
On Variants of Shortest-Path Betweenness

Centrality and their Generic Computation 1

Ulrik Brandes

Department of Computer & Information Science, University of Konstanz

Abstract

Betweenness centrality based on shortest paths is a standard measure of control uti-
lized in numerous studies and implemented in all relevant software tools for network
analysis. In this paper, a number of variants are reviewed, placed into context, and
shown to be computable with simple variants of the algorithm commonly used for
the standard case.

Key words: Betweenness centrality, algorithms, valued networks, load centrality

1 Introduction

Centrality is a core concept for the analysis of social networks, and between-
ness is one of the most prominent measures of centrality. It was introduced
independently by Anthonisse (1971) and Freeman (1977), and measures the
degree to which a vertex is in a position of brokerage by summing up the
fractions of shortest paths between other pairs of vertices that pass through
it. Betweenness is therefore classified as a measure of mediation in Borgatti
and Everett (2006).

While some centrality indices impose requirements on the network data such
as undirectedness and connectedness, Anthonisse (1971) defines betweenness
on directed networks from the very beginning, and Freeman (1977) stresses
applicability to disconnected networks. In this paper, we review and propose
variations of the definition of betweenness that either generalize it to even more
types of network data, or modify slightly the embodied notion of brokerage.

Email address: Ulrik.Brandes@uni-konstanz.de (Ulrik Brandes).
1 Research partially supported by DFG under grant Br 2158/2-3.

Preprint submitted to Social Networks 12 November 2007

All of the variants treated in this paper, however, maintain the original model
of geodesic trajectories (Borgatti, 2005), i.e., only shortest paths are consid-
ered in their definition. This excludes alternative models of transportation
based on, e.g., network-flow (Freeman et al., 1991) or current-flow (Newman,
2005; Brandes and Fleischer, 2005), and is due to the original motivation for
writing this paper, namely to document that none of these variants poses ad-
ditional algorithmic challenges, as all of them can be calculated with minor
modifications of the efficient betweenness algorithm introduced in Brandes
(2001).

The contribution of this paper is thus two-fold:

(1) A compilation of shortest-path betweenness variants.
(2) Algorithms for computing them efficiently.

As part of the first contribution we also clarify relations with other measures
like stress (Shimbel, 1953) and load (Goh et al., 2001), but there will be no
discussion in favor or against substantive applicability of these variant mea-
sures. The second contribution is especially valuable for software tools offering
betweenness computation, since existing implementations can be adapted with
little effort. In fact, most of the modifications discussed in the sequel can be
combined in a single implementation. Let me stress again, however, that an
evaluation of the appropriateness and usefulness of any of these variants, or
their combination, for substantive network research is beyond the scope of this
paper. For recent overviews of centrality measures and associated algorithms
see Brandes and Erlebach (2005, Chapters 3–5) and Borgatti and Everett
(2006).

In the next section, we recall the definition of shortest-path betweenness cen-
trality and outline its efficient computation. The variations are presented in
Section 3 together with corresponding modifications to the basic algorithm,
and we conclude with a brief discussion.

2 Shortest-Path Betweenness

We will use graph-theoretic terminology neutral to interpretation. See Bollobás
(1998) or Diestel (2000) for modern textbooks on graph theory. For introduc-
tions to algorithms and their analysis, see Cormen et al. (2001), Goodrich and
Tamassia (2002) or Kleinberg and Tardos (2006).

2

2.1 Definitions and Notation

A directed graph G = (V, E) consists of a set V of vertices (also called nodes,
actors) and a set E ⊆ V × V of directed edges (also called links, ties). For a
directed edge e = (u, v) ∈ E, v is called the head of e, u is called its tail, and
v is said to be adjacent to u.

For our purposes, undirected graphs are equivalently replaced by symmetric
directed graphs containing two oppositely directed edges for each undirected
edge. Unless explicitly stated otherwise, we will therefore refer to graphs,
edges, etc. when we mean directed graphs, directed edges, etc. Also, we may
safely assume that there are no loops, i.e. edges connecting a vertex with itself,
because they have no influence on betweenness. Multiple and weighted edges
will be considered in Section 3.8.

A path from a source s ∈ V to a target t ∈ V , or (s, t)-path for short, is an
alternating sequence of vertices and edges s, (s, v1), v1, (v1, v2), v2, . . . , (vk, t), t
starting with s and ending with t, such that the vertices before and after an
edge are its tail and head, respectively. The length of an (s, t)-path is the
number of edges it contains, and the distance, dist(s, t), from s to t is defined
as the minimum length of any (s, t)-path if one exists, and undefined otherwise.
Note that s = t implies dist(s, t) = 0.

Denote by σ(s, t) the number of shortest (s, t)-paths (sometimes called geodesics),
and let σ(s, t|v) be the number of shortest (s, t)-paths passing through some
vertex v other than s, t. If s = t, let σ(s, t) = 1, and if v ∈ {s, t}, let
σ(s, t|v) = 0. Then, the (shortest-path) betweenness cB(v) of a vertex v ∈ V
is defined to be

cB(v) =
∑

s,t∈V

σ(s, t|v)

σ(s, t)

where 0
0

= 0 by convention. The measure is therefore usually interpreted as
the degree to which a vertex has control over pair-wise connections between
other vertices, based on the assumption that the importance of connections is
equally divided among all shortest paths for each pair.

As pointed out already in Freeman (1977), the definition of betweenness ap-
plies to disconnected graphs without modification. Though the distance be-
tween two vertices not connected by a directed path is undefined, this also
means that the number of shortest paths between them is zero, so that the
resulting zero contribution is exactly what is desired.

3

2.2 Basic Algorithm

Efficient computation of betweenness is based on the fact that the cubic num-
ber of pair-wise dependencies δ(s, t|v) = σ(s, t|v)/σ(s, t) can be aggregated
without computing all of them explicitly. Defining one-sided dependencies

δ(s|v) =
∑
t∈V

δ(s, t|v) ,

for all s, v ∈ V , we can exploit that

δ(s|v) =
∑

w : (v,w)∈E and
dist(s,w)=dist(s,v)+1

σ(s, v)

σ(s, w)
· (1 + δ(s, w)) . (1)

as shown in Brandes (2001). This recursive relation asserts that the depen-
dency of a vertex s on some v can be compiled from dependencies on vertices
one edge farther away.

Since cB(v) =
∑

s∈V δ(s|v), Algorithm 1 computes betweenness by iterating
over all vertices s ∈ V , each time computing δ(s|v) for all v ∈ V in two phases.
The first phase is a breadth-first search, in which distances and shortest-
path counts from s are determined. The second phase visits all vertices in
reverse order of their discovery, i.e. those farthest from s first, to accumulate
dependencies according to Equation (1).

Note that this algorithm applies to directed and undirected graphs alike, al-
though it yields doubled scores for undirected graphs because each pair is
considered twice, once in either direction. This is of course easily accounted
for by halving the scores. More generally, the centrality index computed by
Algorithm 1 can be normalized in any of the usual ways, e.g. by dividing by
the maximum possible score in a network of the same order (number of ver-
tices) as suggested by Freeman (1979), or by the sum of all scores to analyze
the distribution of values. Since we focus on algorithms and normalization
involves only multiplication of all scores with a constant, we ignore it from
this point on. Note also that the centrality definition in Anthonisse (1971) is
already for directed graphs. It was re-stated in Gould (1987) and White and
Borgatti (1994) where normalization and centralization issues are discussed in
addition.

We will refer to Algorithm 1 as the basic algorithm, and modify it to compute
variants of betweenness. The notation used for the basic algorithm serves to
avoid repeating much of the same pseudo-code over and over again. Instruc-
tions that make up the main steps are grouped and labeled starting with a H.
In the next section, we will only spell out the main steps that actually need

4

Algorithm 1: Shortest-path vertex betweenness (Brandes, 2001)

input: directed graph G = (V, E)
data: queue Q, stack S (both initially empty) and for all v ∈ V :

dist [v]: distance from source
Pred [v]: list of predecessors on shortest paths from source
σ[v]: number of shortest paths from source to v ∈ V
δ[v]: dependency of source on v ∈ V

output: betweenness cB[v] for all v ∈ V (initialized to 0)

for s ∈ V do
H single-source shortest-paths problem

H initialization
for w ∈ V do Pred [w]← empty list
for t ∈ V do dist [t]←∞; σ[t]← 0

dist [s]← 0; σ[s]← 1
enqueue s→ Q

while Q not empty do
dequeue v ← Q; push v → S
foreach vertex w such that (v, w) ∈ E do

H path discovery // — w found for the first time?

if dist [w] =∞ then
dist [w]← dist [v] + 1
enqueue w → Q

H path counting // — edge (v, w) on a shortest path?

if dist [w] = dist [v] + 1 then
σ[w]← σ[w] + σ[v]
append v → Pred [w]

H accumulation // — back-propagation of dependencies

for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do δ[v]← δ[v] + σ[v]

σ[w]
· (1 + δ[w])

if w 6= s then cB[w]← cB[w] + δ[w]

to be modified, and I collapse inner steps that do not.

5

3 Variants and their Computation

We have already argued that the basic algorithm is suitable for vertex be-
tweenness in both directed and undirected graphs. In this section, we discuss
modifications that require adjustment of the basic algorithm.

3.1 Endpoints

Depending on the structure modeled, it may be inappropriate to have pairs
of vertices depend on intermediaries, but not on themselves (or at least one
of them as the source or target). In an information exchange network, for
instance, one might argue that the source of information has just as much
control over its content as anyone passing it on.

If we adjust the definition of δ(s, t|v) to equal one rather than zero in case
v ∈ {s, t}, then the betweenness score of every v ∈ V will go up by the number
of vertices that can be reached from v plus the number of vertices that can
reach v.

In a graph in which every vertex can reach every other vertex on a directed
path, the increase is uniformly 2n− 2 for all vertices, if we exclude the trivial
paths starting and ending at the same vertex to maintain that isolated vertices
have zero centrality. Such constant increase is easily accounted for in the com-
putation and does not change the rank order of centralities. If, however, some
vertex can not reach every other vertex, the increase caused by including end-
points may be non-uniform and thus requires modifying the basic algorithm
to actually determine the number of times a vertex is a source or target of a
connection pair.

Algorithm 2: Including endpoints

H accumulation
cB[s]← cB[s] + (|S| − 1) // – number of times s is a source

for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do δ[v]← δ[v] + σ[v]

σ[w]
· (1 + δ[w])

if w 6= s then cB[w]← cB[w] + δ[w] + 1 // – w is target of s once

It is easily seen from Algorithm 2 that the betweenness increase due including
dependencies on sources and targets can be determined separately. Since ex-
actly those vertices that can be reached from a source s (including s itself) are
placed on stack S, the size of the stack after solving the single-source shortest-

6

paths problem minus one equals the increase of cB(s) due to including s as a
source. The increase due to including targets can be added one by one, since
there is a connected pair s, t involving t as a target if and only if t is popped
from stack S during the accumulation for source s.

If desired, we are therefore in a position to restrict the inclusion of endpoints
to either sources or targets, e.g., because we are in a scenario in which only
the source has control over a connection, but not the target.

3.2 Proxies

Above we allowed for the possibility that sources and/or targets have an influ-
ence. In extreme cases, one might even argue that only the source or the target
have control over their pair-wise connection. Betweenness would then reduce
to determining the number of actors that can be reached from a source or that
can reach a target. In Algorithm 2, this corresponds to simply excluding the
dependencies δ from the betweenness summation.

Similarly, we might attribute a special role to yet another position, namely
the first or last actor other than source and target. Borgatti argues 2 that the
final intermediate can be special, because it is with this actor that the target
interacts directly and may thus depend on entirely. Penultimate actors in a
shortest-path connection are thus seen as proxies having full control over the
connection using this path.

Algorithm 3: Proximal betweenness

output: proximal betweenness cBps [v], cBpt [v] for all v ∈ V (initialized to 0)

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

δ[v]← δ[v] + σ[v]
σ[w]
· (1 + δ[w])

if v 6= s then

cBps [v]← cBps [v] + σ[v]
σ[w]

// – v is proximal source for w

else
cBpt [w]← cBpt [w] + δ[w] // – w is proximal target for v = s

2 Stephen P. Borgatti, University of Kentucky (personal communication, 2007).

7

Borgatti therefore defines proximal source betweenness as

cBps (v) =
∑
s∈V

t : (v,t)∈E

σ(s, t|v)

σ(s, t)
.

and a proximal target betweenness, cBpt , can be defined symmetrically. Both
notions of agency are combined into one index, e.g., by taking the sum. Algo-
rithm 3 shows how to accumulate betweenness of both source and target prox-
ies by adding the accumulated dependencies only to neighbors of the source
(because they are proximal targets) and by adding the fraction of shortest
paths via a predecessors to its betweenness (because it is a proximal source).
Analogous to the case of source and target endpoints, the computation can be
restricted to either proximal sources or targets; the double counting of vertices
neighboring both source and target can be avoided if desired.

Note that, in the spirit of the original betweenness, we have opted to leave out
endpoints in Algorithm 3, i.e., a source or target is not counted as a proximal
source or target in a path without intermediate vertices.

3.3 Bounded-distance Betweenness

The standard measure of betweenness considers shortest paths irrespective of
their length. Since very long connections may not be realistic for network rela-
tions such as friendship, Borgatti and Everett (2006) define the k-betweenness
of a vertex as the sum of dependencies of pairs at most k apart, i.e. only con-
tributions from shortest paths of length bounded by a constant k are included.
Let

cB(k)(v) =
∑

s,t∈V : dist(s,t)≤k

σ(s, t|v)

σ(s, t)

and note that this equals standard shortest-path betweenness for k = n − 1.
For k = 2, it is similar to ego network betweenness (Everett and Borgatti,
2005), but differs in that shortest paths of length two with a non-neighbor as
intermediate are considered as well.

To exclude paths longer than k, we only have to stop the breadth-first search
of the basic algorithm when a vertex of distance k is reached (cf. Algorithm 4).

3.4 Distance-scaled Betweenness

Another, more sophisticated variant also mentioned in Borgatti and Everett
(2006) does not filter out paths of excessive length, but weighs all shortest

8

Algorithm 4: k-Betweenness

input: directed graph G = (V, E), length bound k
output: k-betweenness for all v ∈ V (initialized to 0)

for s ∈ V do
H single-source shortest-paths problem

I initialization
while Q not empty do

dequeue v ← Q; push v → S
foreach vertex w such that (v, w) ∈ E do

H path discovery // — w found for the first time?

if dist [w] =∞ then
dist [w]← dist [v] + 1
if dist [w] ≤ k then enqueue w → Q

I path counting

paths inversely proportional to their length as in

cBdist
(v) =

∑
s 6=t∈V

1

dist(s, t)
· σ(s, t|v)

σ(s, t)
.

The rationale here is that, the longer a path, the less valuable it may be
to control it. We refer to this measure as length-scaled betweenness, because
the dependencies are scaled by a factor that depends only on the length of a
shortest path and is thus the same for all its inner vertices. This should be
compared to the next measure introduced in this subsection. Since each new
target enters the accumulation by adding one to the dependencies accumulated
so far, we replace this value by its weighted equivalent, 1/dist(s, t), as shown
in Algorithm 5.

Algorithm 5: Length-scaled betweenness

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

δ[v]← δ[v] + σ[v]
σ[w]
· (1

dist(s,t)
+ δ[w])

if w 6= s then cBdist
[w]← cBdist

[w] + δ[w]

A complementary variant is implicitly introduced in Geisberger et al. (2008),
where the actual goal is the efficient approximation of standard betweenness
centrality. Although designed to be used in a betweenness estimator, it appears
to be a plausible variant of betweenness by itself, because the relative position

9

Algorithm 6: Linearly scaled betweenness (Geisberger et al., 2008)

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

δ[v]← δ[v] + σ[v]
σ[w]
· (1

dist(s,t)
+ δ[w])

if w 6= s then cBlin
[w]← cBlin

[w] + dist(s, v) · δ[w]

of vertices in a shortest path are taken into account. We define linearly scaled
betweenness, cBlin

, by

cBlin
(v) =

∑
s 6=t∈V

dist(s, v)

dist(s, t)
· σ(s, t|v)

σ(s, t)
.

Different from the previous variant, it is not the length of a path that modifies
the dependency on v, but v’s relative distance from the source. The farther
away from the source, and hence the closer to the target, the more influential
a vertex is. This measure thus generalizes proximal source betweenness, and
can be used to generalize proximal target betweenness by replacing dist(s, v)
with dist(v, t). Observe, however, that linearly scaled betweenness equals the
usual betweenness in undirected graphs, since the relative distances on (s, t)-
and (t, s)-paths sum to one.

The additional factor of dist(s, v) is not propagated in Algorithm 6, because
it must not contribute to vertices closer to the root (which have their own,
smaller factor).

3.5 Edge Betweenness

A natural extension of betweenness to edges is obtained by replacing σ(s, t|v)
in the definition of vertex betweenness by σ(s, t|e), the number of shortest
(s, t)-paths containing the edge e. This version of edge betweenness is already
discussed by Anthonisse (1971), and a prominent application is the heuristic
clustering approach of Newman and Girvan (2004), where edges of maximum
betweenness are removed iteratively to decompose a graph into relatively dense
subgraphs.

The basic algorithm is based on the back-propagation of dependencies from a
vertex to its predecessors, and the value propagated along an edge is exactly
its betweenness. This immediately follows from the proof of correctness for
Equation (1) given in Brandes (2001), and leads to the simple modification

10

Algorithm 7: Edge betweenness

output: betweenness cB[q] for q ∈ V ∪ E (initialized to 0)

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

c← σ[v]
σ[w]
· (1 + δ[w])

cB[(v, w)]← cB[(v, w)] + c
δ[v]← δ[v] + c

if w 6= s then cB[w]← cB[w] + δ[w]

2

3 1
3

6

7

(a) directed example: three edges
with different rank order

03
1
0

(b) undirected example: two
edges with betweenness scores
that no line graph centrality can
match

Fig. 1. Edge betweenness in a graph (gray) is different from vertex betweenness in
its line graph (black).

shown in Algorithm 7.

An alternative and more general approach for defining edge centralities is
based on the following construction. The line graph L(G) of a graph G consists
of a vertex uv for each edge (u, v) of G, and there is an edge between uv and wx,
if and only if v = w. If G is undirected, the undirected line graph is obtained
by identifying the two vertices created for two directed edges corresponding
to one undirected edge. In other words, the line graph of an undirected graph
G = (V, E) is the graph with vertex set E in which two vertices are adjacent,
if and only if the corresponding edges share a vertex.

The following theorem indicates that the approach via vertex betweenness in
the line graph does not yield the same results as the direct definition of edge
betweenness, and that the difference between the two approaches cannot be
overcome. Koschützki et al. (2005) also give substantive reasons why the line
graph approach, though elegant, may be inappropriate for many application
scenarios.

11

Theorem 1 Vertex betweenness in a line graph L(G) differs from edge be-
tweenness in the original graph G. In fact, if G is undirected, edge betweenness
in G may not equal any vertex centrality that can be defined on L(G).

PROOF. Figure 1 shows an example of a graph for which edge betweenness in
G and vertex betweenness in L(G) yield different rank orders. In its undirected
version the difference is even more significant, since G contains two edges with
different edge betweenness that correspond to structurally equivalent vertices
(i.e., vertices with identical neighborhood) in L(G). Note that any centrality
that takes only the graph structure into account must be invariant under
automorphisms of the graph, i.e. must in particular assign the same value to
structurally equivalent vertices.

3.6 Group Betweenness

Everett and Borgatti (1999) define the group betweenness, cB(C), of a subset
C ⊆ V as

cB(C) =
∑

s,t∈V

σ(s, t|C)

σ(s, t)

where the numerator counts the number of shortest (s, t)-paths containing any
vertex of C as an inner vertex.

Algorithm 8: Group betweenness

input: directed graph G = (V, E), group C ⊆ V
output: group betweenness cB(C) (initialized to 0)

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

if w ∈ C then i← 0 else i← δ[w]

δ[v]← δ[v] + σ[v]
σ[w]
· (1 + i)

if w ∈ C \ {s} then cB(C)← cB(C) + δ[w]

The centrality of a given subset C ⊆ V can be determined during accumulation
by disregarding dependencies that have already been accounted for because
of another member of C further away from the source. If a vertex w is in C,
the dependencies accumulated so far are added to the betweenness of C, but
not propagated further to avoid double-counting. In effect, the dependency of
the source s on C is built up from the dependencies of s on the last vertex

12

w ∈ C before the respective target. The necessary modifications of the basic
algorithm are given in Algorithm 8.

While this algorithm is useful to determine the betweenness centrality of a
given group, it is not useful for finding a central group. Typically, the interest
would be in small groups with high betweenness, but little is known about the
computational tractability of the various optimization problem formulations
resulting from the combination of these two criteria.

Observe that we need to do the equivalent of a full vertex betweenness calcu-
lation to determine the centrality of a single group. Puzis et al. (to appear)
describe an algorithm that, after some Θ(n3) preprocessing including one ver-
tex betweenness calculation, requires for each of any number of groups time
cubic in its size. Provided there is enough memory to store the Θ(n2) prepro-
cessing data, this approach is much more efficient if several small to medium
sized groups need to be evaluated.

3.7 Actors of Sorts

The actors in a network need not be of the same kind, or may differ with
respect to attributes of interest. Such scenarios are frequently modeled by net-
works that are referred to as two-mode or, more generally, k-mode networks.
However, two-mode networks are also often equated with bipartite graphs and
represented in rectangular matrices, in other words restricted to cases where
there are no ties between actors of the same mode.

To avoid the confusion with k-partite graphs, we here refer to networks with
a partitioned set of actors, who may nevertheless be connected independent
of the partition, as multi-sort networks, and the partition classes are called
sorts.

Flom et al. (2004) introduce variants of betweenness to determine actors that
bridge between actors of different sorts, defined, e.g., by persons having an
infectious disease and persons that do not. Given a graph G = (V, E) with a
partition of the vertices into sorts A and B, they define two measures Q1, Q2 in
which dependencies are counted only for pairs of vertices s, t of opposite sorts
as follows. Let σ1 and δ1 be defined like σ and δ, but restricted to paths that
consist of a sequence of vertices of one sort possibly followed by a sequence of
vertices of the other sort, i.e. along which group membership changes at most
once.

cQ1(v) =
∑

s∈A, t∈B

δ1(s, t|v) +
∑

s∈B, t∈A

δ1(s, t|v)

13

cQ2(v) =
∑

s∈A, t∈B

δ(s, t|v) +
∑

s∈B, t∈A

δ(s, t|v)

In the undirected graphs considered in Flom et al. (2004), s and t are cho-
sen from A and B symmetrically. For directed graphs, it is however relevant
whether paths are restricted to run from A to B or vice versa. The above def-
initions are easily adjusted by leaving out one of the two sums. Normalization
is disregarded again, because it does not pose algorithmic challenges.

Algorithm 9: Q-measures

input: directed graph G = (V, E) with two sorts of vertices V = A]B
output: Q-measures cQ1 [v], cQ2 [v] for all v ∈ V (initialized to 0)

for s ∈ V do
H single-source shortest-paths problem

I initialization
for t ∈ V do σ1[t]← 0
σ1[s]← 1

while Q not empty do
dequeue v ← Q; push v → S
foreach vertex w such that (v, w) ∈ E do

I path discovery
H path counting

if dist [w] = dist [v] + 1 then
if s, v or v, w of same sort then σ1[w]← σ1[w] + σ1[v]
σ[w]← σ[w] + σ[v]

append v → Pred [w]

H accumulation
for v ∈ V do δ[v]← 0; δ1[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do

if s, w of different sort then i← 1 else i← 0
δ1[v]← δ1[v] + σ1[v]

σ1[w]
· (i + δ1[w])

δ[v]← δ[v] + σ[v]
σ[w]
· (i + δ[w])

if w 6= s then
cQ1 [w]← cQ1 [w] + δ1[w]
cQ2 [w]← cQ2 [w] + δ[w]

An efficient algorithm to calculate the above measures is stated as an open
problem in Flom et al. (2004), but can in fact be obtained by modifying the
basic algorithm as shown in Algorithm 9.

14

The see why this algorithm works, let us first consider Q2. Similar to the
dependency filtering used for group betweenness above, we modify the prop-
agation of dependencies. Instead of blocking the propagation of dependencies
from vertices farther from the source, however, we here propagate dependen-
cies only for targets that are of a sort different from the source s.

Since the same pairs of sources and target are considered, the same strategy
works for Q1, but in addition we have to restrict the shortest paths counted in
σ1 to those that change sorts at most once. This is done during breadth-first
search from a source s by passing on path counts from a predecessor v to some
w only if at least one of the following two statements is true: s and v are of
the same sort, or v and w are of the same sort. This is because otherwise s
and w are of the same sort and v is an intermediate vertex of the other sort,
so that sorts are changed twice along the (s, w)-path via v.

In principle, both definition and computation strategy carry over to k-sort
networks, but the generalization is not straightforward. This is because of the
exponentially growing numbers of combinations of sorts for source-target pairs
and admissible sort changes along paths.

3.8 Valued Networks and Multigraphs

Dichotomous ties are either present or absent, and therefore frequently yield
only coarse approximations to the actual relationships being modeled. If valued
ties are measured because they represent a situation more accurately, also the
definition of betweenness centrality should be based on these values.

Alternative measures of betweenness for valued networks have been proposed
(Freeman et al., 1991; Newman, 2005), but are not based on shortest paths.
In fact, different models of transportation (Borgatti, 2005) are assumed, so
that these measures can not be seen as proper generalizations of shortest-path
betweenness.

Although shortest-path betweenness centrality can indeed be generalized to
valued networks while preserving the underlying assumptions, it is important
to be clear about the semantics of those values, so that we will actually end
up with two different generalizations.

This is in resonance with the two essential factors that determine shortest-
path betweenness centrality, namely the length of paths (default: number of
edges) and their relative weight (default: uniform). Both these factors can be
adapted in the presence of edge values.

The common generalization of shortest paths to graphs with edge values con-

15

Algorithm 10: Betweenness in valued networks (edge lengths)

input: directed graph G = (V, E) with edge lengths λ: E → R>0

data: priority queue Q with keys dist [·]
H single-source shortest-paths problem

I initialization
while Q not empty do

extract v ← Q with minimum dist [v]; push v → S
foreach vertex w such that (v, w) ∈ E do

H path discovery // — shorter path to w?

if dist [w] > dist [v] + λ(v, w) then
dist [w]← dist [v] + λ(v, w)
insert/update w → Q with new key; σ[w]← 0;
Pred [w]← empty list

H path counting
if dist [w] = dist [v] + λ(v, w) then

σ[w]← σ[w] + σ[v]
append v → Pred [w]

sists in a re-definition of the length of a path as the sum of values on its edges.
This is a proper generalization, since assigning uniform values of one to the
edges of a non-valued graph yields a path length that equals the number of
edges. The values are referred to as edge lengths, and shortest paths according
to this generalization can be computed in much the same way by replacing
the breadth-first search of the basic algorithm by a more general algorithm
for the single-source shortest-path problem.

The generalization interpreting values as lengths is referred to as weighted
betweenness in Brandes (2001), where also the use of Dijkstra’s algorithm (see
any of the above cited textbooks on algorithms) is proposed. The necessary
modifications are shown in Algorithm 10 and basically consist of replacing
the breadth-first search queue by a priority queue, which worsens the running
time bound from O(nm) to O(nm + n2 log n), though.

Interpreting edge values as lengths implies, however, that higher values reflect
weaker ties. If higher values indicate stronger ties, for instance in a commu-
nication network with frequency-of-contact values on the edges, one might
instead consider reversing the order of all edge values x, e.g., by subtracting
from an upper bound like the maximum plus one, or by taking the inverse
1
x

or a negative exponential e−x. With these transformed values, the previous
algorithm can still be applied, but its use can be problematic, since a sum of
such rescaled values might not reflect the intuition of distance between two
vertices.

16

Algorithm 11: Betweenness in valued networks (edge weights/multiplicities)

input: directed graph G = (V, E) with edge weights ω: E → R>0

H path counting
if dist [w] = dist [v] + 1 then

σ[w]← σ[w] + ω(v, w) · σ[v]
append v → Pred [w]

An alternative generalization therefore uses such values in the definition of the
relative weight rather than the length of a path. Because of the following often-
used correspondence between multigraphs and integer edge-valued graphs, a
reasonable definition is given by the product of a path’s edge values.

If betweenness centrality is computed on a multigraph, i.e. a graph in which
loops (which can be ignored) and multiple edges connecting the same pair
of vertices are allowed, the number of shortest paths connecting two vertices
depends on the multiplicity of their edges: tripling an edge of a path results
in three different paths of the same length, because either copy of the tripled
edge can be used. If more than one edge has multiplicity larger than one, then
any instance of one edge combined with any instance of another edge yields a
different path, so that the total number of paths obtained from a generic path
is the product of the multiplicities of its edges.

The above edge multiplicities are integer, so that a multigraph can be replaced
by a valued simple graph for computing betweenness centralities. In reverse,
we can define the betweenness of an integer valued graph via the interpretation
as a multigraph. This definition of path weights straightforwardly generalizes
to positive real values on the edges. Higher values thus correspond to stronger
ties, and Algorithm 11 highlights the simple modifications necessary to adapt
the basic algorithm.

It should be noted that this generalization is different from Newman (2004),
where unweighted edge betweenness scores are divided by the weight of their
corresponding edge. This transformation is purely local, because for the score
of an edge it does not matter whether and how the remaining graph is weighted,
and it has no influence on vertex betweenness.

Finally, our modifications can be combined for networks with both lengths
and weights on the edges.

17

1/4

ts

1/4

1/21/2

1/2
1/3

ts

1/3

1/31/3

2/3

Fig. 2. Contribution of a single pair (s, t) to load (left) and betweenness (right).

3.9 Stress and Load

It can be difficult to recognize the definition of betweenness from descriptions
given in the literature (e.g., De et al. 2004) and betweenness has actually been
considered equal to other measures that we discuss next.

Algorithm 12: Stress centrality

output: stress cS[v] for all v ∈ V (initialized to 0)

H accumulation
for v ∈ V do δ[v]← 0
while S not empty do

pop w ← S
for v ∈ Pred [w] do δ[v]← δ[v] + (1 + δ[w])
if w 6= s then cS[w]← cS[w] + σ[w] · δ[w]

Betweenness centrality is occasionally described imprecisely as the number of
shortest paths passing through a vertex (e.g., Perer and Shneiderman 2006;
Lämmer et al. 2006). This description translates into a measure that not only
yields different values, but also different rankings. It does yield a measure
that can be regarded a centrality, though, and has in fact been referred to
as stress long before the introduction of betweenness (Shimbel, 1953). To
compute stress centrality with the basic betweenness algorithm we simply
drop the weighting factor during accumulation. This is a slight abuse of the
use of δ[w], since it no longer stores the full dependency, but only the number
of shortest-path suffixes beginning at w. When a vertex is finished, this is
corrected by multiplication with the number σ[w] of matching prefixes (see
Algorithm 12).

Another frequent confusion is with a measure called load, introduced in Goh
et al. (2001) where it is said to equal betweenness. Load centrality is specified
via the following process: each node sends a unit amount of some commodity
to each other node. Starting from the respective source, the commodity is
always passed to the adjacent vertices closest to the target, and in case there
is more than one such vertex the commodity is divided equally among them.
The total amount of the commodity passing through a vertex during all these
exchanges defines its load. Figure 2 gives an example for the contribution of

18

a single ordered pair.

This confusion may be related to the (incorrect) betweenness algorithm given
in Newman (2001), which essentially proceeds like Algorithm 1 but prop-
agates equal shares of dependency during accumulation (see also Newman
2006). Thus, this algorithm actually calculates load centrality when applied
to undirected graphs. This is because their symmetry renders the following
consideration irrelevant. For directed graphs, it is important to take into ac-
count that the commodity volume is split at branching points and aggregated
at meeting points on the way from the source to the target. If equal shares
are propagated backwards during accumulation, the actions of splitting and
aggregating are swapped.

Algorithm 13: Load centrality

output: load cL[v] for all v ∈ V (initialized to 0)

for s ∈ V do
H single-source shortest-paths problem

I initialization
while Q not empty do

dequeue v ← Q; push v → S
foreach vertex w such that (w, v) ∈ E do

I path discovery
I path counting

H accumulation
for v ∈ V do δ[v]← 1
while S not empty do

pop w ← S
for v ∈ Pred [w] do δ[v]← δ[v] + δ[w]

|Pred [w]|
cL[w]← cL[w] + δ[w]

Algorithm 13 therefore determines load centrality in directed graphs by solving
the single-source shortest-paths problems on the reverse graph, i.e. the graph
obtained by replacing every edge (u, v) by an edge (v, u), so that splits and
aggregations happen in the right places. Note that our formulation of the
algorithm includes commodity at endpoints in load scores, which we believe
was intended in Goh et al. (2001).

The variants of betweenness discussed previously also apply to stress and load.

19

4 Discussion

We have discussed several variants of betweenness centrality, in which either
the interest is shifted, e.g., to edges, or the range of applicability is extended,
e.g., to valued networks. Unlike related measures such as network-flow be-
tweenness (Freeman et al., 1991), current-flow betweenness (Newman, 2005;
Brandes and Fleischer, 2005), or load (Goh et al., 2001), these do not alter
the underlying model of transportation along geodesic trajectories (Borgatti,
2005).

For all these variants, small modifications of the commonly used algorithm
for the standard case resulted in algorithms with the same asymptotic time
complexity (except for length-valued edges), and in fact with the same struc-
ture of computation. The latter facilitates transfer of these modifications to,
e.g., betweenness approximation in large networks based on pivot sampling
(Brandes and Pich, 2007; Geisberger et al., 2008).

Remaining challenges include proper normalization in valued networks on the
modeling side and efficient re-computation in dynamically changing networks
on the algorithmic side. A restricted version of the latter problem is the bottle-
neck in an edge-betweenness based clustering algorithm (Newman and Girvan,
2004).

Another family of variations beyond the scope of this paper consists of be-
tweenness and other centralities on time-valued networks. Research on social
networks in which ties exist over time intervals is in its infancy (see, e.g.,
Moody 2006), and while many notions of time-dependent paths and distances
have been introduced in other branches of research, few of them have actually
been translated and studied in the context of social networks.

Acknowledgment. I am grateful to Steve Borgatti, who shared ideas on
distance-aware variants of betweenness and made other useful suggestions,
and to Peter Sanders and two anonymous reviewers, whose comments were
helpful in improving the presentation.

References

Anthonisse, J. M., October 1971. The rush in a directed graph. Tech. Rep. BN
9/71, Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam.

Bollobás, B., 1998. Modern Graph Theory. Vol. 184 of Graduate Texts in
Mathematics. Springer-Verlag.

Borgatti, S. P., 2005. Centrality and network flow. Social Networks 27, 55–71.

20

Borgatti, S. P., Everett, M. G., 2006. A graph-theoretic perspective on cen-
trality. Social Networks 28, 466–484.

Brandes, U., 2001. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology 25 (2), 163–177.

Brandes, U., Erlebach, T. (Eds.), 2005. Network Analysis. Vol. 3418 of Lecture
Notes in Computer Science. Springer-Verlag.

Brandes, U., Fleischer, D., 2005. Centrality measures based on current flow. In:
Proceedings of the 22nd International Symposium on Theoretical Aspects
of Computer Science (STACS’05). Vol. 3404 of Lecture Notes in Computer
Science. pp. 533–544.

Brandes, U., Pich, C., 2007. Centrality estimation in large networks. Interna-
tional Journal of Bifurcation and Chaos 17 (7), 2303–2318.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2001. Introduction
to Algorithms, 2nd Edition. MIT Press.

De, P., Singh, A., Wong, T., Yacoub, W., Jolly, A., 2004. Sexual network
analysis of a gonorrhoea outbreak. Sexually Transmitted Infections 80, 280–
285.

Diestel, R., 2000. Graph Theory, 2nd Edition. Graduate Texts in Mathematics.
Springer-Verlag.

Everett, M. G., Borgatti, S. P., 1999. The centrality of groups and classes.
Journal of Mathematical Sociology 23 (3), 181–201.

Everett, M. G., Borgatti, S. P., 2005. Ego network betweenness. Social Net-
works 27, 31–38.

Flom, P. L., Friedman, S. R., Strauss, S., Neaigus, A., 2004. A new measure
of linkage between two sub-networks. Connections 26 (1), 62–70.

Freeman, L. C., 1977. A set of measures of centrality based upon betweenness.
Sociometry 40, 35–41.

Freeman, L. C., 1979. Centrality in social networks: Conceptual clarification I.
Social Networks 1, 215–239.

Freeman, L. C., Borgatti, S. P., White, D. R., 1991. Centrality in valued
graphs: A measure of betweenness based on network flow. Social Networks
13 (2), 141–154.

Geisberger, R., Sanders, P., Schultes, D., 2008. Better approximation of be-
tweenness centrality. In Proceedings of the 10th Workshop on Algorithm
Engineering and Experimentation (ALENEX’08). To appear.

Goh, K.-I., Kahng, B., Kim, D., 2001. Universal behavior of load distribution
in scale-free networks. Physical Review Letters 87 (27), 1–4.

Goodrich, M. T., Tamassia, R., 2002. Algorithm Design. Wiley.
Gould, R. V., 1987. Measures of betweenness in non-symmetric networks. So-

cial Networks 9, 277–282.
Kleinberg, J., Tardos, É., 2006. Algorithm Design. Addison-Wesley.
Koschützki, D., Lehmann, K. A., Peeters, L., Richter, S., Tenfelde-Podehl, D.,

Zlotowski, O., 2005. Centrality indices. In Brandes and Erlebach (Eds.)
Lämmer, S., Gehlsen, B., Helbing, D., 2006. Scaling laws in the spatial struc-

ture of urban road networks. Physica A 363 (1), 89–95.

21

Moody, J. W., 2006. Diffusion and visualization in dynamic networks. Pa-
per presented at the Sunbelt XXVI Social Network Conference (Vancouver,
Canada).

Newman, M. E. J., 2001. Scientific collaboration networks II: Shortest paths,
weighted networks, and centrality. Physical Review E 64, 016132.

Newman, M. E. J., 2004. Analysis of weighted networks. Physical Review E
70, 056131.

Newman, M. E. J., 2005. A measure of betweenness centrality based on random
walks. Social Networks 27, 39–54.

Newman, M. E. J., 2006. Erratum: Scientific collaboration networks II:
Shortest paths, weighted networks, and centrality. Physical Review E 73,
039906(E).

Newman, M. E. J., Girvan, M., 2004. Finding and evaluating community struc-
ture in networks. Physical Review E 69, 026113.

Perer, A., Shneiderman, B., 2006. Balancing systematic and flexible explo-
ration of social networks. IEEE Transactions on Visualization and Com-
puter Graphics 12 (5), 693–700.

Puzis, R., Elovici, Y., Dolev, S., to appear. Fast algorithm for successive com-
putation of group betweenness centrality. Physical Review E.

Shimbel, A., 1953. Structural parameters of communication networks. Bulletin
of Mathematical Biophysics 15, 501–507.

Valente, T. W., 2006. Bridges and potential bridges: Changing links to find
critical paths and nodes in a network. Paper presented at the Sunbelt XXVI
Social Network Conference (Vancouver, Canada).

White, D. R., Borgatti, S. P., 1994. Betweenness centrality measures for di-
rected graphs. Social Networks 16, 335–346.

22

