Eager st-Ordering

Ulrik Brandes

Department of Computer & Information Science, University of Konstanz
ulrik.brandes@uni-konstanz.de

Abstract. Given a biconnected graph G = (V, E) with edge {s,t} € E,
an st-ordering is an ordering v1, ..., v, of V such that s = v, t = v, and
every other vertex has both a higher-numbered and a lower-numbered
neighbor. Previous linear-time st-ordering algorithms are based on a pre-
processing step in which depth-first search is used to compute lowpoints.
The actual ordering is determined only in a second pass over the graph.
We present a new, incremental algorithm that does not require lowpoint
information and, throughout a single depth-first traversal, maintains an
st-ordering of the biconnected component of {s, ¢} in the traversed sub-
graph.

1 Introduction

The st-ordering of vertices in an undirected graph is a fundamental tool for
many graph algorithms, e.g. in planarity testing, graph drawing, or message
routing. It is closely related to other important concepts such as biconnectivity,
ear decompositions or bipolar orientations.

The first linear-time algorithm for st-ordering the vertices of a biconnected
graph is due to Even and Tarjan [2, 3]. Ebert [1] presents a slightly simpler algo-
rithm, which is further simplified by Tarjan [7]. All these algorithms, however,
preprocess the graph using depth-first search, essentially to compute lowpoints
which in turn determine an (implicit) open ear decomposition. A second traversal
is required to compute the actual st-ordering.

We present a new algorithm that avoids the computation of lowpoints and
thus requires only a single pass over the graph. It appears to be more intuitive,
explicitly computes an open ear decomposition and a bipolar orientation on the
fly, and it is robust against application to non-biconnected graphs. Most notably,
it can be stopped after any edge traversal and will return an st-ordering of the
biconnected component containing {s, ¢} in what has been traversed of the graph
until then. The algorithm can thus be utilized in lazy evaluation, for instance
when only the ordering of few vertices is required, and on implicitly represented
graphs that are costly to traverse more than once.

The paper is organized as follows. In Sect. 2 we recall basic definitions and
correspondences between biconnectivity, st-orderings and related concepts. Sec-
tion 3 is a brief review of depth-first search and lowpoint computation. The new
algorithm is developed in Sect. 4 and discussed in Sect. 5.

R. Mohring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 247256, 2002.
© Springer-Verlag Berlin Heidelberg 2002

248 Ulrik Brandes

2 Preliminaries

We consider only undirected and simple graphs G = (V, E). A (simple) path
P = (vo,e1,v1,...,ex,v;) in G is an alternating sequence of vertices V(P) =
{vg,...,vx} CV and edges E(P) = {e1,...,ex} C E such that {v;—1,v;} = e;,
1 <i <k, and v; = v; implies ¢ = j or {i,5} = {0,k}. The length of P is k.
A path is called closed if vy = vi, and open otherwise.

A graph G is connected if every pair of vertices is linked by a path, and it is
biconnected if it remains connected after any vertex is removed from G.

We are interested in ordering the vertices of a biconnected graph in a way
that guarantees forward and backward connectedness. Determining such an or-
dering is an essential preprocessing step in many applications including planarity
testing, routing, and graph drawing.

Definition 1 (st-ordering [5]). Let G = (V, E) be a biconnected graph and
s#teV. An ordering s = v1,v2,...,0, =t of the vertices of G is called an
st-ordering, if for all vertices v;, 1 < j < mn, there exist 1 <11 < j < k <n such
that {vi, v}, {vj, v} € E.

Lemma 1 ([5]). A graph G = (V, E) is biconnected if and only if, for each edge
{s,t} € E, it has an st-ordering.

Several linear-time algorithms for computing st-orderings of biconnected
graphs are available [2, 1, 7]. All of these are based on a partition of the graph
into oriented paths.

An orientation assigns a direction to each edge in a set of edges. An st-
orientation (also called a bipolar orientation) of a graph G is an orientation
such that the resulting directed graph is acyclic and s and ¢ are the only source
and sink, respectively. The following lemma is folklore.

Lemma 2. A graph G = (V, E) has an st-orientation if and only if it has an
st-ordering. These can be transformed into each other in linear time.

Proof. An st-ordering is obtained from an st-orientation by topological ordering,
and an st-orientation is obtained from an st-ordering by orienting edges from
lower-numbered to higher-numbered vertices. O

A sequence D = (P, ..., P;) of (open) paths inducing graphs G; = (Vi, E;)
with V; = Uézo V(P;) and E; = UJ o E(Pj), 0 < i < r, is called an (open)
ear decomposition, if E(P),...,E(P,) is a partititon of E and for each P, =
(vo,€1,V1,...,€k,0k), 1 <1 S r, we have {vg,vx} C V;—1 and {v1,..., 061} N
Vi—1 = 0. An ear decomposition starts with edge {s,t} € E, if Py = (s, {s,t},1).

Lemma 3 ([8]). A graph G = (V, E) is biconnected if and only if, for each edge
{s,t} € E, it has an open ear decomposition starting with {s,t}.

Eager st-Ordering 249

Note that, given an open ear decomposition Py, P, ..., P, starting with edge
{s,t}, it is straightforward to construct an st-orientation. Simply orient Py from s
to t, and P; = (u,...,w), 1 <i <7, from u to w (from w to u) if u lies before
(after) w in the partial ordering induced by Py,..., P;_1. Since the orientation
of an ear conforms to the order of its endpoints, no cycles are introduced, and s
and t are the only source and sink.

3 Depth-First Search and Biconnectivity

Starting from a root vertex s, a depth-first search (DFS) of an undirected graph
G = (V, E) traverses all edges of the graph, where the next edge is chosen to be
incident to the most recently visited vertex that has an untraversed edge. An
edge {v,w} traversed from v to w is called tree edge, denoted by v — w, if w
is encountered for the first time when traversing {v,w}, and it is called back
edge, denoted by v — w, otherwise. For convenience we use v — w or v < w to
denote the respective edge as well as the fact that there is such an edge between v
and w, or the path (v, {v,w}, w). We denote by v = w a (possibly empty) path
of tree edges traversed in the corresponding direction. Note that the tree edges
form a spanning DFS tree T = T(G) rooted at s, i.e. s — v for all v € V and
v — w implies w — v. For v € V let T(v) be the subtree induced by all w € V/
with v = w. We will use the graph in Fig. 1 as our running example.

DFS is the basis of many efficient graph algorithms [6], which often make use
of the following notion. The lowpoint of a vertex u € V is the vertex w closest
to s in T(G) with w = u or u = v — w. If no such path exists, u is its own
lowpoint. Lowpoints are important mostly for the following reason.

Fig. 1. Running example with edges numbered in DF'S traversal order, tree edges
depicted solid, and back edges dashed (redrawn from [7])

250 Ulrik Brandes

Lemma 4 ([6]). A graph G = (V, E) is biconnected if and only if, in a DFS
tree T(G), only the root is its own lowpoint and there is at most one tree edge
s — t such that s is the lowpoint of t (in this case, s is the root).

Previous linear-time st-ordering algorithms first construct a DFS tree and
simultaneously compute lowpoints for all vertices. In a second traversal of the
graph they use this information to determine an st-ordering. A new biconnec-
tivity algorithm by Gabow [41] that requires only one pass over the graph and in
particular does not require lowpoints raised the question whether we can st-order
the vertices of a biconnected graph in a similar manner.

4 An Eager Algorithm

We present a new linear-time algorithm for st-ordering the vertices of a bicon-
nected graph. It is eager in the sense that it maintains, during a depth-first
search, an ordering of the maximum traversed subgraph for which such ordering
is possible without the potential need to modifiy it later on. It is introduced via
three preliminary steps that indicate how the algorithm also computes on the fly
an open ear decompostion and an st-orientation. Pseudo-code for the complete
algorithm is given at the end of this section.

4.1 Open Ear Decomposition

Let G = (V, E) be a biconnected graph with {s,t} € E, and let T be a DFS
tree of G with root s and s — t. We define an open ear decomposition D(T') =
(Py, ..., P.) using local information only. In particular, we do not make use of
lowpoint values.

Let Py = (s,{s,t},t) and assume that we have defined Py,...,P;, i > 0.
If there is a back edge left that is not in E;, we define P;;; as follows. Let

Py: s—t

P: t—-g—-f—b—s
P,: g—h—t

P;: b—a<—s

Pi: b—e—g

Ps: f—oc—d—yg
Ps: d < s (trivial ear)

Fig. 2. An ear decomposition D(T') obtained from DFS tree T

Eager st-Ordering 251

v,w,z € V such that w,z € V;, v — w € E;, w — z, and — v (see Fig. 2).
Using the last vertex w on the tree path from z to v with w € V; (potentially v
itself), we set Py = u 2 v < w. Since w — = > u, P11 is open. It is called
ear of v — w, and trivial if u = v.

Theorem 1. D(T) is an open ear decomposition starting with {s,t}.

Proof. Clearly, D(T) = (P, ..., P.) is a sequence of edge-disjoint open paths.
It remains to show that they cover the entire graph, i.e. V., =V and E, = FE.

First assume there is an uncovered vertex and choose u ¢ V, such that s — u
has minimum length. Let w be the lowpoint of u. Since G is biconnected and
u # s,t, Lemma 4 implies that there exist z,v € V with w — 2 = u = v — w
and x # u. It follows that w, x € V,. by minimality of u, so that the decomposition
is incomplete, since v — w satisfies all conditions for another ear.

Since all vertices are covered, all tree edges are covered by construction.
Finally, an uncovered back edge satisfies all conditions to define another (trivial)
ear. O

4.2 st-Orientation

We next refine the above definition of an open ear decomposition to obtain an
st-orientation. We say that a back edge v <— w, and likewise its ear, depends on
the unique tree edge w — for which z - v. Ears in D(T') are oriented in their
sequential order: P is oriented from s to ¢, whereas P;, 0 < ¢ < r, is oriented
according to the tree edge it depends on. See Fig. 3 for an example.

The following lemma shows that orienting back edges and their ears parallel
to the tree edge they depend on nicely propagates into subtrees. If {v,w} € F;,
0 <i <r,is oriented from v to w let v <; w, 0 < i < r.

P1:t—*>b<—>sdependsons—>t
Po=g 5 h<tdependsont—g
P3:bl>a‘—>sdependsons—>t
Py=b>5 e gdependson g — f
Ps=f5d— gdependson g — f
Ps=d->5d< s dependson s — ¢

Fig. 3. Orientation of ears in D(T)

252 Ulrik Brandes

Lemma 5. For all 0 < i < 7, the above orientation of Py,...,P; yields an
st-orientation of G;, and <; is a partial order satisfying: If w — x € E; and
w = x (x<;w), thenw <; v (v=<; w) for allveT(x)NV,.

Proof. The proof is by induction over the sequence D(T'). The invariant clearly
holds for Py. Assume it holds for some i < r and let P;;1 be the ear of v — w.
Let w — x € F; be the tree edge that v — w depends on and assume it is
oriented from w to x (the other case is symmetric). The last vertex u € V; on
& = v satisfies w <; u. All vertices of P;1 except w are in T (z), and since P4
is oriented like w — x, the invariant is maintained. O

Corollary 1. The above orientation of D(T') yields an st-orientation of G.

4.3 st-Ordering

We finally show how to maintain incrementally an ordering of V; during the
construction of D(T). Starting with the trivial st-ordering of Py, let P; = u —
v— w, 0 <1i<r, be the ear of v — w. If P; is oriented from u to w (w to u),
insert the sequence of inner vertices V(P;) \ {u,w} of P; in the order given by
the orientation of P; immediately after (before) w.

Lemma 6. For all 0 <1i < r, the ordering of V; is a linear extension of <;.

Proof. The proof is again by induction over the sequence D(T'). The invariant
clearly holds for Py. Assume that it holds for some i < r and that P4, =
u = v < w depends on w — x. If w <; = (the other case is symmetric), the
inner vertices of P;y; are inserted immediately before u. By Lemma 5 and our
invariant, u is after w, so that the ordering is also a linear extension of <; ;1. O

Corollary 2. The above ordering yields an st-ordering of G.

Note that inserting the inner vertices of an ear P = u — v < w next to
its destination w rather than its origin w may result in end vertices of another
ear being in the wrong relative order during a later stage of the algorithm. An
example of this kind is shown in Fig. 4.

4.4 Algorithm and Implementation Details

It remains to show how the above steps can be carried out in linear time. We
base our algorithm on depth-first search, but unlike previous algorithms, DFS is
not used for preprocessing but rather as the template of the algorithm.

The algorithm is given in Alg. 1, where code for DFS-tree management is
implicit. Each time DF'S traverses a back edge v < w, we check whether the tree
edge w — x it depends on is already oriented (note that x is the current child
of w on the DFS path). If w — x is oriented, the ear of v < w is oriented in
the same direction and inserted into the ordering. For each tree edge in a newly

Eager st-Ordering 253

insertion at destination insertion at origin
st st

s,a,t s,a,t

s,b,a,t s,b,a,t

s,b,a,c,t s,b,c,a,t

cAa s,b,e,d,a,t

Fig. 4. Example showing that it is important to insert an ear next to its origin
in the tree rather than the destination of its defining back edge

Algorithm 1: Eager st-ordering

Input: graph G = (V, E), edge {s,t} € F

Output: list L of vertices in biconnected component of {s, ¢} (in st-order)

process_ears(tree edge w — x) begin
foreach v — w depending on w — = do
determine v € L on z = v closest to v;
set P to u — v < w;
if w — x oriented from w to x (resp. x to w) then
orient P from w to u (resp. u to w);
L insert inner vertices of P into L right before (resp. after) u;

foreach tree edge w' — ' of P do process_ears(w’ — z');

clear dependencies on w — x;
end

dfs(vertex v) begin
foreach neighbor w of v do
if v — w then dfs(w);
if v — w then
let = be the current child of w;
make v — w depend on w — x;
if « € L then process_ears(w — x);

end

begin
initialize L with s — t;
dfs(t);

end

254 Ulrik Brandes

®
® o
® © ® © ©
@ © @ @ © @ @ © @
st s,t st
© © ©
@ © @ @ © @ © @
5,0, f,9,t s,b, f,g,h,t s,b, f,h,g,t
® ® ®
@ @ @
s,a,b, f h,g,t s,a,b, f,g,h,t s,a,b,e, f,g,h,t

S7a7b7e7f7g7h7t S7a7b7e7f727d7g7h7t 87a7b7e7f7c7d7g7h7t
Fig. 5. Intermediate steps of the algorithm

Eager st-Ordering 255

oriented ear, we recursively process the ears of not yet oriented back edges that
depend on it.

After each traversal of an edge we are therefore left with an st-ordering of the
biconnected component of {s,¢} in the traversed subgraph. Consequently, the
algorithm is robust against application to non-biconnected graphs, and the input
graph is biconnected if and only if the ordering returned contains all vertices.

Theorem 2. Algorithm 1 computes an st-ordering of the biconnected component
containing {s,t} in linear time.

Proof. Given the discussion above, it is sufficient to show that the algorithm
determines the entire open ear decomposition. Each ear is the ear of a back edge;
if the back edge depends on an already oriented tree edge, the ear is determined
and oriented. If the tree edge is not yet oriented the back edge is added to the set
of dependent edges and processed as soon as the tree edge is oriented. It follows
from the same argument as in the proof of Theorem 1 that all tree edges in the
biconnected component of {s,t} will eventually be oriented. O

Figure 5 shows the intermediate steps of the algorithm when applied to the
running example. Note that the st-ordering is different from that obtained in [7],
because, e.g., d — ¢ is traversed before lowpoint-edge d — s (otherwise the order
of ¢ and d would be reversed).

An efficient implementation of Alg. 1 uses a doubly-linked list L, and stores
all edges depending on a tree edge (including the edge itself) in a cyclic list that
can be realized with an edge array (since these lists are disjoint). Since only the
orientation of tree edges is needed, it is sufficient to store the orientation of the
incoming DF'S edge at each vertex. In total we need a doubly-linked vertex list,
four vertex arrays (incoming edge, orientation of incoming edge, current child
vertex, pointer to list position), two vertex stacks (DFS and ear traversal), and
one edge array (next dependent edge). The edge array also serves to indicate
whether an edge has already been traversed.

5 Discussion

We have presented a simple algorithm to compute an st-ordering of the vertices
of a biconnected graph. It requires only a single traversal of the graph and
maintains, after each step of the DFS, a maximum partial solution for the st-
ordering, the st-orientation, and the open ear decomposition problem on the
traversed subgraph.

Without modification, the algorithm can also be used to test for biconnected-
ness (simply check whether the length of the returned list equals the number of
vertices in the graph), and it is readily seen from the inductive proof of Lemma 6
that resulting st-orderings have the following interesting property.

Corollary 3. Algorithm 1 yields st-orderings in which the vertices of every sub-
tree of the DFS tree form an interval.

256 Ulrik Brandes

It is interesting to note that storing (tree) edge orientations at vertices cor-
responds to Tarjan’s use of +/- labels in [7]. Since they can be interpreted as
storing orientations at the parent rather than the child, they need to be up-
dated, though. While the use of lowpoints eliminates the need to keep track of
dependencies, lowpoints are known only after traversing the entire graph. Al-
though Tarjan’s algorithm [7] remains the most parsimonious, we thus feel that
the eager algorithm is more flexible and intuitive.

Finally, the algorithm can be used to determine a generalization of bipolar
orientations to non-biconnected graphs, namely acyclic orientations with a num-
ber of sources and sinks that is at most one larger than the number of biconnected
components, and which is bipolar in each component. Whenever DF'S backtracks
over a tree edge that has not been orientated, it has completed a biconnected
component. We are hence free to orient this tree edge any way we want and thus
to determine, by recursively orienting dependent ears, a bipolar orientation of
its entire component. The combined orientations are acyclic, and for each addi-
tional biconnected component we add at most one source or one sink, depending
on how we choose to orient the first edge of that component and whether both

its incident vertices are cut vertices.

Acknowledgments

I would like to thank Roberto Tamassia for initiating this research by making
me aware of Gabow’s work on path-based DFS, and Roberto Tamassia and Luca
Vismara for very helpful discussions on the subject. Thanks to three anonymous
reviewers for their detailed comments.

References

[1] J.Ebert. st-ordering the vertices of biconnected graphs. Computing, 30(1):19-33,
1983. 247, 248

[2] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2(3):339-344, 1976. 247, 248

[3] S. Even and R. E. Tarjan. Corrigendum: Computing an st-numbering. Theoret-
ical Computer Science, 4(1):123, 1977. 247

[4] H. N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters, 74:107-114, 2000. 250

[5] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In P. Rosenstiehl, editor, Proceedings of the International Symposium on
the Theory of Graphs (Rome, July 1966), pages 215-232. Gordon and Breach,
1967. 248

[6] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146-160, 1973. 249, 250

[7] R. E. Tarjan. Two streamlined depth-first search algorithms. Fundamenta In-
formaticae, 9:85-94, 1986. 247, 248, 249, 255, 256

[8] H. Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34:339-362, 1932. 248

	Eager st-Ordering
	Introduction
	Preliminaries
	Depth-First Search and Biconnectivity
	An Eager Algorithm
	Open Ear Decomposition
	st-Orientation
	st-Ordering
	Algorithm and Implementation Details

	Discussion

