutter is somewhat reduced, there are still
plenty of low-degree nodes around the periphery and many of them seem to be
connected to the same set of core nodes. The latter is a structural feature that
we emphasize by aggregating the equivalent nodes as follows.

– Construct the equivalence classes of the relation {(u, v)|u, v ∈ V \ (T ∪
N(T ))∧N(u) = N(v)}. Note that nodes with attached trees are considered
as special and not equivalent to anything else.

– Contract each non-trivial equivalence class U ⊆ V of this relation into a new
meta-node vU before applying the layout.

– After the position of a meta-node vU has been determined by the layout
algorithm, restore the equivalent nodes U and draw them around the position
of vU in a compact way. A good choice is the sunflower placement from [22,
19].

As can be seen in Fig. 4(a), some sets of equivalent nodes are quite large and
the compact placement shows their neighbors much better.

The final complexity reduction step consists of replacing maximal induced
paths (v0, v1, . . . , vk) by direct edges {v0, vk} between their ends, provided that
the inner nodes vi (0 < i < k) are not affected by the previous two reductions,
i.e. vi /∈ T ∪N(T )∪M , where M is the set of meta-nodes. After the layout of the
reduced graph is calculated, the induced paths are restored and drawn straight
between their ends (in the rare cases when two or more paths run between the
same pair of end nodes, these paths are drawn parallel without mutual overlaps).

A side effect of these reduction operations is a lower number of nodes, which is
a very significant advantage as the full stress majorization considers the distances
between every pair of nodes. Figure 4(b) shows the growth of the AS graph over
a decade and how many nodes remain after each reduction step.

In what follows, we assume that the graphs are reduced according to these
three operations.
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(a) (b)

Fig. 3. Full (a) and zoomed-in (b) drawings of the AS graph in the year 1998 with
attached trees drawn as radial clustergrams.
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Fig. 4. (a) The same AS graph after further complexity reductions. (b) The effect of
the reduction operations on the number of nodes.
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3.3 Layout Method – Revisited

The drawing in Fig. 4(a) leaves something to desire in terms of quality. First, the
high-degree nodes are still placed too close to each other obscuring the structure
of how they relate to the rest of the graph. Secondly, some low-degree nodes with
only high-degree neighbors end up as peaks on the periphery because the length
of their incident edges is unnecessarily high. A novel approach for calculating the
pairwise distances and their weights solves both of these problems (Fig. 5(a)).

Edge Lengths. The importance of an edge e = {u, v} ∈ E is captured better if its
length le is an increasing function of the smallest degree min{du, dv} of its ends.
In our experiments the best results were obtained with le = ln(min{du, dv}). In
this way, adjacent nodes of high-degree are placed far apart and their connecting
edge is more prominent. On the other hand, the incident edges of low-degree
nodes are drawn much shorter so that these nodes are placed close to their
neighbors.

Distances. Special care must be taken when calculating pairwise distances from
these re-scaled edge lengths. We cannot simply use shortest paths in the weighted
graph G, because two high-degree nodes are still very close if they have a
common neighbor of low degree. Distances are therefore calculated as duv =
max{l(P )|P ∈ SUP(u, v)}, where SUP(u, v) denotes the set of shortest paths
between u and v in the unweighted graph G′ underlying G and l(P ) is the length
of the path P in the weighted graph G. In other words, we consider a longest
weighted path among those with a minimum number of edges. Such distances
can be easily calculated in O(|V ||E|) time by performing a breadth-first-search
from each node v ∈ V and determining the longest weighted paths in the shortest
paths dag with source v. Also, the unweighted distances dG′(u, v) should be used
when calculating the weights in (1), i.e. wuv = dG′(u, v)−2, because otherwise the
important distances would be outweighed by less important ones. An exception
to this rule are the meta-nodes representing groups of equivalent nodes. If two
meta-nodes u and v have a common neighbor, we use wuv = 1 rather than 1/4
to make it less likely that the resulting sunflowers would overlap. Moreover, the
“degree” of a meta-node vU representing a set U of equivalent nodes is assumed
to be

∑
v∈U dv such that it represents the total “importance” of all nodes in U .

Speed-Up. The final modification of the method concerns its running time. It
took 25 minutes to create a drawing of an AS graph having 23,779 nodes and
49,706 edges on a computer with 2 GHz CPU and 2 GB of memory, which is
largely due to the use of the full distance matrix. Fortunately, the method can be
sped up without affecting layout quality considerably (compare the two drawings
in Fig. 5). The idea is to calculate the layout in two phases. First, a small subset
of nodes P ⊆ V with the highest degrees is chosen as pivots (we used 200 pivots
in our experiments), and these are laid out in the above technique according to
the distances duv, u, v ∈ P . In order to position the nodes in V \ P , we again
utilize stress majorization, but fix pivots and ignore all distances duv, u, v /∈ P
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unless {u, v} ∈ E. In this way, we ignore a very large number of “inessential”
distances, and the running time drops from 25 minutes to 44 seconds. It should
be noted that this approach is slightly different from the sparse stress approach
of [14], although they are similar in that the overall structure of the drawing is
determined by some important core nodes, and other nodes are laid out based on
distances to those core nodes and nodes in some close neighborhood. The main
difference lies in the two applications of the stress majorization, which leads to
the pivots being placed independently from the rest of the graph. This two-phase
technique turned out to be more successful in our setting.

(a) (b)

Fig. 5. Drawings of the same AS graph obtained by the full stress majorization using
the modified distances (a) and the fast two-phase method (b).

4 Dynamic Layout

In this section we will modify the above method to be applicable to dynamic
graphs in the online scenario, i.e. when an existing drawing of the graph is
respected during the creation of a subsequent drawing.

Suppose that besides the graph G = (V,E) we are given the desired posi-
tions pv ∈ R2 for nodes v in a subset U ⊆ V , which are the result of a preceding
layout. In order to preserve the overall view of the evolving graph, we have an
additional criterion now to minimize the distance of nodes from their desired
positions. Following the ideas in [4], we can do this with the stress majorization
technique in a rather straightforward way by augmenting the stress with node
displacement penalties, stress(X) = stressquality(X) + stressstability(X), where
stressquality(X) is defined as in (1) and stressstability(X) =

∑
v∈U wst‖Xv −pv‖2.

The stability parameter wst can be adjusted to trade the quality of the drawing
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for the stability. Figure 6 shows how the value of the quality stress function in-
creases and the total movement of nodes decreases when the stability parameter
increases.
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Fig. 6. The effect of the stability parameter on the quality of the drawing (a) and the
total movement of nodes (b) when the online method is applied to the AS graph in the
year 1998. The desired positions are obtained from the layout of the graph at the year
before.

Figures 7 and 8 show a selection of the resulting drawings when the fast two-
phase stress majorization is applied in the dynamic online scenario for annual
snapshots of the AS graph from 1997 to 2006.1 A stability of wst = 20 was used
for creating these drawings.

5 Conclusion

We combined loss-less complexity reduction operations with tailored stress ma-
jorization techniques to produce drawings of a large evolving graph with skewed
degree distribution, specifically the Internet on the level of autonomous systems.
Even though the density of AS graphs increases rapidly over time, we believe
that such a macroscopic view of the Internet can reveal evolution patterns, possi-
bly supported by additional information coded in graphical attributes. It would
be very interesting to see if our visualizations can actually help monitoring the
evolving Internet.
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