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Abstract. Social interactions are conduits for various processes spread-
ing through a population, from rumors and opinions to behaviors and
diseases. In the context of the spread of a disease or undesirable be-
havior, it is important to identify blockers: individuals that are most
effective in stopping or slowing down the spread of a process through
the population. This problem has so far resisted systematic algorithmic
solutions. In an effort to formulate practical solutions, in this paper we
ask: Are there structural network measures that are indicative of the best
blockers in dynamic social networks? Our contribution is two-fold. First,
we extend standard structural network measures to dynamic networks.
Second, we compare the blocking ability of individuals in the order of
ranking by the new dynamic measures. We found that overall, simple
ranking according to a node’s static degree, or the dynamic version of
a node’s degree, performed consistently well. Surprisingly the dynamic
clustering coefficient seems to be a good indicator, while its static version
performs worse than the random ranking. This provides simple practi-
cal and locally computable algorithms for identifying key blockers in a
network.

1 Introduction

How can we stop a process spreading through a social network? This problem
has applications to diverse areas such as preventing or inhibiting the spread of
diseases [7, 26, 40], computer viruses4 [8, 22], rumors, and undesirable fads or
risky behaviors [23, 24, 37, 38]. A common approach to spread inhibition is to
identify key individuals whose removal will most dampen the spread. In the
context of the spread of a disease, it is a question of finding individuals to be
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quarantined, inoculated, or vaccinated so that the disease is prevented from
becoming an epidemic. We call this set of key individuals the blockers of the
spreading process.

There has been significant previous work related to studying and controlling
the spread of dynamic processes in a network [9–11, 16, 18, 22, 23, 26, 35, 40, 43,
44, 46, 47, 51, 54, 57, 59, 60, 67]. Unfortunately, these results have three properties
rendering them ineffective for identifying good blockers in large networks. First,
many proposed algorithms focus on a slightly different objective: they aim to
identify nodes that will be most effective in starting the spread of a process rather
than blocking it [44, 47]; or alternatively, nodes that would be most effective in
sensing that a process has started to spread, and where the process initiated [9–
11]. In this paper, we are focused specifically on identifying those nodes that
are good blockers. Second, algorithms proposed in previous work all require
computationally expensive calculations of some global properties over the entire
network, or rely on expensive, repeated stochastic simulations of the spread of a
dynamic process. In this paper, we present heuristics that identify good blockers
quickly, based only on local information.

Finally, perhaps the most critical problem in previous work is the omission of
the dynamic nature of social interactions. The very nature of a spreading process
implies an explicit time axis [52]. For example, the flow of information through a
social network depends on who starts out with the information when, and which
individuals are in contact at the starting point with the information carrier [43].
In this paper, we consider explicitly dynamic networks, defined in Section 3.1.
In these networks, we study the social interactions over a finite period of time,
measured in discrete timesteps.

The main contributions of this paper are summarized below.

– We formally define dynamic networks in Section 3.1. This representation of
networks encompasses the traditional“aggregate”view of networks defined in
Section 3.2 and adds the explicit temporal component to the interactions.
The time axis is necessary since most spreading processes take place on
networks that evolve over time.

– We formally define the problem of identifying key spread blockers in networks
in Section 3.3.

– We modify various network measures, such as the centrality measures and
clustering coefficient, to incorporate the dynamic nature of the networks
(Section 3.4).

– We compare the reduction in the extent of spread based on removing in-
dividuals from a network in the ranking order imposed by various network
measures. We identify measures that consistently give a good approximation
of the best spread blockers.

– We compare the difference in the sets of top blockers identified by various
measures.

– We extensively evaluate our methods on real networks (Section 5). We use
the Enron email network dataset, the MIT Reality Mining dataset, DBLP
co-authorship network, animal population networks of Grevy’s zebras, Plains
zebras, and onagers.
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Ultimately, we show that the dynamics of interactions matters, and moreover
that simple local measures, such as degree, are highly indicative of an individual’s
capacity to prevent the spread of a phenomenon in a population. The implica-
tion of our results are that there are practical scalable heuristics for identifying
quarantine and vaccination targets in order to prevent an epidemic.

2 Related Work

Dynamic phenomena such as opinions, information, fads, behavior, and disease
spread through a network by contacts and interactions among the entities of
the network. Such spreading phenomena have been studied in a number of do-
mains including epidemiology [22, 26, 40, 51, 54, 57, 59], diffusion of technological
innovations and adoption of new products [7, 16, 18, 23, 24, 35, 38, 44, 46, 60, 67],
voting, strikes, rumors [36, 37, 53, 68], as well as spread of contaminants in dis-
tribution networks [8–11, 46] and numerous others.

One of the fundamental questions about dynamic processes is: Which indi-
viduals, if removed from the network, would block the spread of such process?
Several previous results have addressed the problem of identifying such indi-
viduals [26, 40, 43]. Eubank et al. [26] experimentally show that global graph
theoretic measures like expansion factor and overlap ratio are good indicators
for devising vaccination strategies in static networks. Cohen et al. [21] propose
another immunization strategy based on the aggregate network model. In partic-
ular, they propose an efficient method of picking high degree nodes in a network
to immunize, thus inhibiting the spread of disease. Kempe et al. [43] show that
a variant of the blocker identification problem is NP-hard. While these problems
and suggested approaches are similar to finding good blockers in a network, un-
fortunately, there are critical differences that make these results inappropriate
for our formulation. First of all our objective is to minimize the expected extent
of spread in a network. We do not make any assumption about the source of the
spread. Second, almost all the above methods simplify the spreading process by
ignoring the time ordering of interactions.

There has also been significant related work on the problem of determining
where to place a small number of detectors in a network so as to minimize the
time required to detect the spread of a dynamic process, and, ideally, also the
location at which the spread began. Berger-Wolf et al. [9] give algorithms for the
problem of minimizing the size of the infected population before an outbreak
is detected. Berry et al. [10, 11] give algorithms to strategically place sensors in
utility distribution networks to minimize worst case time until detection. In [47],
Leskovec et al. demonstrate that many objectives of the detection problem ex-
hibit the property of submodularity. They exploit this fact to develop efficient
and elegant algorithms for placing detectors in a network. While the detection
problem is related to the problem of blocking a process, it is only concerned with
detecting a spreading process once, whereas a good blocker prevents multiple
spreading paths. Moreover, the algorithms proposed for the detection problem
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all require global information and work only for a stable, relatively unchanging
network.

Another related problem is that of identifying nodes in a network that are
most critical for spreading a dynamic process. Kempe et al. [44] show that iden-
tifying key spreaders – individuals that help to propagate the spread most – is
NP-hard, but admits a simple greedy (1−1/e)-approximation. Later, Mossel and
Roch [55] showed that the general case of finding a set of nodes with the largest
“influence” is NP-hard, and has a (1 − 1/e − ε) approximation algorithm. Un-
fortunately, this approximation algorithm is computationally intensive. Strong
inapproximability results for several variants of identifying nodes with high in-
fluence in social networks have been shown in [19]. Asur et al. in [5] present an
event based characterization of critical behavior in interaction graphs for the
purposes of modeling evolution, link prediction, and influence maximization.

Finally, Aspnes et al. [4] have studied the inoculation problem from a graph
theoretic perspective. They show that finding an optimum inoculation strategy
is related to the sum-of-squares partition problem. Moreover, they show that
the social welfare of an inoculation strategy found when each node is a selfish
agent can be significantly less than the social welfare of an optimal inoculation
strategy.

3 Definitions

Populations of individuals interacting over time are often represented as net-
works, or graphs, where the nodes correspond to individuals and a pairwise in-
teraction is represented as an edge between the corresponding individuals. The
idea of representing societies as networks of interacting individuals dates back to
Lewin’s earlier work of group behavior [48]. Typically, there is a single network
representing all interactions that have happened during the entire observation
period. We call this representation an aggregate network (Section 3.2). In this
paper we use an explicitly dynamic network representation (Section 3.1) that
takes the history of interactions into account.

3.1 Dynamic Network

We represent dynamic network as a series 〈G1, . . . , GT 〉 of static networks where
each Gt is a snapshot of individuals and their interactions at time t. For this
work, we assume that the time during which the individuals are observed is
finite. For simplicity, we also assume that the time period is divided into discrete
steps {1, . . . , T}. The nontrivial problem of appropriate time discretization is
beyond the scope of this paper. We assume that an interaction between a pair
of individuals takes place within one timestep.

Definition 1. Let {1, . . . , T} be a finite set of discrete timesteps. Let V =
{1, . . . , n} be a set of individuals. Let Gt = (Vt, Et) be a graph representing
the snapshot of the network at time t. Vt ⊆ V , is a subset of individuals V ob-
served at time t. An edge (ut, vt) ∈ Et if individuals u and v have interacted at
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time t. Further, for all v ∈ V and t ∈ {1, . . . , T − 1} the edges (vt, vt+1) ∈ E are
directed self edges of individuals across timesteps.

A dynamic network GD = 〈G1, . . . , GT 〉 is the graph GD = (V,E) of the time
series of graphs Gt such that V =

⋃
t Vt and E =

⋃
t Et ∪

⋃
t−1 (vt, vt+1).

The definition is equivalent to an undirected multigraph representation in [43].
Figure 1 shows an example of several dynamic networks that have the same

unweighted aggregate network representation.

(a) (b) (c) (d)

(e)

Fig. 1. Example of several dynamic networks that have the same unweighted aggregate
network representation. Figures (a)–(d) show a dynamic networks of three individu-
als interacting over four timesteps. The solid line edges represent interactions among
individuals in a timestep. Empty circles are individuals observed during a timestep.
While at any given timestep some individuals may be unobserved, the particular ex-
ample shows all the individuals being observed at all timesteps. Figure (e) shows an
unweighted aggregate network that has the same interactions as every dynamic net-
work in the example. Figures (a)–(c) have the multiplicity two of each edge while figure
(d) has the multiplicity four for every edge in the aggregate representation.

3.2 Aggregate Network

The aggregate network is the graph GA = (V,E) of individuals V and their in-
teractions E observed over a period of time. In this representation an edge exists
between a pair of individuals if they have ever interacted during the observed
time period. Multiple interactions between a pair of individuals over time are
represented as a single, possibly weighted, edge or multiple edges between them.
This representation provides an aggregate view of the population where the in-
formation about the timing and order of interactions is discard. In this work we
represent aggregate networks as multigraphs.

Definition 2. Let {1, . . . , T} be a finite set of discrete timesteps. Let Vt be the
set of individuals observed at time t and let Et be the set of interactions among
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individuals Vt at t. Then the aggregate graph GA = (V,E) of such a network is
the set of individuals V and interactions E such that V =

⋃
t Vt and (u, v) ∈ E

if ∃(ut, vt) at some timestep t ∈ {1, . . . , T}.

Using this aggregate network model, the structure and properties of many
social networks have been studied from different perspectives [6, 12, 13, 15, 41].
However, as we have mentioned, this and other similar models do not explicitly
consider the temporal aspect of the network.

3.3 Spread Blockers

We now formalize the notions of processes spreading in a network and individuals
blocking this spread.

Spread(.) is a function that gives the overall average extent of spread in a
network, that is, the expected number of individuals affected by a stochastic
spreading process within a specified number of timesteps. The estimate of the
spread is dependent on the model of the spreading process, the structure of the
network, and, of course, the number of timesteps under consideration. Spreadv(.)
is the expected spread in a network, when the spreading process is initiated by
the individual v. Given a model of a spreading process M and a distribution of
the probability of infection X : E → [0, 1], we define the spreading functions as
follows:

Spreadv : {Networks× Spread Models× Probability × Time} → R+

Spread(G,M,X , T ) =
1
|V |

∑

v∈V

Spreadv(G,M,X , T ) (1)

The limit equilibrium state of spread is denoted by

Spread(G,M,X ) = Spread(G,M,X ,∞) (2)

For a fixed spread model, probability distribution and a time period we will
use the overloaded shorthand notation Spread(G).

We define BlX(.) as a function that measures the reduction in the expected
spread size after removing the set X of individuals from the network. Hence, the
blocking capacity of a single individual v, Blv(.), is the reduction in expected
spread size after removing individual v from the network.

BlX : {Networks× Spread Models× Probability × Time} → R+

BlX(G) = BlX(G,M,X , T ) = Spread(G)− Spread(G \X). (3)

kBl(.) is the function that finds the maximum possible reduction in spread in
a network when set of individuals of size k is removed from the network. Notice,
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that the value of this function is always at least k. The argmax of this function
finds the best blocker(s) in a network.

kBl(G) = max
X⊆V,|X|=k

BlX(G). (4)

Thus, finding the best blockers in the network is equivalent to finding the (set
of) individuals whose removal from the network minimizes the expected extent
of spread.

kBl(G) = Spread(G)− min
X⊆V,|X|=k

Spread(G \X). (5)

This definition of the individuals’ blocking capacity by removal corresponds
in the disease spread context to the quarantine action. Vaccination or inoculation
leave the node in the network but deactivate its ability to propagate the spread.
For the Independent Cascade model of spread (Section 3.5) the two actions are
equivalent at the abstract level of estimating the spread and identifying blockers
in networks.

Since no good analytical approaches are known for identifying blockers in
networks, in this paper we focus on examining the possibility of using structural
network measures as practical indicators of nodes’ blocking ability. We next
briefly define the structural measures used in this paper.

3.4 Network Structural Measures

In network analysis various properties of the graph representing the population
are studied as proxies of the properties of the individuals, their interactions,
and the population itself. For example, the degree, various centrality measures,
clustering coefficients, or the eigen values (PageRank) of the nodes have been
used to determine the relative importance of the individuals, e.g., [17, 42]. Be-
tweenness centrality has been used to identify cohesive communities [33] and the
distributions of shortest path lengths employed to measure the “navigability” of
the network [66]. These and many other graph theoretic measures have been
translated to many social properties [50, 56, 57].

The ability of an individual to block a process spreading over a network can
be seen as another such social property. Graph measures such as clustering and
assortative mixing coefficients have been used to design local vaccination strate-
gies [40]. However, it is not clear that those are the best network measures to be
used as an indicator of a node which is a good blocker. In this paper we evaluate
the power of all the standard network measures of a node to indicate the block-
ing ability of the corresponding individual. Moreover, we extend the standard
static measures to reflect the dynamic nature of the underlying network. We
examine the following measures: degree, average degree, betweenness, closeness
centralities and clustering coefficient. We modify those to incorporate the time
ordering of the interactions.

We use the following terms interchangeably in this paper: individuals or nodes
are the vertices of the network and interactions are edges that can be both
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directed or undirected. Neighbors of a node, N(.), are the set of nodes adjacent
to it. The subscript T with a function name indicates the dynamic variant of the
function.

We now state the standard network measures for aggregate networks and
define corresponding measures for dynamic networks. We focus first on the global
measures that summarize the entire network and then address local measures
that characterize a node.

Global Structural Properties.

Density is the proportion of the number of edges |E| present in a network
relative to the possible number of edges

(|V |
2

)
.

D(G) =
|E|(|V |
2

) . (6)

Dynamic Density is the average density of an observed time snapshot.

DT (G) =
1
T

∑

1<t≤T

D(Gt). (7)

In the example in Figure 1, the density of the aggregate network in (e) is 2/3.
However, the dynamic density of the networks (a), (b), and (c) is 1/3 while the
dynamic density of (d) is 2/3.

Path between a pair of nodes u, v is a sequence of distinct nodes u = v1, v2, . . . , vp =
v with every consecutive pair of nodes connected by an edge(vi, vi+1) ∈ E.

Temporal Path between u, v is a time respecting path in a dynamic network.
It is a sequence of nodes u = v1, . . . , vp = v where each (vi, vi+1) ∈ E is an
edge in Et for some t. Also, for any i, j such that i + 1 < j, if vi ∈ Vt and
vj ∈ Vs then t < s. The length of a temporal path is the number of timesteps
it spans. Note, that this definition allows only immediate neighborhood of a
node to be reached within one timestep.

In the example in Figure 1, while there is a path from c to a in the aggregate
network (e), there is no temporal path from c to a in the dynamic network (b).
All the temporal paths from a to c in the dynamic networks (a)–(d) are of length
2.

Diameter is the length of the longest shortest path. In dynamic networks, it is
the length of the longest shortest temporal path.

Local Node Properties.

Degree of a node is the number of its unique neighbors. It is perhaps the sim-
plest measure of the influence of an individual: the more neighbors one has,
the higher the chances of reaching a larger proportion of a population.
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Dynamic Degree is the change in the neighborhood of an individual over time,
the rate at which new friends are gained. Let N(ut) be the neighborhood of
individual u at timestep t. The relative change in the neighborhood is then:5

|N(ut−1)4N(ut)|
|N(ut−1) ∪N(ut)| |N(ut)|. (8)

The Dynamic Degree DEGT of u is the total accumulated rate of friend
addition.

DEGT (u) =
∑

1<t≤T

|N(ut−1)4N(ut)|
|N(ut−1) ∪N(ut)| |N(ut)|. (9)

Note, that here we consider a friend to be “new” if it was not a friend in the
previous timestep. The definition is easily extended to incorporate a longer
term memory of friendship. The dynamic degree captures the gregariousness
of an individual, an important quality from a spreading perspective.

Dynamic Average Degree is the average over all timesteps of the interactions
of an individuals in each timestep:

AV G-DEG(u) =
1
T

∑

1≤t≤T

DEG(ut). (10)

where, DEG(ut) is the size of the neighborhood of u at timestep t.

The dynamic degree, unlike its standard aggregate version, carries the infor-
mation of the timing of interactions and is sensitive to the order, concurrency
and delay among the interactions. For example, in Figure 1, the degree of the
node b in the aggregate network (e) is 2. However, its dynamic degree in (a) is
3, in (b) is 1, and in (c) and (d) is 0. The dynamic average degree, on the other
hand does not change when the order of interactions in a dynamic network is
perturbed. It just tells us the average connectivity of an individual in the ob-
served time period. In all the dynamic networks (a)–(c) the average dynamic
degree of b is 1, while in (d) it is 2.

Nodes in Neighborhood (NNk) is the number of nodes in the local k-neighborhood
of an individual. The number of nodes in the 1-neighborhood is precisely the
degree of an individual. We extend the measure by considering the 2- and
3-neighborhoods of each individual.

Edges in Neighborhood (ENk) is the number of edges in the local k-neighborhood
of an individual. We compute the edges in neighborhood for 1-, 2- and 3-
hop neighborhoods of each individual. This measure loosely captures the
local density of the neighborhood of an individual.

Betweenness of an individual is the sum of fractions of all shortest paths be-
tween all pairs of individuals that pass through this individual. It is a pa-
rameter that measures the importance of individuals in a network based on
their position on the shortest paths connecting pairs of non-adjacent indi-
viduals [3, 31, 32].

5 Here 4 denotes the symmetric difference of the sets
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Dynamic Betweenness of an individual is the fraction of all shortest temporal
paths that pass through it. Intuitively, the edges in a temporal path appear
in the increasing time order. This concept of betweenness incorporates the
measure of a delay between interactions as well as the individual being at
the right place at the right time. We present in detail, different flavors of
the traditional betweenness centrality concept in dynamic networks based
on position, time, and duration of interactions among individuals in [39]. In
this paper, for technical reasons, we use the concept of temporal betweenness.
Let gst be the number of shortest temporal paths between s and t, gst(u) of
which pass through u. Then the temporal betweenness centrality, BT (u), of
a node u is the sum of fractions of all s-t shortest temporal paths passing
through the node u:

BT (u) =
∑

s 6=t 6=u

gst(u)
gst

. (11)

Closeness of an individual is the average (geodesic) distance of the individual
to any other individual in the network [32, 62].

Dynamic Closeness of an individual is the average time it takes from that
individual to reach any other individual in the network. Dynamic closeness
is based on shortest temporal paths and the geodesic is defined as the time
duration of such paths. Let dT (u, v) be the length of the shortest temporal
path from u to v. Following the definition in [62] we define dynamic closeness
as follows.

CT (u) =
1∑

v∈V \{u}
dT (u, v)

. (12)

Clustering Coefficient of an individual is the fraction of its neighbors who
are neighbors among themselves [58].

Dynamic Clustering Coefficient is the sum of the fractions of an individu-
als’ neighbors who have been friends among themselves in previous timesteps.
That is, the dynamic clustering coefficient measures how many of your friends
are already friends. Let CF (ut) be the number of friends of u that are al-
ready friends among themselves by timestep t. Then the dynamic clustering
coefficient is defined as follows.

CCT (u) =
∑

0≤t<T

CF (ut)
|N(ut)|(|N(ut)| − 1)

. (13)

Consider the example in Figure 2. The clustering coefficient of all three nodes in
the static network is the same and equals to 1. However, the situation in the two
dynamic networks is completely different. In network (a) the dynamic clustering
coefficient of nodes a and c is 0 while that of the node b is 1. In network (b),
on the other hand, the dynamic clustering coefficient of all the nodes is 0 since
when b meets a and c they still don’t know each other.

Apart from the measures defined above we also compute PageRank [14] of
nodes.
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(a) (b) (c)

Fig. 2. Example of two dynamic networks (a) and (b) that have the same aggregate
network representation (c).

3.5 Spreading Model

A propagation process in a network can be described formally using many mod-
els of transmission over the edges in that network. The fundamental assumption
of all such models is that the phenomenon is spreading over and only over the
edges in the network and, thus, the topology of the network defines the dynamics
of the spread. For this paper we use the Independent Cascade model of diffu-
sion in networks. Independent Cascade is one variant of the conditional decision
model [34, 65]. The spreading phenomenon cascades through the network bases
the the simplifying assumption that each individual base their decision to adopt
or reject the spreading phenomenon on the status of each of its neighbors in-
dependently. The independent cascade model was first introduced in [34, 35] in
the context of word-of-mouth marketing. This is also the most commonly used
simple model to study disease transmission in networks [22, 51, 54, 57, 59] and
is closely related to the simplest Susceptible-Infectious-Recovered (SIR) models
from epidemiology [2]. In the Independent Cascade model, transmission from
one individual to another happens independently of interactions those individu-
als have with all the other individuals.

The Independent Cascade model describes a spreading process in terms of
of two types of individuals, active and inactive. The process unfolds in discrete
synchronized timesteps. In each timestep, each active individual attempts to
activate each of its inactive neighbors. The activation of each inactive neighbor
is determined by a probability of success. If an active individual succeeds in
affecting any of its neighbors, those neighbors become active in the next time
step. Each attempt of activation is independent of all previous attempts as well
as the attempts of any other active individual to activate a common neighbor.

More formally, let GD = (V,E) be a dynamic network, A0 ⊆ V be a set
of active individuals, and puv be the probability of influence of u on v. For
simplicity, we assume p is uniform for all V and remains fixed for the entire
period of simulation. The uniform probability values also ensure that we test how
the blocking ability of individuals depends solely on the structure of the network,
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controlling for other parameters that may affect this ability. An active individual
ut ∈ A0 at timestep t tries to activate each of its currently inactive neighbors
vt with a probability p, independent of all the other neighbors. If ut succeeds in
activating vt at timestep t, then vt will be active in step t + 1, whether or not
(ut+1, vt+1) ∈ Et+1. If ut fails in activating vt, and at any subsequent timestep
ut+i gets reconnected to the still inactive vt+i, it will again try to activate vt+i.
The process runs for a finite number of timesteps T . We denote by σ(A0) = AT

the correspondence between the initial set A0 and the resulting set of active
individuals AT . We call the size of the set AT , |AT |, the extent of spread.

The spreading process in the independent cascade model in a dynamic net-
work is different from the aggregate network in one important aspect. In the
aggregate case, each individual u uses all its attempts of activating each of its
inactive neighbors v with the same probability p in one timestep t. This is the
timestep right after the individual u itself becomes active. After that single at-
tempt the active individual becomes latent: that is, it is active but unable to
activate others. However in the dynamic network model as defined above, the
active individuals never become latent during the spreading process. For this pa-
per, we only consider the progressive case in which an individual converts from
inactive to active but never reverses (no recovery in the epidemiological model).
It is a particularly important case in the context of identifying blockers since the
blocking action is typically done before any recovery.

4 Experimental Setup

We evaluate the effectiveness of each of the network structural measures as indi-
cators of individual’s blocking capacity under the Independent Cascade spread-
ing model.

4.1 The Protocol

For each measure and for each dynamic network dataset, we follow the following
steps:

1. Order the individuals 0, . . . , |V − 1| according to the ranking imposed by the
measure.

2. For i = 0 to |V − 1| do:
(a) Remove node i from G = (V, E).
(b) Estimate the extent of spread in G \ i by averaging over stochastic sim-

ulations of Independent Cascade model initiated at each node in turn,
3000 iterations for each starting node.6

(c) If the extent of spread is less than 10% of the nodes in the original
network then STOP.

6 Which is more than sufficient for the convergence.
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We compare the power of each measure to serve as a proxy indicator for the
blocking ability of an individual based on the number of individuals that had
to be removed in the ordering imposed by that measure in order to achieve this
reduction to 10%.

4.2 Probability of activation

We conducted the Independent Cascade spreading experiments on a variety of
networks with diverse global structural properties such as density, diameter,
and average path length. In each network, we assigned a different probability of
activation based on the structure of the network. The probability value that for
some networks facilitated propagation of spread to only a small portion of the
nodes for other networks resulted in immediate spread to the entire network.
The following is the procedure we used to find a meaning full probability of
activation for a given network.

1. For a given G = (V,E) , run the Independent Cascade Spreading process
with p = 1. Note, that this is a deterministic process.

2. Calculate the average extent of spread S in G = (V, E). This is the average
size of a connected component in G.

3. Rerun the spreading process while setting p < 1. Calculate the average extent
of spread in the network. Repeatedly reduce p until the average extent of
spread is half of S.

4. Set probability of activation for G equal to p.

We use the following measures for comparison: dynamic and aggregate ver-
sions of degree, betweenness, closeness centralities, and clustering coefficient, as
well as the average dynamic degree (turnover rate). For the global measures of
betweenness and closeness we locally approximate them within 1-, 2-, and 3-hops
neighborhoods. For the datasets with directed interactions we also use page rank
and approximate it within 1-, 2-, and 3-neighborhoods as well. We also rank in-
dividuals based on their neighbors within 1-, 2-, and 3- hops of nodes and edges.
Overall, we experimented with 26 different measures.

We compare the structural measures to a random ordering of nodes as an
upper bound and the best blockers identified by an exhaustive search as the
lower bound.

4.3 Lower Bound: Best Blockers

We identify the best blockers one at a time using exhaustive search over all the
individuals. To find one best blocker, we remove each individual, in turn, from
the network and estimate the extent of spread using stochastic simulations of
the Independent Cascade model in the remaining network. The best blocker,
then, is the individual whose removal results in the minimum extent of spread
after removal. We then repeat the process with the remaining individuals. This
process imposes another ranking on the nodes.
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Optimally, one needs to identify the set of top k blockers. However, this
problem is computationally hard and an exhaustive search is infeasible. We have
conducted limited experiments on the datasets considered in this paper and in
all cases the set of iterative best k blockers equals to the set of top k blockers.
This preliminary result warrants future investigation and rigorous evaluation.

5 Datasets

We now describe the datasets used in the experiments.

Grevy’s: Populations of Grevy’s zebras (Equus grevyi) were observed by bi-
ologists [29, 30, 61, 63] over a period of June–August 2002 in the Laikipia
region of Kenya. Predetermined census loops were driven on a regular basis
(approximately twice per week) and individuals were identified by unique
stripe patterns. Upon sighting, an individual’s GPS location was taken. In
the resulting dynamic network, each node represents an individual animal
and two animals are interacting if their GPS locations are the same. The
dataset contains 28 individuals interacting over a period of 44 timesteps.

Onagers: Populations of wild asses (Equus hemionus), also known as onagers,
were observed by biologists [61, 63] in the Little Rann of Kutch, a desert in
Gujarat, India, during January–May 2003. These data are also obtained from
visual scans, as in Grevy’s zebra case. The dataset contains 29 individuals
over 82 timesteps.

DBLP: This data set is a sample of the Digital Bibliography and Library
Project [49]. This is a bibliographic dataset of publications in Computer
Science. We use a cleaned version of the data from 1967–2005. In the dy-
namic network each node represents an individual author and two authors
are interacting if they are co-authors on a paper. A year is one timestep.
The sample we used contains 1374 individuals and 38 timesteps. We use this
dataset to compare the dynamic and the static networks.
The DBLP dataset is sparse, with many small connected components. In
fact, the average size of a connected component (using temporal paths) is
.03×|V |. Thus, the expected extent of spread in this network cannot exceed
3%. For DBLP we set the stopping criterion for removing blockers from the
network at 1% of the population being affected, rather than the 10% used
for other datasets.

Reality Mining: The Reality Mining experiment is one of the largest mobile
phone projects attempted in academia. These are the data collected by MIT
Media Lab at MIT [25]. They have captured communication, proximity, lo-
cation, and activity information from 100 subjects at MIT over the course
of the 2004-2005 academic year. These data represent over 350,000 collective
hours (∼ 40 years) of human behavior.
Reality Mining data are collected by recording the bluetooth scans of each
device every five minute. We have quantized the data to 4 hours interval for
the dynamic network representation of the network based on the analysis
by [20].
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Enron: The Enron e-mail corpus is a publicly available database of e-mails sent
by and to employees of the now defunct Enron corporation7. Timestamps,
senders and lists of recipients were extracted from message headers for each
e-mail on file. We chose a day as the timestep, and a directed interaction is
present if an e-mail was sent between two individuals.
We used the version of the dataset restricted to the 150 employees of Enron
organization who were actually subpoenaed. The raw Enron corpus contains
619,446 messages belonging to 158 users [1, 45].

UMass: Co-location of individuals in a population of students at the University
of Massachusetts Amherst; data collected via portable motes(available with
a full description at http://kdl.cs.umass.edu/data/msn/msn-info.html).

The following table provides a summary of the statistics of the networks we
use in our experiments.

V E T D DT d dT p pT r rT

Grevy’s 28 779 44 0.30 0.52 4 36 1.84 4.81 518 432

Onagers 29 402 82 0.36 0.24 3 74 1.66 7.51 756 617

DBLP 1374 2262 38 0.002 0.09 15 37 5.54 5.12 900070 58146

Enron 147 7406 701 0.04 0.14 6 618 2.66 461.24 19620 16474

MIT 96 67107 2940 0.68 0.18 2 315 1.32 4.21 9120 9114

UMass 20 2664 693 0.72 0.35 2 8 1.28 3.71 380 374

Table 1. Dynamic network dataset statistics. Here V is the number of individuals,
E is the number of edges, T is the number of timesteps, D is density and DT is
dynamic density, d is the diameter within a connected component and dT is the dynamic
diameter,p is average shortest path length and pT is the average temporal shortest path
length, and r is no. of reachable pairs and rT is the number of temporally reachable
pairs.

6 Results and Discussion

For each of the datasets we have evaluated all the structural network measures to
determine how effectively they serve to identify good blockers. To recap, we rank
nodes by each measure and remove them from the network in that order. After
removing each node we measure the expected extent of spread in the network
using simulations. We compare the effect of each measure’s ordering to that of
a random ordering and the brute force best blockers ordering. Figure 3 shows
results for two datasets, Onagers and Enron, that are representative of the results
on all the datasets. The results for the other datasets are omitted due to space
limitations. For all the plots, the x-axis is the number of individuals removed
7 Available with a full description at http://www.cs.cmu.edu/∼enron/
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and the y-axis shows the corresponding extent of spread. The lower the extent
of spread after removal, the better is the blocking capacity of the individuals
removed. Thus, the curves lower on the plot correspond to measures that serve
as better indicators of individuals’ blocking power.

Fig. 3. [Best viewed in color.] Comparison of the reduction of extent of spread after
removal of nodes ranked by various measures in Onagers and Enron datasets.

The comparison of all the measures showed that four measures performed
consistently well as blocker indicators: degree in aggregate network, the num-
ber of edges in the immediate aggregate neighborhood (local density), dynamic
average degree, and dynamic clustering coefficient. This is good news from the
practical point of view of designing epidemic response strategies since all the
measures are simple, local, and easily scalable. Figure 4 shows the results of the
comparison of those four best measures, as well as the best possible and random
orderings, for all the datasets. Surprisingly, while the local density and the dy-
namic clustering coefficients seem to be good indicators, the aggregate clustering
coefficient turned out to be the worst, often performing worse than a random
ordering. Betweenness and closeness measures performed inconsistently. PageR-
ank did not perform well in the only dataset with directed interactions (Enron)8.
As seen in Figure 4, the ease of blocking the spread depends very much on the
structure of the dynamic network. In the two bluetooth datasets, MIT Reality
Mining and UMass, all orderings, including the random, performed similarly.
Those are well connected networks, as evident by the large difference between
the dynamic diameter and the average shortest temporal path. The only way to
reduce the extent of spread to below 10% of the original population seems to be
trivially removing nearly 90% of the individual population. On the other hand,
Enron and DBLP, the sparsely connected datasets, show the opposite trend of
being easily blockable by a good ranking measure.
8 On undirected graphs, PageRank is equivalent to degree in aggregate network
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Fig. 4. [Best viewed in color.] Comparison of the reduction of the extent of spread
after removal of nodes ranked by the best 4 measures. The x-axis shows the number of
individuals removed and the y-axis shows the average spread size after the removal of
individuals.

When rankings of different measures result in a similar blocking ability we ask
whether it is due to the fact that the measures rank individuals in a similar way
and, thus, identify the same set of good blockers or, rather, different measures
identify different sets of good blockers. To answer this question, we compared
the sets of the top ranked blockers identified by the four best measures as well
as the best possible ordering. We compute the average rank difference between
the sets of individuals ranked top by every two measures. Table 2 shows the
pairwise difference in ranks. In general, there is little correspondence between the
rankings imposed by various measures. The only strong relationship, as expected,
is between the number of edges in the neighborhood of a node and its degree in
the aggregate network.

We further explore the difference in the sets of the top ranked individuals
by computing the size of the common intersection of all the top sets ranked
by the four measures and the best possible ranking. We use the size of the set
determined by the best possible ordering as the reference set size for all measures.
Table 3 shows the size of the common intersection for all datasets. Again, we see
a strong effect of the structure of the network. The MIT Reality Mining and the
UMass datasets have the largest intersection size. On the other hand, in DBLP
the four measures produced very different top ranked sets, yet all four measures
were extremely good indicators of the blockers. In other networks, while there
are some individuals that are clearly good blockers according to all measures,
there is a significant difference among the measures. Overall, these results lead to
two future directions: 1) investigating the effect of the overall network structure
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Grevy’s 4.5 4.64 4.79 3.86 4.5 2.86 2.64 5.57 5 1.14
Onagers 3.59 4.48 3.31 3.52 4.69 4.14 2.97 6.07 6 2
DBLP - - - - 430.76 71.3 78.49 434.21 428.25 77.22
Enron 21.95 50.01 27.29 21.02 46.37 22.56 21.93 44.35 44.95 25.32
MIT - - - - 4.88 14.4 14.48 14.33 14.27 2.25

UMass 4.6 4.6 3 2.7 0 3.3 3.1 3.3 3.1 1
Table 2. Average rank difference between the rankings induced by every two of the
best four measures.

Dataset Set size Inter. size Inter. frac

Grevy’s 5 2 .40
Onagers 9 3 .33
DBLP 16 0 0
Enron 13 4 .31
Reality Mining 60 48 .80
UMass 12 10 .83

Table 3. The size of the common intersection of all the top sets ranked by the four
measures and the best ranking. Set size is the size of the sets determined by the best
blocking ordering. The size of the intersection is the number of the individuals in the
intersection and the Intersection fraction is the fraction of the intersection of the size
of the set.

on the “blockability” of the network; and 2) designing consensus techniques that
combine rankings by various measures into a possible better list of blockers.

7 Conclusions and Future Work

In this paper we have investigated the task of preventing a dynamic process,
such as disease or information, from spreading through a network of social in-
teractions. We have formulated the problem of identifying good blockers: nodes
whose removal results in the maximum reduction in the extent of spread in the
network. In the absence of good computational techniques for finding such nodes
efficiently, we have focused on identifying structural network measures that are
indicative of whether or not a node is a good blocker. Since the timing and
order of interactions is critical in propagating many spreading phenomena, we
focused on explicitly dynamic networks. We, thus, extended many standard net-
work measures, such as degree, betweenness, closeness, and clustering coefficient,
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to the dynamic setting. We also approximated global network measures locally
within a node’s neighborhood. Overall, we considered 26 different measures as
candidate proxies for the blocking ability of a node.

We conducted experiments on six dynamic network datasets spanning a range
of contexts, sizes, density, and other parameters. We compared the extent of
spread while removing one node at a time according to the ranking of nodes
imposed by each measure. Overall, four structural measures performed consis-
tently well in all datasets and were close to identifying the overall best blockers.
These four measures were node degree, number of edges in node’s neighborhood,
dynamic average degree, and dynamic clustering coefficient. The traditional ag-
gregate clustering coefficient and dynamic closeness performed the worst, often
worse than a random ordering of nodes. All four best measures are local, simple,
and scalable, thus, potentially can be used to design good practical epidemic
prevention strategies. However, before such policy decisions are made, we need
to verify that our results hold true in other, larger and more complete datasets
and for realistic disease spread models.

The striking disparity between the performance of the dynamic and aggre-
gate clustering coefficient indicates the necessity of taking the dynamic nature
of interactions explicitly into consideration in network analysis. Moreover, this
disparity justifies the extension of traditional network measures and methods
to the dynamic setting. In future work, we plan to further investigate the in-
formativeness of a range of dynamic network measures in various application
contexts.

We have also compared the sets of nodes ranked at the top by various mea-
sures. Interestingly, in the networks in which it was difficult to block dynamic
spread, all the measures resulted in very similar rankings of individuals. In con-
trast, in the networks where the removal of a small set of individuals was sufficient
to reduce the spread significantly, the best measures gave very different rankings
of individuals. Thus, there seems to be a dichotomy in the real-world networks
we studied. On one hand, there are dense networks (e.g. MIT Reality Mining
and UMass datasets) in which it is inherently challenging to block a spreading
process and all measures perform similarly badly. On the other hand, there are
sparse networks where it seems to be easy to stop the spread and there are many
ways to do it. In future work, we will investigate the specific global structural
attributes of a network that delineate this difference between networks for which
it is hard or easy to identify good blockers.

The comparison of the top ranked sets also shows that while there may be
some common nodes ranked high by all measures, there is a significant difference
among the measures. Yet, all the rankings perform comparably well. Thus, there
is a need to test a consensus approach that combines the sets ranked top by
various measures into one set of good candidate blockers. This is similar to
combining the top k lists returned as a web search result [27].

This paper focused on the practical approaches to identifying good blockers.
However, the theoretical structure of the problem is not well understood and
so far has defied good approximation algorithms. Recent developments in the
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analysis of nonmonotonic submodular functions [28, 64] may be applicable to
variants of the problem and may result in good approximation guarantees.
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