DIEI

RT 005-06

Drawing Colored Graphs on Colored Points M. Badent ${ }^{1}$, E. Di Giacomo ${ }^{2}$, G. Liotta 2

1 University of Konstanz
2 Università di Perugia
5 December 2006

Drawing Colored Graphs on Colored Points*

Melanie Badent ${ }^{\dagger} \quad$ Emilio Di Giacomo ${ }^{\ddagger} \quad$ Giuseppe Liotta ${ }^{\ddagger}$

Abstract

Let G be a planar graph with n vertices whose vertex set is partitioned into subsets V_{0}, \ldots, V_{k-1} for some positive integer $1 \leq k \leq n$ and let S be a set of n distinct points in the plane partitioned into subsets S_{0}, \ldots, S_{k-1} with $\left|V_{i}\right|=\left|S_{i}\right|(0 \leq i \leq k-1)$. This paper studies the problem of computing a crossing-free drawing of G such that each vertex of V_{i} is mapped to a distinct point of S_{i}. Lower and upper bounds on the number of bends per edge are proved for any $2 \leq k \leq n$. As a special case, we improve the upper and lower bounds presented in a paper by Pach and Wenger for $k=n$ [Graphs and Combinatorics (2001), 17:717-728].

1 Introduction

Let G be a planar graph with n vertices whose vertex set is partitioned into subsets V_{0}, \ldots, V_{k-1} for some positive integer $1 \leq k \leq n$ and let S be a set of n distinct points in the plane partitioned into subsets S_{0}, \ldots, S_{k-1} with $\left|V_{i}\right|=\left|S_{i}\right|(0 \leq i \leq k-1)$. We say that each index i is a color, G is a k-colored planar graph, and S is a k-colored set of points compatible with G. This paper studies the problem of computing a k-colored point-set embedding of G on S, i.e. a crossing-free drawing of G such that each vertex of V_{i} is mapped to a distinct point of S_{i}.

Computing k-colored point-set embeddings of k-colored planar graphs has applications in graph drawing, where the semantic constraints for the vertices of a graph G define the placement that these vertices must have in a readable visualization of G (see, e.g., $[6,15,18]$). For example, in the context of data base systems design some particularly relevant entities of an ER schema may be required to be drawn in the center and/or along the boundary of the diagram (see, e.g., [19]); in social network analysis, a typical technique to visualize and navigate large networks is to group the vertices into clusters and to draw the vertices of a same cluster close with each other and relatively far from those of other clusters (see, e.g., [5]). A natural way of modelling these types of semantic constraints is to color a (sub)set of the vertices of the input graph and to specify a set of locations having the same color for their placement in the drawing.

As a result, the problem of computing k-colored point-set embeddings of k-colored planar graphs has received considerable interest in the computational geometry and graph drawing communities, where particular attention has been devoted to the curve complexity of the computed drawings, i.e. the maximum number of bends along each edge. Namely, reducing the number of bends along the edges is a fundamental optimization goal when computing aesthetically pleasing drawings of graphs (see, e.g., $[6,15,18]$). Before presenting our results, we briefly review the literature on the subject. Since there is not a unified terminology, we slightly rephrase some of the known results; in what follows, n denotes both the number of vertices of a k-colored planar graph and the number of points of a k-colored set of points compatible with the graph.

Kaufmann and Wiese [16] study the "mono-chromatic version" of the problem, that is they focus on 1colored point-set embeddings. Given a 1-colored planar graph G (i.e. a planar graph G) and a (1-colored) set

[^0]S of points in the plane they show how to compute a 1-colored point-set embedding of G on S such that the curve complexity is at most two, which is proved to be worst case optimal. Further studies on 1-chromatic point-set embeddings can be found in [3, 4, 10]; these papers are devoted to characterizing which 1-colored planar graphs with n vertices admit 1 -colored point-set embeddings of curve complexity zero on any set of n points and to presenting efficient algorithms for the computation of such drawings.

2-colored point-set embeddings are studied in [9] where it is proved that subclasses of outerplanar graphs, including paths, cycles, caterpillars, and wreaths all admit a 2 -colored point-set embedding on any 2 -colored set of points such that the resulting drawing has constant curve complexity. It is also shown in [9] that there exists a 3 -connected 2 -colored planar graph G and a 2 -colored set of points S such that every 2 -colored point-set embedding of G on S has at least one edge requiring $\Omega(n)$ bends. These results are extended in [7], where an $O(n \log n)$-time algorithm is described to compute a 2 -colored point-set embedding with constant curve complexity for every 2 -colored outerplanar graph; in the same paper, it is also proved that for any positive integer h there exists a 3-colored outerplanar graph G and a 3-colored set of points such that any 3 -colored point-set embedding of G on S has at least one edge having more than h bends. Characterizations of families of 2 -colored planar graphs which admit a 2 -colored point-set embedding having curve complexity zero on any compatible 2 -colored set of points can be found in $[1,2,12,13,14]$.

Key references for the " n-chromatic version" of the problem are the works by Halton [11] and by Pach and Wenger [17]. Halton [11] proves that an n-colored planar graph always admits an n-colored point-set embedding on any n-colored set of points; however, he does not address the problem of optimizing the curve complexity of the computed drawing. About ten years later, Pach and Wenger [17] re-visit the question and show that an n-colored planar graph G always has an n-colored point-set embedding on any n-colored set of points such that each edge of the drawing has at most $120 n$ bends; they also give a probabilistic argument to prove that, asymptotically, the upper bound on the curve complexity is tight for a linear number of edges. More precisely, let G be an n-colored planar graph with m independent edges and let S be a set of n points in convex position such that each point is colored at random with one of n distinct colors. Pach and Wenger prove that, almost surely, at least $\frac{m}{20}$ edges of G have at least $\frac{m}{40^{3}}$ bends on any n-colored point-set embedding of G on S.

The present paper describes a unified approach to the problem of computing k-colored point-set embeddings for $2 \leq k \leq n$. The research is motivated by the following observations: (i) The literature has either focused on very few colors or on the n colors case; in spite of the practical relevance of the problem, little seems to be known about how to draw graphs where the vertices are grouped into $2 \leq k \leq n$ clusters and there are semantic constraints for the placement of these vertices. (ii) The $\Omega(n)$ lower bound on the curve complexity for 2 -colored point-set embeddings described in [9] implies that for any $2 \leq k \leq n$ there can be k-colored point-set embeddings which require a linear number of bends per edge. This could lead to the conclusion that in order to compute k-colored point-set embeddings that are optimal in terms of curve complexity one can arbitrarily n-color the input graph, consistently color the input set of points, and then use the drawing algorithm by Pach and Wenger [17]. However, the lower bound of [9] shows $\Omega(n)$ curve complexity for a constant number of edges, whereas the drawing technique of Pach and Wenger gives rise to a linear number of edges each having a linear number of bends. Hence, the total number of bends in a drawing obtained by the technique of [17] is $O\left(n^{2}\right)$ and it is not known whether there are small values of k for which $o\left(n^{2}\right)$ bends would be always possible. (iii) There is a large gap between the multiplicative constant factors that define the upper and the lower bound of the curve complexity of n-colored point-set embeddings [17]. Since the readability of a drawing of a graph is strongly affected by the number of bends along the edges, it is natural to study whether there exists an algorithm that guarantees curve complexity less than $120 n$. Our main results are as follows.

- A lower bound on the curve complexity of k-colored point-set embeddings is presented which establishes that $\Omega\left(n^{2}\right)$ bends may be necessary even for small values of k. Namely, it is shown that for every n such that $n \geq 16$ and for every k such that $2 \leq k \leq n$ there exists a k-colored planar graph G with n vertices and a k-colored set of points S compatible with G such that any k-colored point-set embedding of G on S has $\Omega(n)$ edges each having $\Omega(n)$ bends. This lower bound generalizes the one in [17] for $k=n$ and the one in [9] for $k=2$. Also, the constant factors of our lower bound for $k=n$ are significantly
larger than those in [17].
- An $O\left(n^{2} \log n\right)$-time algorithm is described that receives as input a k-colored planar graph $G(2 \leq k \leq$ n), a k-colored set of points S compatible with G, and computes a k-colored point-set embedding of G on S with curve complexity at most $3 n+2$. This reduces by about forty times the previously known upper bound for $k=n$ [17].
- Motivated by the previously described lower bound, special colorings of the input graph are studied which can guarantee a curve complexity that does not depend on n. Namely, it is shown that if the k-colored planar graph G has $k-1$ vertices each having a distinct color and $n-k+1$ vertices of the same color, it is always possible to compute a k-colored point-set embedding whose curve complexity is at most $9 k-1$.

Both the lower and the upper bounds are proved by using a common technique, based on translating the geometric problem into a topological augmentation problem. The upper bounds are based on an algorithm that computes a planar drawing of a graph such that all vertices are collinear, the vertices follow a given left-to-right order, and the edges "ripple only a few times".

The remainder of this paper is organized as follows. Preliminary definitions are in Section 2. The lower bound is described in Section 3. Sections 4, 6, and 7 are devoted to the drawing algorithms and their analysis both in terms of computational complexity and in terms of curve complexity. Conclusions and open problems can be found in Section 8.

2 Preliminaries

A drawing of a graph G is a geometric representation of G such that each vertex is a distinct point of the Euclidean plane and each edge is a simple Jordan curve connecting the points which represent its endvertices. A drawing is planar if any two edges can only share the points that represent common endvertices. A graph is planar if it admits a planar drawing.

Let $G=(V, E)$ be a graph. A k-coloring of G is a partition $\left\{V_{0}, V_{1}, \ldots, V_{k-1}\right\}$ of V where the integers $0,1, \ldots, k-1$ are called colors. In the rest of this section the index i is $0 \leq i \leq k-1$ if not differently specified. For each vertex $v \in V_{i}$ we denote by $\operatorname{col}(v)$ the color i of v. A graph G with a k-coloring is called a k-colored graph. Let S be a set of distinct points in the plane. We always assume that the points of S have distinct x-coordinates (this condition can always be satisfied by means of a suitable rotation of the plane). For any point $p \in S$ we denote by $x(p)$ and $y(p)$ the x - and y-coordinates of p, respectively. A k-coloring of S is a partition $\left\{S_{0}, S_{1}, \ldots, S_{k-1}\right\}$ of S. A set S of distinct points in the plane with a k-coloring is called a k-colored set of points. For each point $p \in S_{i} \operatorname{col}(p)$ denotes the color i of p. A k-colored set of points S is compatible with a k-colored graph G if $\left|V_{i}\right|=\left|S_{i}\right|$ for every i; if G is planar, we say that G has a k-colored point-set embedding on S if there exists a planar drawing of G such that: (i) every vertex v is mapped to a distinct point p of S with $\operatorname{col}(p)=\operatorname{col}(v)$, (ii) each edge e of G is drawn as a polyline λ; a point shared by any two consecutive segments of λ is called a bend of e. The curve complexity of a drawing is the maximum number of bends per edge. Throughout the paper n denotes the number of vertices of graph and m the number of its edges.

3 Lower Bounds on the Curve Complexity

In this section, we first show that for any integer k such that $3 \leq k \leq n$, the problem of computing k-colored point-set embeddings can require a linear number of edges each having a linear number of bends. Then, we show how this result can be extended to 2 -colored point-set embeddings.

The lower bound technique for $3 \leq k \leq n$ is based on a deterministic proof and uses combinatorial arguments. We first describe a 3 -colored planar graph with n vertices and a 3 -colored set of points compatible with this graph. We then show a property of any 3-colored point-set embedding of this graph on the set of
points; we finally describe a topological property of the graph. The union of the two properties gives rise to the lower bound. Since the lower bound for the special case of 2-colored point-set embeddings can be proved by means of the same approach but with slight differences in the constant factors, we just state the result in this section and refer the interested reader to the paper appendix for a detailed proof.

3.1 Diamond Graphs and 3-colored Sets of Points

(a)

(b)

Figure 1: (a) A diamond graph G_{n}. (b) A 3-colored set of points with an alternating bi-colored sequence compatible with G_{n}.

A diamond graph is a 3-colored planar graph as the one depicted in Figure 1(a). More formally, let $n \geq 12$, let $n^{\prime \prime}=(n \bmod 12)$ and let $n^{\prime}=n-n^{\prime \prime}=12 h$ for some $h>0$; a diamond graph $G_{n}=(V, E)$ is defined as follows:

- $V=V_{0} \cup V_{1} \cup V_{2}$
- $V_{0}=\left\{v_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{3}+\left\lceil\frac{n^{\prime \prime}}{2}\right\rceil\right.\right\}$
- $V_{1}=\left\{u_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{3}+\left\lfloor\frac{n^{\prime \prime}}{2}\right\rfloor\right.\right\}$
- $V_{2}=\left\{w_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{3}\right.\right\}$
- $E=E_{0} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$
- $E_{0}=\left\{\left(v_{i}, v_{i+1}\right) \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{3}+\left\lceil\frac{n^{\prime \prime}}{2}\right\rceil-1\right.\right\}$
- $E_{1}=\left\{\left(u_{i}, u_{i+1}\right) \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{3}+\left\lfloor\frac{n^{\prime \prime}}{2}\right\rfloor-1\right.\right\}$
- $E_{2}=\left\{\left(w_{i}, w_{i+1}\right),\left(w_{i+1}, w_{i+2}\right),\left(w_{i+2}, w_{i+3}\right),\left(w_{i+3}, w_{i}\right) \mid 0 \leq i \leq 4 h-1\right.$,
$i \bmod 4=0\}$
- $E_{3}=\left\{\left(w_{i+1}, w_{i+4}\right),\left(w_{i+3}, w_{i+4}\right),\left(w_{i+1}, w_{i+6}\right),\left(w_{i+3}, w_{i+6}\right) \mid 0 \leq i \leq 4 h-5\right.$,
$i \bmod 4=0\}$
- $E_{4}=\left\{\left(w_{4 h-1}, v_{\frac{n^{\prime}}{3}+\left\lceil\frac{n^{\prime \prime}}{2}\right\rceil}\right),\left(w_{4 h-3}, v_{0}\right),\left(w_{0}, u_{0}\right),\left(w_{2}, u_{\frac{n^{\prime}}{3}+\left\lfloor\frac{n^{\prime \prime}}{2}\right\rfloor}\right)\right\}$

Let $S=S_{0} \cup S_{1}$ be a 2-colored set of points all belonging to a horizontal straight line ℓ; we say that S is an alternating bi-colored sequence if $\left|S_{0}\right|=\left|S_{1}\right|$ or $\left|S_{0}\right|=\left|S_{1}\right|+1$ and no two points of the same color appear consecutively along the line ℓ. A 3-colored set of points with an alternating bi-colored sequence is a 3 -colored set of points $S=S_{0} \cup S_{1} \cup S_{2}$ such that $S^{\prime}=S_{0} \cup S_{1}$ is an alternating bi-colored sequence with no point of S_{2} on ℓ. See Figure 1(b) for an example.

3.2 Bi-colored Paths and Lower Bounds

Let $G_{n}(n \geq 12)$ be the diamond graph with n vertices and let S be a 3 -colored set of points with an alternating bi-colored sequence and compatible with G_{n}. Let Γ_{n} be a 3-colored point-set embedding of G_{n} on S. In what follows we shall assume that no bend is represented by a point that belongs to the horizontal straight line ℓ that contains the bi-colored sequence of S. Namely, if a point p representing a bend of an edge of Γ_{n} is a point of ℓ, we can slightly perturb the drawing so that the drawing remains planar and p is moved either above or below ℓ.

Let $p_{0}, p_{1}, \ldots, p_{8 h+n^{\prime \prime}-1}$ be the points of the bi-colored sequence of S ordered according to their x coordinates. Denote with z_{i} the vertex of G_{n} which is mapped to p_{i}. Notice that z_{i} and z_{i+1} are not adjacent in Γ_{n} because one of them belongs to V_{0} and the other one belongs to V_{1} in G_{n}. Connect in $\Gamma_{n} z_{i}$ and z_{i+1} with a straight-line segment $\left(i=0, \ldots, 8 h+n^{\prime \prime}-2\right)$; the obtained path is called bi-colored path on Γ_{n}.

Lemma 1 Let $G_{n}(n \geq 12)$ be a diamond graph and let S be a 3-colored set of points with an alternating bi-colored sequence such that S is compatible with G_{n}. Let Γ_{n} be a 3-colored point-set embedding of G_{n} on S, let e be an edge of Γ_{n}, and let Π be the bi-colored path on Γ_{n}. If Π crosses e btimes, then e has at least $b-1$ bends.

Proof: Since no bend of Γ_{n} is on ℓ and no vertex of V_{2} is on ℓ then each segment of e can cross the straight line that contains the bi-colored sequence of S at most once. Thus, if e is crossed b times by Π, then it consists of at least b segments. Since at most two endpoints of these segments can be the endvertices of e, it follows that e has at least $b-1$ bends.

Lemma 2 Let $G_{n}(n \geq 12)$ be a diamond graph and let S be a 3-colored set of points with an alternating bi-colored sequence such that S is compatible with G_{n}. Let Γ_{n} be a 3-colored point-set embedding of G_{n} on S and let Π be the bi-colored path on $\Gamma_{n} . \Pi$ crosses at least $\frac{n^{\prime}}{6}-1$ edges of Γ_{n}, where $n^{\prime}=n-(n \bmod 12)$; also, Π crosses each of these edges at least $\frac{n^{\prime}}{6}$ times.

Proof: For a planar drawing of G_{n} and a cycle $C \in G_{n}$ we say that C separates a subset $V^{\prime} \subset V$ from a subset $V^{\prime \prime} \subset V$ if all vertices of V^{\prime} lie in the interior of the region bounded by C and all vertices of $V^{\prime \prime}$ are in the exterior of this region. In every planar drawing of G_{n} each of the h cycles defined by the edges in the set E_{2} separates all vertices in V_{0} from all vertices in V_{1}. Thus every edge of Π must cross these h cycles. Analogously, in every planar drawing of G_{n} each of the $h-1$ cycles defined by the edges in the set E_{3} separates all vertices in V_{0} from all vertices in V_{1}. Therefore, every edge of Π must also cross these $h-1$ cycles. The number of edges in Π is $\frac{2 n^{\prime}}{3}+n^{\prime \prime}-1$, where $n^{\prime \prime}=n-n^{\prime}=n \bmod 12$, and hence each cycle is crossed $\frac{2 n^{\prime}}{3}+n^{\prime \prime}-1$ times. Since each cycle has four edges, we have that at least $2 h-1=\frac{n^{\prime}}{6}-1$ edges (one per cycle) are crossed at least $\left\lceil\frac{n^{\prime}}{6}+\frac{n^{\prime \prime}}{4}-\frac{1}{4}\right\rceil \geq\left\lceil\frac{12 h}{6}-\frac{1}{4}\right\rceil=\left\lceil 2 h-\frac{1}{4}\right\rceil=2 h=\frac{n^{\prime}}{6}$ times.

We are now ready to prove the lower bound.
Theorem 1 For every $n \geq 12$ and for every $3 \leq k \leq n$ there exists a k-colored planar graph G with n vertices and a k-colored set of points S compatible with G such that any k-colored point-set embedding of G on S has at least $\frac{n^{\prime}}{6}-1$ edges each having at least $\frac{n^{\prime}}{6}-1$ bends, where $n^{\prime}=n-(n \bmod 12)$.

Proof: Given any $n \geq 12$ construct a diamond graph G_{n} and consider a 3-colored set of points S with an alternating bi-colored sequence which is compatible with G_{n}.

Arbitrarily divide the set of colors $\{0,1, \ldots, k-1\}$ in three non-empty subsets C_{0}, C_{1} and C_{2}. Arbitrarily color the vertices of G_{n} in the set V_{i} by using the colors in the set $C_{i}(i=0,1,2)$, with the only requirement that each color is used at least once. Analogously, arbitrarily color the points of S in the set S_{i} by using the colors in the set $C_{i}(i=0,1,2)$ with the only requirement that S remains compatible with G_{n}. As a result we have a k-colored graph G_{n} with n vertices and a k-colored set of points S compatible with G_{n}. Let Γ_{n} be a k-colored point-set embedding of G_{n} on S. Let Π be the bi-colored path on Γ_{n}. By Lemma 2 there are at least $\frac{n^{\prime}}{6}-1$ edges of Γ_{n} that are crossed by Π at least $\frac{n^{\prime}}{6}$ times. By Lemma 1 each of these edges has at least $\frac{n^{\prime}}{6}-1$ bends in Γ_{n}.

We can compare the result of Theorem 1 with the known lower bound for $k=n$ [17]. Let G be an n-colored graph with m independent edges and let S be a set of n points in convex position such that each point is colored at random with one of n distinct colors. In [17] it is proved that, almost surely, at least $\frac{m}{20}$ edges of G have at least $\frac{m}{40^{3}}$ bends on any possible n-colored point-set embedding of G on S. A comparison with the result in Theorem 1 can be easily done by observing that the maximum number of independent edges in a graph with n vertices is at most $n / 2$. Also, we remark the argument of Theorem 1 is deterministic and that it can be applied to all values of k such that $3 \leq k \leq n$.

We conclude this section by extending Theorem 1 to the case of 2 -colored point-set embeddings. The extension uses the same reasoning illustrated above for three or more colors, but it requires slightly different definitions and gives rise to slightly smaller constant factors. While all details have been moved to the paper appendix, we give here only a brief sketch of the ideas behind this lower bound. Intuitively, a 2 -colored diamond graph can be regarded as a diamond graph where the vertices of set V_{1} and V_{2} have the same color and the vertices of set V_{0} are such that $\left|V_{0}\right|=\left|V_{1}\right|+\left|V_{2}\right|$. Figure 2(a) is an example of a 2-colored diamond graph (see also the appendix for a formal definition of a 2-colored diamond graph); Figure 2(b) is an alternating bi-colored sequence compatible with the graph of Figure 2(a). With the same reasoning illustrated above, the following can be proved (see the appendix for details).

Theorem 2 For every $n \geq 16$ there exists a 2 -colored planar graph G_{n} with n vertices and a 2 -colored set of points S compatible with G_{n} such that any 2 -colored point-set embedding of G_{n} on S has at least $\frac{n^{\prime}}{8}-1$ edges each having at least $\frac{n^{\prime}}{8}-1$ bends, where $n^{\prime}=n-(n \bmod 16)$.

4 Upper Bounds: Overview of the Approach

Theorems 1 and 2 show that, for every $2 \leq k \leq n, \Omega(n)$ bends per edge can be required in a k-colored pointset embedding of a k-colored graph G with n vertices. Therefore, a drawing algorithm that is asymptotically optimal in terms of curve complexity for all values of k such that $2 \leq k \leq n$ can be designed as follows: (1) Arbitrarily assign each vertex of G having color i to a distinct point of color i (if there is more than one vertex of G having color i); and (2) Apply the drawing algorithm of Pach and Wenger [17], which computes an n-colored point-set embedding of G whose curve complexity is at most $120 n$.

However, since optimizing the number of bends per edge is an important requirement that guarantees the readability of a drawing of a graph $[6,15,18]$, we present in the next three sections a new drawing strategy that gives rise to n-colored point-set embeddings with curve complexity at most $3 n+2$. The key idea is to translate the geometric problem into an equivalent topological problem, namely that of computing a Hamiltonian path of a planar graph by suitably augmenting it with dummy edges that do not cross the real edges "too many times". An overview of the content of the next three sections is as follows:

- The notion of augmenting k-colored Hamiltonian path for a k-colored planar graph G is introduced (Section 5).
- A theorem that proves that the number of crossings between the edges of an augmenting k-colored Hamiltonian path and the edges of G define an upper bound on the curve complexity of a k-colored point-set embedding of G is proved (Theorem 3).

(a)
(b)

Figure 2: (a) A 2-colored diamond graph G_{n}. (b) An alternating bi-colored sequence compatible with G_{n}

- An algorithm that, for any linear ordering of the vertices of G, computes a planar drawing of G such that all vertices are collinear, the vertices in the drawing follow the given ordering, and each edge can be decomposed into at most three x-monotone curves is presented (Section 6).
- Finally, the above algorithm is exploited to compute a k-colored hamiltonian path on G and then a k-colored point-set embedding such that every edge bends at most $3 n+2$ times. (Section 7).

5 Colored Hamiltonicity

A k-colored sequence σ is a linear sequence of (possibly repeated) colors $c_{0}, c_{1}, \ldots, c_{n-1}$ such that $0 \leq$ $c_{j} \leq k-1(0 \leq j \leq n-1)$. We say that σ is compatible with a k-colored graph G if, for every $0 \leq$ $i \leq k-1$, color i occurs $\left|V_{i}\right|$ times in σ. Let S be a k-colored set of points and let $p_{0}, p_{1}, \ldots, p_{n-1}$ be the points of S ordered according to their x-coordinates. We say that S induces the k-colored sequence $\sigma=\operatorname{col}\left(p_{0}\right), \operatorname{col}\left(p_{1}\right), \ldots, \operatorname{col}\left(p_{n-1}\right)$. Figures $3(\mathrm{a})$ and $3(\mathrm{~b})$ show an example of a 3 -colored planar graph and of a 3 -colored sequence compatible with it and induced by a 3 -colored set of points.

A graph G has a Hamiltonian path if it has a simple path that contains all the vertices of G. If G is a k-colored graph and $\sigma=c_{0}, c_{1}, \ldots, c_{n-1}$ is a k-colored sequence compatible with G, a k-colored Hamiltonian path of G consistent with σ is a Hamiltonian path $v_{0}, v_{1}, \ldots, v_{n-1}$ such that $\operatorname{col}\left(v_{i}\right)=c_{i}(0 \leq i \leq n-1)$. A k-colored planar graph G can always be augmented to a (not necessarily planar) k-colored graph G^{\prime} by adding to G a suitable number of dummy edges and such that G^{\prime} has a k-colored Hamiltonian path \mathcal{H}^{\prime} consistent with σ and that includes all dummy edges. Figure 3(c) shows an augmentation of the graph of Figure 3(a) such that the augmented (non-planar) graph has a 3-colored Hamiltonian consistent with the sequence of Figure 3(b).

If G^{\prime} is not planar, we can apply a planarization algorithm (see, e.g., [6]) to G^{\prime} with the constraint that only crossings between dummy edges and edges of $G-\mathcal{H}^{\prime}$ are allowed (see Figure $3(\mathrm{~d})$). Such a planarization algorithm constructs an embedded planar graph $G^{\prime \prime}$, called augmented Hamiltonian form of G, where each edge crossing is replaced with a dummy vertex, called division vertex. By this procedure, an edge e of \mathcal{H}^{\prime} can be transformed into a path whose internal vertices are division vertices. The subdivision of \mathcal{H}^{\prime} obtained this way is called an augmenting k-colored Hamiltonian path of G consistent with σ and is denoted as $\mathcal{H}^{\prime \prime}$. If every edge e of G is crossed at most d times in G^{\prime} (i.e. e is split by at most d division vertices in $G^{\prime \prime}$), $\mathcal{H}^{\prime \prime}$ is said to be an augmenting k-colored Hamiltonian path of G consistent with σ and inducing at most d division vertices per edge. Notice that d is the number of division vertices that have been inserted along each edge of G; for example, the path $\mathcal{H}^{\prime \prime}$ of Figure 3(d) is an augmenting 3-colored Hamiltonian path of the graph of Figure 3(a) consistent with the sequence of Figure 3(b) and inducing one division vertex per edge, because each edge of $\mathcal{H}^{\prime \prime}$ crosses each edge of G at most once. If G^{\prime} is planar, then the augmented Hamiltonian form of G is G^{\prime} and $\mathcal{H}^{\prime \prime}$ coincides with \mathcal{H}^{\prime}. If both endvertices of $\mathcal{H}^{\prime \prime}$ are on the external face of the augmented Hamiltonian form of G, then $\mathcal{H}^{\prime \prime}$ is said to be external.

Let v_{d} be a division vertex for an edge e of G. Since a division vertex corresponds to a crossing between e and an edge of \mathcal{H}^{\prime}, there are four edges incident on v_{d} in $G^{\prime \prime}$; two of them are dummy edges that belong to $\mathcal{H}^{\prime \prime}$, the other two are two "pieces" of edge e obtained by splitting e with v_{d}. Let $\left(u, v_{d}\right)$ and $\left(v, v_{d}\right)$ be the latter two edges. We say that v_{d} is a flat division vertex if it is encountered after u and before v while walking along $\mathcal{H}^{\prime \prime} ; v_{d}$ is a pointy division vertex otherwise. The following theorem refines and improves a similar result presented in [7]. The algorithm described in its proof is based on the drawing technique of Kaufmann and Wiese [16].

Theorem 3 Let G be a k-colored planar graph with n vertices, let σ be a k-colored sequence compatible with G, and let \mathcal{H} be an augmenting k-colored Hamiltonian path of G consistent with σ inducing at most d_{f} flat and d_{p} pointy division vertices per edge. If \mathcal{H} is external then G admits a k-colored point-set embedding on any set of points that induces σ such that the maximum number of bends along each edge is $d_{f}+2 d_{p}+1$.

Proof: Let S be a k-colored set of points that induces the k-colored sequence σ. We shall use path \mathcal{H} to construct a k-colored point-set embedding of G on S. Let $\mathcal{H}=w_{0}, w_{1}, \ldots, w_{n^{\prime}-1}$. Path \mathcal{H} contains also the

Figure 3: (a) A 3-colored planar graph graph G. (b) A 3-colored set of points S consistent with G and its induced 3-colored sequence σ, compatible with G. (c) An augmentation of G to a (non-planar) 3-colored graph G^{\prime} that admits a 3-colored Hamiltonian path \mathcal{H}^{\prime} consistent with σ. Path \mathcal{H}^{\prime} is highlighted in bold. Dashed edges are dummy edges. (d) A planar graph $G^{\prime \prime}$ obtained by applying a planarization algorithm to G^{\prime}. The path highlighted in bold is an augmenting 3 -colored Hamiltonian path $\mathcal{H}^{\prime \prime}$ of G consistent with σ and inducing at most 1 division vertex per edge.
division vertices, which are not vertices of G. We give these vertices a new color k. In order to draw them we define a new set of points S^{\prime} by adding a suitable number of points to S, all having color k and placed so that if $q_{0}, q_{1}, \ldots, q_{n^{\prime}-1}$ are the points of S^{\prime} ordered according to their x-coordinates, then $c\left(q_{j}\right)=c\left(w_{j}\right)$ $\left(j=0, \ldots, n^{\prime}-1\right)$. In the following we denote as G^{\prime} the augmented Hamiltonian form of G. We can now use the the drawing technique of Kaufmann and Wiese [16] to point set embed G^{\prime} on S^{\prime}; for completeness, we recall this technique in the following.

Map each vertex w_{j} to point $q_{j}\left(j=0, \ldots, n^{\prime}-1\right)$ in S^{\prime} and draw the edges of path \mathcal{H} as straight-line segments between their endvertices. Each edge e not in \mathcal{H} is drawn by using two segments, one with slope $s>0$ and the other with slope $-s$. In order to avoid crossings between e and the edges in \mathcal{H} the slope s is chosen to be greater than the absolute value of the slope of each edge in \mathcal{H}. With segments of slope $\pm s$, it is possible to draw each edge e above or below \mathcal{H}. Since \mathcal{H} is external, there exists a planar embedding of G^{\prime} such that w_{0} and $w_{n^{\prime}-1}$ are on the external face. In such an embedding every edge not in \mathcal{H} is either on the left-hand side of \mathcal{H}, in which case it is drawn above \mathcal{H}, or on the right-hand side of \mathcal{H} when walking from w_{0} to $w_{n^{\prime}-1}$, in which case it is drawn below \mathcal{H}.

The resulting drawing is planar except that edges outside \mathcal{H} that are incident on the same vertex may contain overlapping segments. To eliminate overlapping, perturb overlapping edges by decreasing the absolute value of their segment slopes by slightly different amounts. The slope changes are chosen to be small enough to avoid creating edge crossings while preserving the same planar embedding. For details about this rotation see [16].

The drawing obtained by the technique described above is a $(k+1)$-colored point-set embedding of G^{\prime} on S^{\prime} with at most one bend per edge. Removing the vertices and edges added to obtain G^{\prime} from G we have a k-colored point-set embedding of G on S. Consider an edge e of G and suppose that e is split by means of $d_{t}=d_{f}+d_{p}$ division vertices in G^{\prime}. Then there are $d_{t}+1$ edges in G^{\prime} corresponding to e, each one having at most one bend. As we pointed out above, there are four edges incident on every dummy vertex d; two of them are dummy edges that belong to \mathcal{H}, the other two are two "pieces" of the real edge e obtained by splitting e by means of d. After the removal of dummy elements (vertices and edges) only the latter two edges remain in the drawing. Denote them as (u, d) and (v, d). Since these edges are not in \mathcal{H}, one of them is above \mathcal{H} and the other one is below \mathcal{H}. Thus a segment s_{u} of (u, d) and a segment s_{v} of (v, d) are incident on d, one from above and one from below. Since d has only one segment incident from above and only one segment incident from below, the rotation performed to remove overlap does not affect s_{u} and s_{v}, which therefore have slope either $+s$ or $-s$. If d is a pointy division vertex then s_{u} and s_{v} have different slopes and the removal of d gives an extra bend; if d is a flat division vertex, then s_{u} and s_{v} have the same slope and d can be removed without introducing any extra bend. Thus we can have d_{p} extra bends for an overall curve complexity of $d_{t}+1+d_{p}=d_{f}+2 d_{p}+1$.

Based on Theorem 3, we will show our upper bound by proving that for any n-colored sequence σ an n-colored planar graph G always admits an augmenting k-colored Hamiltonian path of G consistent with σ such that for each edge $d_{f} \leq 3 n-3$ and $d_{p} \leq 2$.

6 Computing Topological Book Embeddings with a Given Linear Ordering

The algorithm to compute an augmenting k-colored Hamiltonian path of G consistent with σ relies on a geometric technique that starts with a topological book embedding of G (a special type of planar drawing where all vertices are aligned, defined in the next paragraphs) and transforms it into a new topological book embedding that respects the given linear ordering for the vertices of G.

A spine is an horizontal line. Let ℓ be a spine and let p, q be two points of ℓ. An arc is a circular arc passing through the three points p, q, and r, where r is a point of the perpendicular bisector of $\overline{p q}$, at a distance $\frac{d(p, q)}{4}$ from ℓ. The arc can be either in the half-plane above the spine or in the half-plane below the spine; in the first case we say that the arc is in the top page of ℓ, otherwise it is in the bottom page of ℓ.

Let $G=(V, E)$ be a planar graph. A topological book embedding of G is a planar drawing such that all
vertices of G are represented as points of a spine ℓ and each edge can be either above the spine, or below the spine, or it can cross the spine. Each crossing between an edge and the spine is called a spine crossing. It is also assumed that in a topological book embedding every edge consists of one or more arcs such that no two consecutive arcs are in the same page. An edge e is said to be in the top (bottom) page of the spine if it consists of exactly one arc and this arc is in the top (bottom) page. Figure 4 shows two examples of topological book embeddings.

A monotone topological book embedding is a topological book embedding such that each edge crosses the spine at most once. Also, let $e=(u, v)$ be an edge of a monotone topological book embedding that crosses the spine at a point $p ; e$ is such that if u precedes v in the left-to-right order along the spine then p is between u and v, the arc with endpoints u and p is in the bottom page, and the arc with endpoints u and v is in the top page. Figure $4(\mathrm{a})$ is an example of a monotone topological book embedding of a planar graph.

Figure 4: Two topological book embeddings of a planar graph G. (a) A monotone topological book embedding of G. (b) A 3-chain topological book embedding of G. The bold edge consists of three x-monotone chains.

Theorem 4 [8] Every planar graph admits a monotone topological book embedding. Also, a monotone topological book embedding can be computed in $O(n)$ time, where n is the number of the vertices in the graph.

Let $e=(u, v)$ be an edge of a topological book embedding. An x-monotone portion of e is a portion π_{e} of e such that every vertical line intersects π_{e} at most once. An x-monotone portion of e is maximal if it is not contained in any other x-monotone portion of e. A maximal x-monotone portion of e is called an x-monotone chain of e. We say that a topological book embedding is a k-chain topological book embedding if each edge consists of at most $k x$-monotone chains. Figure $4(\mathrm{~b})$ is an example of a 3 -chain monotone topological book embedding of the same graph of Figure 4(a): the bold edge in the drawing consists of three x-monotone chains and all other edges consist of at most two x-monotone chains. Notice that the linear order of the vertices along the spine in Figure 4(b) is different from the one in Figure 4(a).

Before presenting our drawing algorithm to compute a topological book embedding with a given left-to-right order of the vertices along the spine we need to introduce another concept, which generalizes the notion of topological book embedding. Let ℓ and ℓ^{\prime} be two distinct spines such that ℓ is above $\ell^{\prime} ; \ell$ is called upper spine and ℓ^{\prime} is called lower spine. A 2 -spine drawing Γ^{*} of G is a (not necessarily planar) drawing such that each vertex of G is represented as a point either of the upper spine or of the lower spine and each edge crosses the spines a finite number of times. More precisely, an edge of a 2 -spine drawing can have both endvertices in the same spine, or in different spines. If both endvertices are in the same spine, the edge consists of a sequence of arcs such that any two consecutive arcs are on opposite pages of the spine. If one endvertex is in the upper spine and the other is in the lower spine, then the edge consists of: (i) a (possibly empty) sequence of arcs whose endpoints are in the upper spine, called the upper sequence of the edge; (ii) a straight-line segment between the two spines, called the inter-spine segment of the edge; (iii) a (possibly empty) sequence of arcs whose endpoints are in the lower spine, called the lower sequence of the edge. It is also assumed that any two consecutive arcs of the upper (lower) sequence are on opposite pages of the upper (lower) spine. In what follows, we shall sometimes treat arcs and inter-spine segments in the same way; in
these cases we shall use the term sub-edge of an edge to mean either an arc or an inter-spine segment of an edge in a 2 -spine drawing.

Figure 5 is an example of a planar 2-spine drawing of the same graph of Figure $4(\mathrm{a}) ;(1,3)$ is an example of an edge with both endvertices on the same spine. Edge $e=(2,6)$ in Figure 5 has its endvertices on different spines: The upper sequence is the sequence of arcs of e from p to 6 ; the straight-line segment $\overline{p q}$ is the inter-spine segment of e; the sequence of arcs of e from q to 2 is the lower sequence of e.

Observe that if all vertices are on the same (upper or lower) spine and if the drawing is planar, a 2 -spine drawing of a graph is a topological book embedding of the graph.

Figure 5: A 2-spine drawing of the graph in Figure 4(a). The bold edge has an upper sequence, an inter-spine segment, and a lower sequence.

6.1 Algorithm LinearOrderDraw

Algorithm LinearOrderDraw receives as input a planar graph G with n vertices and a linear ordering λ of the vertices of G. It produces as output a 3 -chain topological book embedding Γ^{\prime} of G such that the left-toright order of the vertices along the spine of Γ^{\prime} is λ. By using Theorem 4, Algorithm LinearOrderDraw computes first a monotone topological book embedding of G, denoted as Γ; then, it transforms Γ into the 3 -chain topological book embedding Γ^{\prime}. Let ℓ be the spine of Γ and let v_{0}, \ldots, v_{n-1} be the vertices of G in the left-to-right order they have along ℓ (note that this order can be different from λ).

A horizontal line below ℓ is chosen as the spine of Γ^{\prime} and is denoted as ℓ^{\prime}. Let δ be the distance between the leftmost vertex and the rightmost vertex of Γ along spine ℓ. Choose the distance between ℓ and ℓ^{\prime} greater than $\sqrt{3} \delta$. Also, choose an interval I on ℓ^{\prime} of size at most δ. Every vertex v of G has a source position $s(v)$ defined by the point along ℓ representing v in Γ and a target position $t(v)$ on ℓ^{\prime} such that $t(v)$ will represent v in Γ^{\prime}. The target positions are chosen inside interval I in such a way that their left-to-right order corresponds to λ. Also, the endpoints of every arc a that Algorithm LinearOrderDraw will draw either in top or in the bottom page of the lower spine will be points inside interval I. The trajectory of vertex v is the straight-line segment $\overline{s(v) t(v)}$ and it is denoted as $\tau(v)$.

Algorithm LinearOrderDraw visits the vertices of Γ in the left-to-right order along ℓ and executes n steps. At each step, a vertex is moved to its target position on ℓ^{\prime} and a planar 2-spine drawing with upper spine ℓ and lower spine ℓ^{\prime} of G is computed. More precisely, a sequence $\Gamma_{0}, \ldots, \Gamma_{n}$ of planar 2 -spine drawings with spines ℓ and ℓ^{\prime} are computed such that Γ_{0} coincides with Γ and Γ_{n} coincides with Γ^{\prime}. At Step i ($0 \leq i \leq n-1$), the planar 2-spine drawing Γ_{i} is transformed into the planar 2-spine drawing Γ_{i+1} by moving v_{i} to its target position on ℓ^{\prime}. When moving vertex v_{i} to its target position, Algorithm LinearOrderDraw maintains the planar embedding of Γ and changes only the shape of those edges incident on v_{i} and the shape
of every edge that is intersected by the trajectory of v_{i}. Details on how the shapes of these edges are changed are given below.

Figure 6: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges intersected by the trajectory $\tau\left(v_{i}\right)$ of v_{i}. The trajectory is the light grey segment. (a) and (c) describe the change of the shapes of left inter-spine segments and of arcs in the lower sequence. (b) and (d) describe the change of the shapes of right inter-spine segments and of arcs in the lower sequence.

- Transformation of the shape of the edges intersected by the trajectory of v_{i}. The trajectory $\tau\left(v_{i}\right)$ can intersect both inter-spine segments and arcs of the lower sequence of some edges. Let $a_{0}, a_{1}, \ldots, a_{h-1}$ be the sub-edges crossed by $\tau\left(v_{i}\right)$ in the order they are encountered when going from $s\left(v_{i}\right)$ to $t\left(v_{i}\right)$ along $\tau\left(v_{i}\right)$. If a_{j} is an arc, denote its endpoints on ℓ^{\prime} as y_{j} and z_{j} and assume y_{j} to the left of z_{j}. If a_{j} is an inter-spine segment and the endpoint of a_{j} that is on ℓ^{\prime} is to the left of $t\left(v_{i}\right)$ denote this endpoint as y_{j}, the other one as z_{j}, and call the inter-spine segment a left inter-spine segment (see also Figure $6(\mathrm{a})$); if, otherwise, the endpoint of a_{j} that is on ℓ^{\prime} is to the right of $t\left(v_{i}\right)$ denote this endpoint as z_{j}, the other one as y_{j}, and call the inter-spine segment a right inter-spine segment (see also Figure 6(b)).
Algorithm Linearorderdraw modifies the shape of the h sub-edges $a_{0}, a_{1}, \ldots, a_{h-1}$ intersected by $\tau\left(v_{i}\right)$ as follows. Refer to Figures $6(\mathrm{c})$ and $6(\mathrm{~d})$. Let t^{\prime} and $t^{\prime \prime}$ be two points of $\ell^{\prime} \cap I$ such that t^{\prime}, $t\left(v_{i}\right)$ and $t^{\prime \prime}$ appear in this left-to-right order along ℓ^{\prime} and no vertex or spine crossing is between t^{\prime} and $t\left(v_{i}\right)$ and between $t\left(v_{i}\right)$ and $t^{\prime \prime}$ on ℓ^{\prime}. Choose h points $p_{0}, p_{1}, \ldots, p_{h}$ such that each $p_{j}(0 \leq j \leq h)$ is between t^{\prime} and $t\left(v_{i}\right)$ on ℓ^{\prime} and p_{j} is to the right of p_{j+1} on $\ell^{\prime}(0 \leq j \leq h-1)$. Choose h points $q_{0}, q_{1}, \ldots, q_{h}$ such that each $q_{j}(0 \leq j \leq h)$ is between $t\left(v_{i}\right)$ and $t^{\prime \prime}$ on ℓ^{\prime} and q_{j} is to the left of q_{j+1} on $\ell^{\prime}(0 \leq j \leq h-1)$. If a_{j} is an arc it is replaced by: (i) an arc with endpoints y_{j} and p_{j}; (ii) an arc with endpoints p_{j} and q_{j}; (ii) an arc with endpoints q_{j} and z_{j}. If a_{j} is a left inter-spine segment it is replaced by: (i) an arc with endpoints y_{j} and p_{j}; (ii) an arc with endpoints p_{j} and q_{j}; (iii) an inter-spine segment with endpoints q_{j} and z_{j} (Figure $6(\mathrm{c})$). If a_{j} is a right inter-spine segment it is replaced by: (i) an inter-spine segment with endpoints y_{j} and p_{j}; (ii) an arc with endpoints p_{j} and q_{j}; (iii) an arc with endpoints q_{j} and z_{j} (Figure $6(\mathrm{~d})$).
- Transformation of the shape of the edges incident on v_{i}. Partition the edges incident on v_{i} in the drawing Γ into four sets. The set $E_{t, l}\left(E_{b, l}\right)$ contains the edges $e=\left(v_{j}, v_{i}\right)$ such that $j<i$ and the arc of e incident on v_{i} is in the top (bottom) page of the spine ℓ of Γ. Analogously, $E_{t, r}\left(E_{b, r}\right)$ contains the edges $e=\left(v_{j}, v_{i}\right)$ such that $i<j$ and the arc of e incident on v_{i} is in the top (bottom) page of ℓ.
- Let $e=\left(v_{j}, v_{i}\right)$ be an edge of $E_{t, l}$ or $E_{b, l}$. Refer to Figure 7. When v_{i} is moved to its target position, v_{j} has already been processed and moved to its target position on ℓ^{\prime} during a previous step of Algorithm LinearOrderDraw because $j<i$ and the algorithm processes the vertices of Γ in a left-to-right order. Hence, when going from v_{j} to v_{i} along e in Γ_{i} we find the (possibly empty) lower sequence σ_{l} of e, the inter-spine segment a of e, and the (possibly empty) upper sequence σ_{u} of e. Let x^{\prime} be the endpoint of a on ℓ^{\prime}. Replace a and σ_{u} with an arc whose endpoints are x^{\prime} and $t\left(v_{i}\right)$.

Figure 7: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges incident on v_{i} and belonging to $E_{t, l}$ or $E_{b, l}$.

- Let $e=\left(v_{i}, v_{j}\right)$ be an edge of $E_{b, r}$. Refer to Figure 8). Edge e is represented in Γ_{i} as an arc a with endpoints $s\left(v_{i}\right)$ and $s\left(v_{j}\right)$. Arc a is replaced by the straight-line segment $\overline{t\left(v_{i}\right) s\left(v_{j}\right)}$.
- Let $e_{j}=\left(v_{i}, v_{i_{j}}\right)(0 \leq j \leq h-1)$ be the edges of $E_{t, r}$ with $i_{j}<i_{j+1}(0 \leq j<h-1)$. Refer to Figure 8. Let s^{\prime} be a point on ℓ such that s^{\prime} is to the right of $s\left(v_{i}\right)$ and no vertex or spine crossing is between $s\left(v_{i}\right)$ and s^{\prime} on ℓ. Choose h points $p_{0}, p_{1}, \ldots, p_{h-1}$ such that each $p_{j}(0 \leq j \leq h-1)$ is between $s\left(v_{i}\right)$ and s^{\prime} on ℓ and p_{j} is to the left of p_{j+1} along $\ell(0 \leq j<h-1)$. Edge e_{j} is represented in Γ_{i} as an arc a_{j} with endpoints $s\left(v_{i}\right)$ and $s\left(v_{i_{j}}\right)(0 \leq j \leq h-1)$. Arc a_{j} is replaced by the segment $\overline{t\left(v_{i}\right) p_{j}}$ and the arc with endpoints p_{j} and $s\left(v_{i_{j}}\right)$.

Figure 8: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges incident on v_{i} and belonging to $E_{t, r}$ or $E_{b, r}$.

6.2 Analysis of Algorithm LinearOrderDraw

In this section we prove the correctness of Algorithm LinearOrderDraw and analyze its time complexity. As explained in the previous section, Algorithm Linear OrderDraw computes first a monotone topological book embedding Γ_{0} and then it executes n steps to transform Γ_{0} into a 3-chain topological book embedding. We distinguish each of these n steps with an index i such that $0 \leq i \leq n-1$; recall that Step i computes a drawing denoted as Γ_{i+1}. Also, we shall conventionally denote as Step (-1) the initial step that computes Γ_{0}. Let a be a sub-edge of a drawing Γ_{i} that is replaced in Γ_{i+1} by other sub-edges, and let a^{\prime} be one of these sub-edges. We say that a^{\prime} replaces a; we also say that a^{\prime} is a replacing sub-edge of Step i. We start by proving that the output of each step is a 2 -spine drawing.

Lemma 3 Let Γ_{i} be the drawing computed by Step $(i-1)$ of Algorithm LinearOrderDraw ($0 \leq i \leq n-1$). Γ_{i} is a 2-spine drawing.

Proof: Step (-1) computes a monotone topological book embedding Γ_{0} by using Theorem 4. By definition, a monotone topological book embedding is also a 2 -spine drawing.

Assume by induction that the drawing Γ_{i} computed by Step $(i-1)(1 \leq i \leq n-1)$ is a 2 -spine drawing. The vertices of Γ_{i+1} are either points of the lower or of the upper spine by construction. Step i of Algorithm LinearorderDraw modifies the shape of those edges that are intersected by the trajectory of v_{i} and of those edges that are incident to v_{i}. Let e be an edge of Γ_{i} that is intersected by the trajectory of v_{i}. Algorithm Linearorderdraw either replaces an arc of e with three arcs or it replaces the inter-spine segment of e with two arcs and a new inter-spine segment (see also Figure 6); in both cases any two consecutive arcs are on opposite pages.

Let e be an edge of Γ_{i} incident on v_{i}. If $e \in E_{t, l}$ or $e \in E_{b, l}$, then after moving v_{i} to its target position e has both endvertices on a same spine; in this case Algorithm LinearorderDraw replaces the inter-spine segment of e and the upper sequence of e (if such a sequence exists) with an arc having both endpoints on ℓ^{\prime} (see also Figure 8); if $e \in E_{t, r}$ or $e \in E_{b, r}$, then after moving v_{i} to its target position, edge e has its endvertices on different spines; in this case Algorithm LinearOrderDraw replaces an arc of e having both endpoints on ℓ with an inter-spine segment plus (possibly) another arc (see also Figure 8); in both cases the new shape of e respects the definition of 2 -spine drawing. It follows that Γ_{i+1} is also a 2 -spine drawing.

To complete the prof of correctness of Algorithm LinearOrderDraw, we will first prove that each 2 -spine drawing Γ_{i} computed by Step $(i-1)$ is a planar drawing (Lemma 4), and then show that Γ_{n} is a 3-chain monotone topological book embedding such that the linear order of the vertices along the spine respects the given linear order (Lemma 5). The next properties are used to prove the planarity of Γ_{i}. We use the same notation and terminology as in the previous section.

Property 1 The distance between ℓ and ℓ^{\prime} and the interval I on ℓ^{\prime} are such that: (i) the trajectory of any vertex intersects an arc with endpoints p and q only if one of the endpoints of the trajectory is in the closed interval defined by p and q; (ii) no two arcs such that one has its endpoints in the lower spine and the other has its endpoints in the upper spine can intersect.

Proof: Let Γ_{0} be the monotone topological book embedding computed at Step (-1) of Algorithm LinearOrderDraw. Let δ be the distance between the leftmost vertex and the rightmost vertex of Γ_{0} along spine ℓ. The distance between ℓ and ℓ^{\prime} is chosen to be greater than $\sqrt{3} \delta$ and the interval I is chosen to have length at most δ. Since an arc of an edge with endpoints p and q is drawn as a circular arc passing trough p, q, and a point of the perpendicular bisector of $\overline{p q}$ at a distance $\frac{d(p, q)}{4}$ from ℓ or ℓ^{\prime}, all tangent lines to each arc have slope $-\tan \frac{\pi}{6} \leq \sigma \leq \tan \frac{\pi}{6}$. By choosing the distance between ℓ and ℓ^{\prime} greater than $\sqrt{3} \delta$ we have that the slope of each trajectory is either lower than $-\tan \frac{\pi}{6}$ or greater than $\tan \frac{\pi}{6}$. This implies that a trajectory intersects an arc with endpoints p and q only if one of the endpoints of the trajectory is in the closed interval defined by p and q. Also, let a be an arc of any of the drawings computed by any of the steps of Algorithm LinearOrderDraw and let p, q be the endpoints of a. By construction, p and q are inside interval I and therefore we have $d(p, q) \leq \delta$, which implies that the maximum distance between a point of a
and the spine is at most $\frac{\delta}{4}$. Since the distance between ℓ and ℓ^{\prime} is larger than $\frac{\delta}{2}$ we have that no two arcs such that one has its endpoint in the lower spine and the other has its endpoints in the upper spine can intersect.

Property 2 Let Γ_{i} and Γ_{i+1} be the 2 -spine drawings computed by Steps $(i-1)$ and i of Algorithm LinEARORDERDRAW, respectively $(0 \leq i \leq n-1)$. Every arc in the bottom page of the upper spine of Γ_{i+1} is also an arc in the bottom page of the upper spine of Γ_{i}.

Proof: Step i of Algorithm LinearOrderDraw $(i=0,1, \ldots, n-1)$ can change the shape of some edges of Γ_{i} by creating new inter-spine segments and new arcs. These arcs can have endpoints on the lower spine (see also Figure 6) or can be arcs in the top page of the upper spine (see also Figures 7 and 8). No arcs in the bottom page of the upper spine are created at Step i.

Property 3 Let Γ_{i} be the 2-spine drawing computed by Step $(i-1)$ of Algorithm LinearOrderDraw $(0 \leq i \leq n-1)$ and let $\tau\left(v_{i}\right)$ be the trajectory of vertex v_{i} processed at Step i. Every arc of Γ_{i} intersected by $\tau\left(v_{i}\right)$ is in the top page of the lower spine of Γ_{i}.

Proof: Let a be an arc of Γ_{i} intersected by $\tau\left(v_{i}\right)$. Since $\tau\left(v_{i}\right)$ is a straight-line segment with one endpoint in the upper spine and the other endpoint in the lower spine, arc a can either be in the top page of the lower spine or in the bottom page of the upper spine. Assume that a is an arc in the bottom page of the upper spine. By Property 2, a is also an arc of Γ_{0}. Since, by Theorem 4, Γ_{0} is a monotone topological book embedding, if a is in the bottom page of the upper spine then the leftmost endpoint of a is a vertex of the input graph G, that we denote as v_{j}.

Algorithm LinearOrderDraw defines the distance between the two spines ℓ and ℓ^{\prime} and the target positions along ℓ^{\prime} in such a way that for every vertex v with source position $s(v)$ and target position $t(v)$, the trajectory $\tau(v)$ intersects a only if $s(v)$ is in the interval between the endpoints of a. It follows that vertex v_{j} is left of v_{i} along the spine of Γ_{0}, that is $j<i$.

Since Algorithm LinearOrderDraw processes the vertices in the left-to-right order along the spine of Γ_{0}, vertex v_{j} is moved to its target position before Step i is executed. Also, when the leftmost endvertex of an arc belonging to the to the bottom page of the upper spine is moved to its target position, then this arc is replaced by an inter-spine segment (see also Figure 8). It follows that a cannot be an arc of Γ_{i} such that a is in the bottom page of the upper spine and a is intersected by $\tau\left(v_{i}\right)$.

Property 4 Let Γ_{i+1} be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw ($0 \leq$ $i \leq n-1)$. Let a be an arc of Γ_{i+1} in the top page of the lower spine. Let y and z be the endpoints of a, with y to the left of z. Point $t\left(v_{i}\right)$ cannot be a point to the right of y and to the left of z.

Proof: Two cases are possible: Either a is an arc in the top page of the lower spine also in the drawing Γ_{i} computed by Step $(i-1)$ or a is created at Step i. In the first case, a cannot be crossed by $\tau\left(v_{i}\right)$ (because otherwise a would not exist in Γ_{i+1}) and thus the property immediately holds. In the second case, either $t\left(v_{i}\right)$ is an endpoint of a or a is a replacing sub-edge of Step i. Then, by construction the endpoints of a are either both to the left of $t\left(v_{i}\right)$, or both to the right of $t\left(v_{i}\right)$ (see also Figure 6).

Property 5 Let Γ_{i+1} be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw ($0 \leq$ $i \leq n-1)$. Let a be an arc of Γ_{i+1} in the bottom page of the lower spine. Let y and z be the endpoints of a, with y to the left of z. If a is a replacing sub-edge of Step i, point $t\left(v_{i}\right)$ is to the right of y and to the left of z.

Proof: Since a is a replacing sub-edge of Step i, then it replaces a sub-edge a^{\prime} that is crossed by $\tau\left(v_{i}\right)$. Both in the case when a^{\prime} is an arc and in the case when a^{\prime} is an inter-spine segment, the only sub-edge that replaces a^{\prime} and is in the bottom page has $t\left(v_{i}\right)$ between its endpoint (see also Figure 6).

Property 6 Let Γ_{i+1} be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw ($0 \leq$ $i \leq n-1$). Let a be an inter-spine segment of Γ_{i+1}. Let y and z be the endpoints of a, with $y \in \ell$ and $z \in \ell^{\prime}$. If $t\left(v_{i}\right)$ is to the left (right) of z, then $s\left(v_{i}\right)$ is to the left (right) of y.

Proof: Two cases are possible: Either a is an inter-spine segment also in the drawing Γ_{i} computed by Step $(i-1)$ or a is created by Step i. In the first case, a is not crossed by the trajectory $\tau\left(v_{i}\right)$ (because otherwise a would not exist in Γ_{i+1}) and thus the property immediately holds. In the second case, a is a replacing sub-edge. If a replaces an arc of the upper spine, then $t\left(v_{i}\right)$ is one of its endpoint. Otherwise a replaces an inter-spine segment a^{\prime}. Depending on whether a^{\prime} is a left or a right inter-spine segment, we have that at the end of Step i either $t\left(v_{i}\right)$ is to the left of z and $s\left(v_{i}\right)$ is to the left of y, or $t\left(v_{i}\right)$ is to the right of z and $s\left(v_{i}\right)$ is to the right of y (see also Figure 6).

Property 7 Let Γ_{i} and Γ_{i+1} be the 2-spine drawings computed by Steps $(i-1)$ and i of Algorithm LinearOrderDraw, respectively $(0 \leq i \leq n-1)$. Let a_{1} and a_{2} be two arcs of Γ_{i} that are both intersected by $\tau\left(v_{i}\right)$. If Γ_{i} is a planar drawing, then the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross.

Proof: By Property 3, both a_{1} and a_{2} are arcs in the top page of the lower spine of Γ_{i}. Let y_{j} and z_{j} be the endpoints of $a_{j}(j=1,2)$, with y_{j} to the left of z_{j}. Since a_{1} and a_{2} are both crossed by $\tau\left(v_{i}\right)$ and Γ_{i} is planar, then y_{1}, y_{2}, z_{2}, and z_{1} appear in this left-to-right order along ℓ^{\prime} in Γ_{i}.

Algorithm LinearOrderDraw replaces a_{j} with three arcs a_{j}^{\prime} (in the top page of ℓ^{\prime}), $a_{j}^{\prime \prime}$ (in the bottom page of ℓ^{\prime}), and $a_{j}^{\prime \prime \prime}$ (in the top page of ℓ^{\prime}) $(j=1,2)$ (see also Figure 6). Denote the endpoint shared by a_{j}^{\prime} and $a_{j}^{\prime \prime}$ as p_{j} and the endpoint shared by $a_{j}^{\prime \prime}$ and $a_{j}^{\prime \prime \prime}$ as q_{j}. By construction, points $y_{1}, y_{2}, p_{2}, p_{1}, q_{1}, q_{2}, z_{2}$, and z_{1} appear in this left-to-right order along ℓ^{\prime} which implies that the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross each other.

Property 8 Let Γ_{i} and Γ_{i+1} be the 2-spine drawings computed by Steps $(i-1)$ and i of Algorithm LinEARORDERDRAW, respectively $(0 \leq i \leq n-1)$. Let a_{1} and a_{2} be two inter-spine segments of Γ_{i} that are both intersected by $\tau\left(v_{i}\right)$. If Γ_{i} is a planar drawing, then the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross.

Proof: Let y_{j} and z_{j} be the endpoints of $a_{j}(j=1,2)$, with $y_{j} \in \ell$ and $z_{j} \in \ell^{\prime}$ and assume that y_{1} is to the left of y_{2} on ℓ. Since Γ_{i} is planar, then z_{1} is to the left of z_{2} on ℓ^{\prime}. Also, a_{2} and a_{1} are either both left inter-spine segments or both right inter-spine segments. Assume they are both left inter-spine segments, the other case is symmetric. Algorithm LinearOrderDraw replaces a_{j} with two arcs a_{j}^{\prime} (in the top page of ℓ^{\prime}) and $a_{j}^{\prime \prime}$ (in the bottom page of ℓ^{\prime}), and with an inter-spine segment $a_{j}^{\prime \prime \prime}(j=1,2)$ (see also Figure 6). Denote the endpoint shared by a_{j}^{\prime} and $a_{j}^{\prime \prime}$ as p_{j} and the endpoint shared by $a_{j}^{\prime \prime}$ and $a_{j}^{\prime \prime \prime}$ as q_{j}. By construction, points $y_{1}, y_{2}, p_{2}, p_{1}, q_{1}$, and q_{2} appear in this left-to-right order along ℓ^{\prime}; since z_{1} is to the left of z_{2} then the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross each other.

Property 9 Let Γ_{i} and Γ_{i+1} be the 2-spine drawings computed by Steps $(i-1)$ and i of Algorithm LinearOrderDraw, respectively $(0 \leq i \leq n-1)$. Let a_{1} be an arc of Γ_{i} that is intersected by $\tau\left(v_{i}\right)$ and let a_{2} be an inter-spine segment of Γ_{i} that is intersected by $\tau\left(v_{i}\right)$. If Γ_{i} is a planar drawing, then the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross.

Proof: By Property 3, a_{1} is an arc in the top page of the lower spine of Γ_{i}. Let y_{1} and z_{1} be the endpoints of a_{1}, with y_{1} to the left of z_{1}. Let y_{2} and z_{2} be the endpoints of a_{2}, with $y_{2} \in \ell$ and $z_{2} \in \ell^{\prime}$. Since Γ_{i} is planar, then z_{2} cannot be between y_{1} and z_{1}. Assume that z_{2} is to the left of y_{1}, i.e. a_{2} is a left inter-spine segment (because $t\left(v_{i}\right)$ between y_{1} and $\left.z_{1}\right)$. The case when z_{2} is to the right of z_{1}, i.e. a_{2} is a right inter-spine segment, is analogous.

Algorithm LinearOrderDraw replaces a_{1} with three arcs a_{1}^{\prime} (in the top page of ℓ^{\prime}), $a_{1}^{\prime \prime}$ (in the bottom page of ℓ^{\prime}), and $a_{1}^{\prime \prime \prime}$ (in the top page of ℓ^{\prime}) (see also Figure 6). Denote the endpoint shared by a_{1}^{\prime} and $a_{1}^{\prime \prime}$ as p_{1} and the endpoint shared by $a_{1}^{\prime \prime}$ and $a_{1}^{\prime \prime \prime}$ as q_{1}. Also, Algorithm LinearOrderDraw replaces a_{2} with two
$\operatorname{arcs} a_{2}^{\prime}$ (in the top page of ℓ^{\prime}) and $a_{2}^{\prime \prime}$ (in the bottom page of ℓ^{\prime}), and with an inter-spine segment $a_{2}^{\prime \prime \prime}$ (see also Figure 6). Denote the endpoint shared by a_{2}^{\prime} and $a_{2}^{\prime \prime}$ as p_{2} and the endpoint shared by $a_{2}^{\prime \prime}$ and $a_{2}^{\prime \prime \prime}$ as q_{2}.

By construction, points $z_{2}, y_{1}, p_{1}, p_{2}, q_{2}, q_{1}$, and z_{1} appear in this left-to-right order along ℓ^{\prime} which implies that the sub-edges that replace a_{1} and a_{2} in Γ_{i+1} do not cross each other.

The following two properties consider portions of edges of Γ_{i} consisting of two consecutive sub-edges. Let e be an edge of Γ_{i} that has two consecutive sub-edges a and a^{\prime} such that a is an arc in the top page of the upper spine and a^{\prime} is an inter-spine segment; the portion of e consisting of a and a^{\prime} is an hook of e. The point shared by a and a^{\prime} is the mid-point of the hook and the other endpoint of a is the top endpoint of the hook. For example, edge $\left(v_{i}, v_{i_{0}}\right)$ in Figure $8(\mathrm{~b})$ has a hook with mid-point p_{0} and top endpoint $v_{i_{0}}$.

Property 10 At any step of Algorithm LinearOrderDraw, an edge with an inter-spine segment shares with the upper spine at most two points. Also, if it shares two points with the upper spine, then the edge has a hook whose mid-point is to the left of the top endpoint.

Proof: Consider the drawing Γ_{0} computed at Step (-1) by Algorithm LinearOrderDraw and let $e=\left(v_{i}, v_{j}\right)$ be an edge of Γ_{0} with v_{i} to left of v_{j} along the spine ℓ. Edge e shares at most three points with ℓ depending on whether it crosses or does not cross the spine of Γ_{0}. We recall that Algorithm LinearOrderDraw: (i) processes the vertices according to their left-to-right order along the spine of Γ_{0} and (ii) at each step, changes the shape only of those edges that are intersected by the trajectory of the vertex that is moved to its target position during that step. Also, by Property 1, edge e is not intersected by the trajectory of any vertex to the left of v_{i}. It follows that the shape of edge e is not changed until its leftmost endvertex v_{i} is moved to the target position $t\left(v_{i}\right)$ by Step i of Algorithm LinearOrderDraw. Now consider the representation of e in the 2 -spine drawing Γ_{i+1} computed by Step i of Algorithm LinearOrderDraw. Different cases are possible depending on how e is represented in the initial drawing Γ_{0}. Refer also Figure 8 for examples.

If in Γ_{0} edge e is drawn in the bottom page of the lower spine, then in $\Gamma_{i+1} e$ is drawn as an inter-spine segment connecting $t\left(v_{i}\right)$ with v_{j}. If in Γ_{0} edge e is an edge in the top page of ℓ, then when Step i moves v_{i} to its target position, a hook η is created. The mid-point of η is a point p between $s\left(v_{i}\right)$ (i.e. the source position of v_{i} in Γ_{0}) and the first sub-edge endpoint that is immediately to the right of $s\left(v_{i}\right)$; the top endpoint of η is v_{j} which is to the left of $s\left(v_{i}\right)$, and therefore to the left of p. Finally, assume that in Γ_{0} edge e intersects ℓ. Let us denote with p such intersection point; by Theorem $4, \Gamma_{0}$ is a monotone topological book embedding and thus p is right of v_{i} and left of v_{j} along ℓ. At Step i, v_{i} is moved to its target position and a hook is created whose mid-point is p and whose top endpoint is v_{j} which is to the left of p. It follows that at the end of Step i, edge e has an inter-spine segment and that e satisfies the property.

At each Step h, with $i<h<j$, Algorithm LinearOrderDraw can change the shape of e by possibly introducing arcs only in its lower sequence; this happens when the trajectory $\tau\left(v_{h}\right)$ of the current vertex v_{h} that is moved to the target position either intersects the inter-spine segment or the lower sequence of e. See for example Figure 6. In no case, however, either the coordinates of the intersection points between e and ℓ are changed or new intersection points between e and ℓ are introduced. Finally at Step j, the other endvertex v_{j} of e is moved to ℓ^{\prime} and e no longer has an inter-spine segment or hook in Γ_{j+1}. For all other steps that follow Step j, edge e will no longer have an inter-spine segment because Algorithm LinearOrderDraw moves vertices from ℓ to ℓ^{\prime} and never moves them in the opposite direction.

Property 11 Let Γ_{i} be the 2-spine drawing computed by Steps $(i-1)$ of Algorithm LinearOrderDraw $(0 \leq i \leq n-1)$. Let e be an edge that has a hook whose top endpoint is v_{i}. Let e^{\prime} be another edge that has an inter-spine segment a in Γ_{i}. Let u^{\prime} be the endvertex of e^{\prime} that is on ℓ and let y^{\prime} be the endpoint of a on ℓ. If Γ_{i} is planar, then either $u^{\prime}=v_{i}$, or y^{\prime} is to the right of v_{i}.

Proof: Since Algorithm LinearOrderDraw process the vertices according to their left-to-right order along ℓ, at the end of Step $(i-1)$ all vertices to the left of v_{i} are already moved to ℓ^{\prime}, i.e. v_{i} is the leftmost vertex on ℓ in Γ_{i}. Therefore either $u^{\prime}=v_{i}$ or u^{\prime} is to the right of v_{i}. Notice that e^{\prime} may or may not have a hook. If e^{\prime} has a hook then u^{\prime} and y^{\prime} are distinct points, otherwise they coincide. If u^{\prime} and y^{\prime} coincide and u^{\prime} is to
right of v_{i}, then trivially y^{\prime} is to the right of v_{i}. If u^{\prime} and y^{\prime} do not coincide (i.e. e^{\prime} has a hook) and u^{\prime} is to right of v_{i}, then y^{\prime} must be to the right of v_{i} because otherwise there would be a crossing between the two arcs of the hooks of e and e^{\prime}. Thus either u^{\prime} coincides with v_{i} or y^{\prime} is to the right of v_{i}.

Lemma 4 Let Γ_{i} and Γ_{i+1} be the 2-spine drawings computed by Steps $(i-1)$ and i of Algorithm LinearOrderDraw, respectively $(0 \leq i \leq n-1)$. If Γ_{i} is planar, then Γ_{i+1} is planar.

Proof: Suppose by contradiction that there are two sub-edges a_{1} and a_{2} that cross in Γ_{i+1}. The endpoints of $a_{j}(j=1,2)$ are denoted as y_{j} and z_{j}; if a_{j} is an arc, we shall assume that y_{j} is to the left of z_{j}; if a_{j} is an inter-spine segment we shall assume that y_{j} is in the upper spine and that z_{j} is in the lower spine. Since the crossing between a_{1} and a_{2} cannot exist in Γ_{i} (because it is planar by hypothesis), then at least one of the two sub-edges does not exist in Γ_{i} and is created at Step i of Algorithm LinearOrderDraw. A sub-edge is created at Step i either because one of its endpoints is the target position $t\left(v_{i}\right)$ of the vertex moved from the upper to the lower spine at that step, or because it is a replacing sub-edge.

The proof is based on a case analysis that depends on whether each of a_{1} and a_{2} is an inter-spine segment or an arc; if it is an arc, we also distinguish between the case that it is in the bottom or in the top page of either the upper or the lower spine. By Property 1, two arcs that have endpoints on different spines do not cross. Thus, in the case analysis below we only consider those cases in which a_{1} and a_{2} are both arcs with endpoints on the same spine, or at least one of them is an inter-spine segment. Also, for each case we first consider the sub-case where $t\left(v_{i}\right)$ is one of the endpoints of a sub-edge and then the sub-case where at least one of the sub-edges is a replacing sub-edge.

- Both a_{1} and a_{2} are arcs in the top page of the lower spine. Since a_{1} and a_{2} cross, y_{1}, y_{2}, z_{1}, and z_{2} appear in this left-to-right order along ℓ^{\prime} (see Figure 9(a)). By Property $4, t\left(v_{i}\right)$ cannot be between y_{1} and z_{2}. If $t\left(v_{i}\right)=y_{1}$, then there exists an inter-spine segment \bar{a}_{1} in Γ_{i} having z_{1} as an endpoint. This means that there is a crossing in Γ_{i}, which is impossible because Γ_{i} is planar. Analogously if $t\left(v_{i}\right)=z_{2}$, then there exists an inter-spine segment \bar{a}_{2} in Γ_{i} having y_{2} as an endpoint. Also in this case there is a crossing in Γ_{i}, which is impossible because Γ_{i} is planar.
Suppose now that $t\left(v_{i}\right)$ is to the left of y_{1}. If both a_{1} and a_{2} are replacing sub-edges, then by Properties 7,8 , and 9 they do not cross. If only a_{1} is a replacing sub-edge, then there exists a sub-edge \bar{a}_{1} in Γ_{i} that is crossed by $\tau\left(v_{i}\right)$ and that has z_{1} as one of its endpoints. This implies a crossing in Γ_{i}. If only a_{2} is a replacing sub-edge, then a_{1} is an arc of Γ_{i} and therefore y_{1} exists also in Γ_{i}; since Algorithm LinearOrderDraw chooses y_{2} as a point between $t\left(v_{i}\right)$ and the first sub-edge endpoint that follows $t\left(v_{i}\right)$ along ℓ^{\prime}, then y_{2} would be to the left of y_{1}, thus avoiding the crossing between a_{1} and a_{2}.
The case when $t\left(v_{i}\right)$ is to the right of z_{2}, is symmetric to the case when $t\left(v_{i}\right)$ is to the left of y_{1}.
- Both a_{1} and a_{2} are arcs in the bottom page of the lower spine. Also in this case, a crossing is possible only if y_{1}, y_{2}, z_{1}, and z_{2} appear in this left-to-right order along ℓ^{\prime} (see Figure $9(\mathrm{~b})$). Also, none of the endpoints of a_{1} and a_{2} can be $t\left(v_{i}\right)$ because otherwise a_{1} and a_{2} would not be in the bottom page of the lower spine. Namely, when Algorithm LinearOrderDraw moves v_{i} to $t\left(v_{i}\right)$ all sub-edges having $t\left(v_{i}\right)$ as an endpoint are either arcs in the top page of the lower spine or inter-spine segments. Since at least one of a_{1} and a_{2} must be a replacing sub-edge, $t\left(v_{i}\right)$ is in the interval between y_{1} and z_{2} by Property 5. If both a_{1} and a_{2} are replacing sub-edges, then by Properties 7,8 , and 9 they do not cross. If only a_{1} is a replacing sub-edge, then a_{2} is a sub-edge also in Γ_{i} and y_{2} is a point of Γ_{i}. Since a_{1} is a replacing sub-edge in the bottom page of the lower spine, $t\left(v_{i}\right)$ is between y_{1} and z_{1}; furthermore since a_{2} is not a replacing sub-edge, $t\left(v_{i}\right)$ is in the interval between y_{1} and y_{2}. Since Algorithm LinearOrderDraw chooses z_{1} as a point between $t\left(v_{i}\right)$ and the first sub-edge endpoint that follows $t\left(v_{i}\right)$ along ℓ^{\prime}, then z_{1} would be to the left of y_{2}, thus avoiding the crossing. Analogously, if only a_{2} is a replacing sub-edge, then $t\left(v_{i}\right)$ is between z_{1} and z_{2}; this implies that z_{1} exists also in Γ_{i}; since Algorithm LinearOrderDraw chooses y_{2} as a point between the first sub-edge endpoint that precedes $t\left(v_{i}\right)$ and $t\left(v_{i}\right)$ along ℓ^{\prime}, then y_{2} would be to the right of z_{1}, thus avoiding the crossing.

Figure 9: Two cases for the proof of Lemma 4.

- Sub-edge a_{1} is an arc in the top page of the lower spine and a_{2} is an inter-spine segment. In this case a crossing is possible only if y_{1}, z_{2}, and z_{1} appear in this left-to-right order along ℓ^{\prime} (see Figure 10(a)). By Property 4, $t\left(v_{i}\right)$ cannot be equal to z_{2}.
If $t\left(v_{i}\right)=y_{1}$, then sub-edge a_{1} does not exist in Γ_{i} and z_{1} is the endpoint of an inter-spine segment \bar{a}_{1} in Γ_{i}. Denote as \bar{y}_{1} the endpoint of \bar{a}_{1} other than z_{1}. On the other hand either a_{2} exists in Γ_{i}, or there exists a inter-spine segment \bar{a}_{2} whose endvertices are y_{2} and a point \bar{z}_{2} which is to the left of z_{2}. Denote as \bar{y}_{1} the endpoint of \bar{a}_{1} other than z_{1} and let e be the edge of Γ_{i} that contains the inter-spine segment \bar{a}_{1}; note that $s\left(v_{i}\right)$ is the endvertex of e on the upper spine. Edge e may or may not have a hook. If e does not have a hook, then $s\left(v_{i}\right)$ and \bar{y}_{1} coincide; otherwise \bar{y}_{1} is to the left of $s\left(v_{i}\right)$ by Property 10. Also, by Property $6, s\left(v_{i}\right)$ is to the left of y_{2}. If $s\left(v_{i}\right)$ and \bar{y}_{1} coincide (i.e. e does not have a hook), then \bar{a}_{1} crosses either a_{2} or \bar{a}_{2} in Γ_{i} because $s\left(v_{i}\right)$ is to the left of y_{2} in the upper spine while z_{1} is to the right of z_{2} or of \bar{z}_{2} in the lower spine. If $s\left(v_{i}\right)$ and \bar{y}_{1} are distinct (i.e. e does have a hook), then \bar{y}_{1} is to the left of $s\left(v_{i}\right)$ and therefore to the left of y_{2}; again, since z_{1} is to the right of z_{2} or of \bar{z}_{2} on the lower spine, this would imply a crossing in Γ_{i} which is impossible.
If $t\left(v_{i}\right)=z_{1}$, then a_{1} does not exist in Γ_{i} and y_{1} is the endpoint of an inter-spine segment \bar{a}_{1} in Γ_{i}. On the other hand either a_{2} exists in Γ_{i}, or there exists a inter-spine segment \bar{a}_{2} whose endvertices are y_{2} and a point \bar{z}_{2} which is to the right of z_{2}. Denote as \bar{z}_{1} the endpoint of \bar{a}_{1} in Γ_{i} other that y_{1}. Point \bar{z}_{1} is to the left of y_{2} or else \bar{a}_{1} crosses either a_{2} or \bar{a}_{2} in Γ_{i}, which is impossible. Let e be the edge of Γ_{i} that contains the inter-spine segment a_{1}; note that $s\left(v_{i}\right)$ is the endvertex of e on the upper spine. Point $s\left(v_{i}\right)$ must be to the right of y_{2} by Property 6. Therefore e has a hook whose mid-point is \bar{z}_{1} (to the left of y_{2}) and whose top endpoint is $s\left(v_{i}\right)$ (to the right of y_{2}). Let e^{\prime} be the edge that contains the inter-spine segment a_{2} or \bar{a}_{2} and let u^{\prime} be the endvertex of e^{\prime} on ℓ. By Property 11 and based on the fact that y_{2} is to the left of $s\left(v_{i}\right)$, it must be $u^{\prime}=s\left(v_{i}\right)$; but in this case a_{2} would not exist in Γ_{i+1}.
Suppose now that $t\left(v_{i}\right)$ is to the left of y_{1}. If only a_{1} is a replacing sub-edge, then a_{2} is a sub-edge also in Γ_{i} and z_{1} is the endpoint of a sub-edge \bar{a}_{1} in Γ_{i} that can be either an arc or an inter-spine segment. Let \bar{y}_{1} be the endpoint of \bar{a}_{1} other than z_{1}. If \bar{a}_{1} is an arc, then \bar{y}_{1} is to the left of z_{1} (otherwise \bar{a}_{1} would not be crossed by $\tau\left(v_{i}\right)$), but this would imply a crossing in Γ_{i}, which is impossible. If \bar{a}_{1} is an inter-spine segment, then \bar{y}_{1} is on the upper spine. Since \bar{a}_{1} cannot cross a_{2} in Γ_{i} then \bar{y}_{1} must be to the right of y_{2}; also, since $\tau\left(v_{i}\right)$ crosses \bar{a}_{1}, then $s\left(v_{i}\right)$ is to the right of \bar{y}_{1} and hence to the right of y_{2}. However, by Property $6, s\left(v_{i}\right)$ must be to the left of y_{2}.
If only a_{2} is a replacing sub-edge, then a_{1} is a sub-edge also in Γ_{i} and y_{1} is a point of Γ_{i}; since Algorithm LinEarOrderdraw chooses z_{2} as a point between $t\left(v_{i}\right)$ and the first sub-edge endpoint that follows $t\left(v_{i}\right)$ along ℓ^{\prime}, then z_{2} would be to the left of y_{1}, thus avoiding the crossing. If both a_{1} and a_{2} are replacing sub-edges, then they do not cross by Properties 7, 8, and 9 .

The case when $t\left(v_{i}\right)$ is to the right of z_{1}, is symmetric to the case when $t\left(v_{i}\right)$ is to the left of y_{1}.

Figure 10: Two cases for the proof of Lemma 4.

- Both a_{1} and a_{2} are inter-spine segments. In this case, a crossing is possible only if y_{2} is to the right of $y_{1}($ on $\ell)$ and z_{2} is to the left of z_{1} (on ℓ^{\prime}) (see Figure $10(\mathrm{~b})$).
If $t\left(v_{i}\right)=z_{1}$, then a_{1} does not exist in Γ_{i} and the endvertices of the edge e that contains a_{1} are both in the upper spine. Also, one of the endvertices of e is v_{i}. By Property $6 s\left(v_{i}\right)$ is to the right of y_{2}. and therefore to the right of y_{1}. Notice that in no case Algorithm LinearOrderDraw moves the first endvertex of an edge to ℓ^{\prime} creating an inter-spine segment with an endpoint on ℓ that is to the left of the moved point. This implies that this case never happens.

If $t\left(v_{i}\right)=z_{2}$, then a_{2} does not exist in Γ_{i} and the endvertices of the edge e that contains a_{2} are both in the upper spine. Also, one of the two endvertices is v_{i}. By Property $6 s\left(v_{i}\right)$ is to the left of y_{1}. Denote by u the endvertex of e other than v_{i}. By Property 10, either $s(u)=y_{2}$ or y_{2} is to the left of $s(u)$ in Γ_{i+1}. If $s(u)=y_{2}$ in Γ_{i+1}, then e is represented in Γ_{i} by an arc a in the bottom page of the upper spine; the endpoints of a are y_{2} (to the right of y_{1}) and $s\left(v_{i}\right)$ (to the left of y_{1}). But this means that there is a crossing in Γ_{i} between a and a_{1}, which is impossible. If y_{2} is to the left of $s(u)$ in Γ_{i+1}, then e is represented in Γ_{i} by two arcs: a^{\prime} in the bottom page of the upper spine and $a^{\prime \prime}$ in the top page of the upper spine; the endpoints of a^{\prime} are $s\left(v_{i}\right)$ (to the left of y_{1}) and y_{2} (to the right of y_{1}), while the endpoints of $a^{\prime \prime}$ are y_{2} and $s(u)$ (both to the right of y_{1}). In this case there would be a crossing in Γ_{i} between a_{1} and a^{\prime}, which is impossible.
If $t\left(v_{i}\right)$ is between z_{1} and z_{2} then, by Property $6, s\left(v_{i}\right)$ should be to the left of y_{1} and to the right of y_{2}, which is impossible.

Suppose now that $t\left(v_{i}\right)$ is to the left of z_{2}. If only a_{1} is a replacing sub-edge, then a_{2} is a sub-edge also in Γ_{i} and z_{2} is a point of Γ_{i}; since Algorithm LinearOrderDraw chooses z_{1} as a point between $t\left(v_{i}\right)$ and the first sub-edge endpoint that follows $t\left(v_{i}\right)$ along ℓ^{\prime}, then z_{1} would be to the left of z_{2}, thus avoiding the crossing. If only a_{2} is a replacing sub-edge, then a_{1} is a sub-edge also in Γ_{i} and y_{2} is the endpoint of an inter-spine segment \bar{a}_{2} in Γ_{i}. Let \bar{z}_{2} be the endpoint of \bar{a}_{2} other than y_{2}. Since $\tau\left(v_{i}\right)$ crosses \bar{a}_{2}, then \bar{z}_{2} is to the left of z_{1}. But in this case a_{1} and \bar{a}_{2} would cross in Γ_{i}, which is impossible. If both a_{1} and a_{2} are replacing sub-edges, then they do not cross by Properties 7,8 , and 9 .
The case when $t\left(v_{i}\right)$ is to the right of z_{1} is symmetric to the case when $t\left(v_{i}\right)$ is to the left of z_{2}.

- Sub-edge a_{1} is an arc in the bottom page of the upper spine and a_{2} is an inter-spine segment. In this case a crossing is possible only if y_{2} is between y_{1} and z_{1} (see Figure 11(a)). By Property $2 a_{1}$ exists also in Γ_{i}. Thus a_{2} must not exist in Γ_{i} (otherwise the crossing between a_{1} and a_{2} would exist in Γ_{i}). If $t\left(v_{i}\right) \neq z_{2}$, then a_{2} is a replacing sub-edge and y_{2} is the endpoint of an inter-spine
segment \bar{a}_{2} of Γ_{i}. Since y_{2} is between y_{1} and z_{1} there would be a crossing between \bar{a}_{2} and a_{1} in Γ_{i}. Hence $t\left(v_{i}\right)=z_{2}$. Note that, since a_{2} is an arc in the bottom page of the upper spine, y_{1} is not a spine crossing but a "real" vertex v_{j}. This means that $s\left(v_{i}\right)$ is to the left of y_{1} because otherwise Algorithm LinearOrderDraw would have moved $v_{j}=y_{1}$ to ℓ^{\prime} at some Step j, with $j<i$ and arc a_{1} would not exist in Γ_{i+1}. Let e be the edge that contains a_{2}, let u be the endvertex of e that is on ℓ. Edge e may or may not have a hook. If e does not have a hook, then u and y_{2} coincide; otherwise y_{2} is to the left of u in Γ_{i+1} by Property 10. If u and y_{2} coincide, i.e. if e does not have a hook, then e is represented in Γ_{i} by an arc a in the bottom page of the upper spine; the endpoints of a are y_{2} (between y_{1} and z_{1}) and $s\left(v_{i}\right)$ (to the left of y_{1}). But this implies that there is a crossing in Γ_{i} between a and a_{1}, which is impossible. If y_{2} is to the left of $s(u)$, i.e. e does have a hook, then e is represented in Γ_{i} by two arcs: a^{\prime} in the bottom page of the upper spine and $a^{\prime \prime}$ in the top page of the upper spine; the endpoints of a^{\prime} are $s\left(v_{i}\right)$ (to the left of y_{1}) and y_{2} (between y_{1} and z_{1}), while the endpoints of $a^{\prime \prime}$ are y_{2} and $s(u)$ (to the right of z_{1}). In this case there would be a crossing in Γ_{i} between a_{1} and a^{\prime}, which is impossible.

Figure 11: Two cases for the proof of Lemma 4.

- Both a_{1} and a_{2} are arcs in the bottom page of the upper spine. By Property 2 both a_{1} and a_{2} are arcs of Γ_{i}, but this would imply that the crossing exists in Γ_{i}, which is impossible.
- Both a_{1} and a_{2} are arcs in the top page of the upper spine. In this case, a crossing is possible only if y_{1}, y_{2}, z_{1}, and z_{2} appear in this left-to-right order along ℓ (see Figure 11(b)). At least one of the two sub-edges a_{1} and a_{2} must not exist in Γ_{i} (otherwise there would be a crossing in Γ_{i}). Let e_{1} and e_{2} be the edges that contain sub-edge a_{1} and a_{2}, respectively.
Suppose first that a_{1} does not exist in Γ_{i}, while a_{2} does. In this case e_{1} has both endvertices on ℓ in Γ_{i} while it has one endvertex on ℓ^{\prime} in Γ_{i+1}, i.e. v_{i} is the leftmost endvertex of e_{1}. Since a_{1} is an arc in the top page of the upper spine, then e_{1} is drawn in Γ_{i} either as an arc a in the top page of ℓ, or as two arcs a^{\prime} and $a^{\prime \prime}$ such that a^{\prime} is in the bottom page of ℓ and $a^{\prime \prime}$ is in the top page of ℓ. In both cases there exists an arc in Γ_{i} that is in the top page of ℓ, that has one endpoint to the left of y_{2} and that has the second endpoint between y_{2} and z_{2}. This implies that there is a crossing in Γ_{i}, which is impossible.
Suppose now that a_{2} does not exist in Γ_{i}, while a_{1} does. In this case e_{2} has both endvertices on ℓ in Γ_{i} while it has one endvertex, which is v_{i}, on ℓ^{\prime} in Γ_{i+1}, i.e. v_{i} is the leftmost endvertex of e_{1}. Since a_{2} is an arc in the top page of the upper spine, then e_{2} is drawn in Γ_{i} either as an arc a in the top page of ℓ, or as two arcs a^{\prime} and $a^{\prime \prime}$ such that a^{\prime} is in the bottom page of ℓ and $a^{\prime \prime}$ is in the top page of ℓ. In the first case the leftmost endpoint of a is $s\left(v_{i}\right)$ and, due to the fact that there is no crossing in $\Gamma_{i}, s\left(v_{i}\right)$ must be to the left of y_{1}. Since Algorithm LinearOrderDraw chooses y_{2} as a point between $s\left(v_{i}\right)$ and the first sub-edge endpoint that follows $s\left(v_{i}\right)$ along ℓ, then y_{2} would be to
the left of y_{1}, thus avoiding the crossing. In the second case the leftmost endpoint of a^{\prime} is $s\left(v_{i}\right)$ and, due to the fact that there is no crossing in Γ_{i}, the rightmost endpoint of a^{\prime}, call it z^{\prime}, must be to the left of y_{1}. The endpoints of $a^{\prime \prime}$ are z^{\prime} (to the left of y_{1}) and z_{2} (to the right of z_{1}). When Algorithm LinearOrderDraw moves v_{i} to $t\left(v_{i}\right)$, arc a^{\prime} is replaced by an inter-spine segment while arc $a^{\prime \prime}$ is unchanged and coincides with a_{2}; but this would imply that a_{2} and a_{1} do not cross.

Finally, suppose that both a_{1} and a_{2} do not exist in Γ_{i}. In this case both e_{1} and e_{2} have both endvertices on ℓ in Γ_{i} while they have one endvertex, which is v_{i}, on ℓ^{\prime} in Γ_{i+1}, i.e. v_{i} is the leftmost endvertex of both e_{1} and e_{2}. Since a_{j} is an arc in the top page of the upper spine, then e_{j} is drawn in Γ_{i} either as an arc a_{j}^{\prime} in the top page of ℓ, or as two $\operatorname{arcs} a_{j}^{\prime}$ and $a_{j}^{\prime \prime}$ such that a_{j}^{\prime} is in the bottom page of ℓ and $a_{j}^{\prime \prime}$ is in the top page of $\ell(j=1,2)$. Assume first that both e_{1} and e_{2} are drawn in Γ_{i} as arcs in the top page. The endvertex of e_{1} other that v_{i} is z_{1}, and the endvertex of e_{2} other than v_{i} is z_{2}. Then, by construction, the endpoint y_{1} of a_{1} is chosen to be to the left of the endpoint y_{2} of a_{2}, thus avoiding the crossing. Assume now that both e_{1} and e_{2} are drawn in Γ_{i} as two arcs. In this case a_{1} coincides with $a_{1}^{\prime \prime}$ and a_{2} coincides with $a_{2}^{\prime \prime}$. Therefore a crossing between a_{1} and a_{2} would imply a crossing between $a_{1}^{\prime \prime}$ and $a_{2}^{\prime \prime}$, which is impossible because Γ_{i} is planar. Finally, assume that e_{1} is drawn in Γ_{i} as an arc in the top page and that e_{2} is drawn in Γ_{i} as two arcs (the case when e_{1} is drawn as two arcs and e_{2} as an arc in the top page is analogous). In this case, since Γ_{i} is planar, either the endpoints of $a_{2}^{\prime \prime}$ are both to the right of both the endpoints of a_{1}^{\prime}, or they are both between the endpoints of a_{1}^{\prime}. Arc a_{2} coincides with $a_{2}^{\prime \prime}$, while the rightmost endpoint of a_{1} coincides with the rightmost endpoint of a_{1}^{\prime} and the leftmost point of a_{1} is a point between $s\left(v_{i}\right)$ and the leftmost point of a_{1}^{\prime}. It follows that either the endpoints of a_{2} are both to the right of both the endpoints of a_{1}, or they are both between the endpoints of a_{1}. In both cases a crossing between a_{1} and a_{2} is not possible.

From the case analysis above it follows that the assumption that two sub-edges cross in Γ_{i+1} always leads to a contradiction, which implies that the statement is true.

Lemma 5 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. Algorithm LinearorderDraw computes a 3-chain topological book embedding Γ^{\prime} of G such that the left-to-right order of the vertices in Γ^{\prime} coincides with λ.

Proof: By Lemmas 3 and 4 the output $\Gamma^{\prime}=\Gamma_{n}$ of Algorithm LinearOrderDraw is a planar 2-spine drawing. Also, all vertices of G are on the spine ℓ^{\prime} of Γ^{\prime}. Thus Γ^{\prime} is a topological book embedding. The left-to-right order of the vertices of G in Γ^{\prime} is equal to λ by construction because Algorithm LinearOrderDraw defines the target positions of the vertices according to λ. It remains to show that every edge of Γ^{\prime} consists of at most three x-monotone chains.

Let $e=\left(v_{i}, v_{j}\right)$ be an edge of Γ_{0} such that v_{i} is to the left of v_{j} along the upper spine ℓ of Γ_{0}. By Property 1, edge e is not intersected by the trajectory of any vertex to the left of v_{i}. It follows that for any Step h of Algorithm LinearOrderDraw such that $0 \leq h \leq i-1 e$ is an edge with both endvertices on the upper spine ℓ and the shape of e is not changed. Also, for any Step h of Algorithm LinearOrderDraw such that $j+1 \leq h \leq n-1$ both endvertices of e are on the lower spine ℓ^{\prime}, e does not have any inter-spine segment, and the shape of e is changed if the trajectory $\tau\left(v_{h}\right)$ crosses some of the arcs of e. Let a be an arc of e crossed by $\tau\left(v_{h}\right)$. By Property $3 a$ is in the top page of the lower spine. As also illustrated in Figure 6, Algorithm LinearOrderDraw replaces a with an x-monotone portion consisting of three arcs such that the leftmost endpoint and the rightmost endpoint of this portion coincide with the leftmost endpoint and rightmost endpoint of a, respectively. It follows that the number of x-monotone chains that form edge e is not changed by any Step h such that $j+1 \leq h \leq n-1$. We now prove that the number of x-monotone chains of e created from Step i to Step j is at most three. There are three cases to consider, depending on the drawing of e in Γ_{0}.

If e is drawn in Γ_{0} as an arc in the bottom page of the spine ℓ, then at Step i it is transformed into an inter-spine segment and the lower sequence of e is empty (i.e. there are no arcs in the lower sequence); see also Figures 12(a) and 12(b). New arcs are added to the lower sequence of e by Step h of Algorithm LinearOrderDraw with $i+1 \leq h \leq j-1$ only if $\tau\left(v_{h}\right)$ crosses the inter-spine segment or an arc of the lower

Figure 12: (a) An edge e in the bottom page of ℓ in Γ_{0}.(b) The edge after that Step i of Algorithm LinearOrderDraw is executed and a trajectory crossing it; the inter-spine segment is a left inter-spine segment. (c)-(e) New arcs are added to the lower sequence of e. (f) At the end Step j, e consists of at most two x-monotone chains.
sequence of e. By the same reasoning as above, when an arc is crossed by $\tau\left(v_{h}\right)$ the number of x-monotone chains of the lower sequence of e does not change. So, assume that $\tau\left(v_{h}\right)$ crosses the inter-spine segment of e and refer to Figures 12(b), 12(c), 12(d), and 12(e). Note that since e is in the lower page of the spine ℓ of Γ_{0}, the inter-spine segment crossed by $\tau\left(v_{h}\right)$ is a left inter-spine segment. Algorithm LinearOrderDraw modifies the lower sequence of e by concatenating it with an x-monotone portion consisting of two arcs and such that the leftmost endpoint of this x-monotone portion coincides with the rightmost endpoint of the lower sequence. It follows that the end of Step $j-1$, the lower sequence of e is an x-monotone chain. Let p be the rightmost endpoint of such x-monotone chain; see also Figures 12(e) and 12(f). At Step j, vertex v_{j} is moved to its target position $t\left(v_{j}\right)$. If $t\left(v_{j}\right)$ is to the right of p, then another arc is added to the lower sequence such that the added arc shares its leftmost endpoint with the lower sequence and thus e consists of one x-monotone chain. If otherwise $t\left(v_{i}\right)$ is not to the left of p, the new arc added at Step j and the lower sequence of Step $j-1$ form two x-monotone chains. Therefore, if e is drawn in Γ_{0} as an edge in the bottom page of ℓ, then e consists of at most two x-monotone chains in Γ^{\prime}.

Figure 13: (a) An edge e in the top page of ℓ in Γ_{0}. (b) The edge after that Step i of Algorithm Linearorderdraw is executed and a trajectory crossing it; the inter-spine segment is a right inter-spine segment. (c)-(e) New arcs are added to the lower sequence of e. (f) At the end Step j, e consists of at most two x-monotone chains.

If e is drawn in Γ_{0} as an arc in the top page of the spine ℓ, then at Step i it is transformed into an hook and the lower sequence of e is empty; see also Figures $13(\mathrm{a})$ and $13(\mathrm{~b})$. The reasoning is symmetric to the one of the previous case, the main difference being that in this case the inter-spine segment crossed by $\tau\left(v_{h}\right)$ is a right inter-spine segment and that the lower sequence is increased by adding two arcs at its leftmost end. See also Figures $13(\mathrm{~b}), 13(\mathrm{c}), 13(\mathrm{~d})$, and $13(\mathrm{e})$. Therefore, if e is drawn in Γ_{0} as an edge in the top page of ℓ, then e consists of at most two x-monotone chains in Γ^{\prime}.

Finally, assume that e is drawn in Γ_{0} as two arcs, on in the bottom page and the other in the top page of the spine ℓ. By adding a dummy vertex at the spine crossing between e and ℓ, the edge e can be regarded as the concatenation of two edges, one in the bottom page of ℓ and the other in the top page of ℓ. As illustrated in Figure 14, by combining the previous arguments, it is straightforward to conclude that at the end of Step j edge e consists of at most three x-monotone chains. Therefore, if e is drawn in Γ_{0} as an edge that crosses the spine, then e consists of at most three x-monotone chains in Γ^{\prime}.

Theorem 5 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. There exists an $O\left(n^{2} \log n\right)$-time algorithm that computes a 3 -chain topological book embedding Γ^{\prime} of G such that the left-to-right order of the vertices in Γ^{\prime} coincides with λ.

Proof: By Lemma 5, the drawing Γ^{\prime} computed by Algorithm LinearOrderDraw is a 3 -chain topological book embedding Γ^{\prime} of G such that the left-to-right order of the vertices along the spine of Γ^{\prime} is λ.

As for the time complexity, computing a monotone topological book embedding of the input graph can be done in $O(n)$ time by Theorem 4; also computing the target positions of the vertices along ℓ^{\prime} can be done in $O(n)$ time.

At Step $i(0 \leq i \leq n-1)$, Algorithm LinearOrderDraw performs the following tasks: (1) It finds the sub-edges crossed by the trajectory $\tau\left(v_{i}\right)$. (2) It modifies the shape of these sub-edges. (3) It modifies the shape of the edges incident to v_{i}.

We can use an AVL-tree for each of the x-monotone chains of each edge. Since each edge has at most three x-monotone chains and G is planar, we have $O(n)$ such AVL-trees. Let T be an AVL-tree associated with an x-monotone chain π of an edge. Each node of T stores an arc a of $\pi ; a$ is represented by the x-coordinates of its endpoints and by a flag that describes whether a is in the top or in the bottom page of ℓ^{\prime}. Since at each step of Algorithm LinearOrderDraw a constant number of arcs can be added to an x-monotone chain and the total number of steps is $O(n)$, the number of nodes of T is $O(n)$.

Task (1) can be executed as follows. By performing a search operation on T, one can find in $O(\log n)$ time the arc of π that is intersected by $\tau\left(v_{i}\right)$, if such an arc exists. Also, deciding if an inter-spine segment is crossed by $\tau\left(v_{i}\right)$ can be done in $O(1)$ time by comparing the coordinates of the endpoints of the inter-spine segment with the coordinates of $s\left(v_{i}\right)$ and $t\left(v_{i}\right)$. Therefore, finding all the sub-edges of an edge crossed by $\tau\left(v_{i}\right)$ can be done in $O(\log n)$ time. Since we have $O(n)$ edges, the overall time complexity of Task (1) is $O(n \log n)$.

Task (2) modifies the shape of the edges found in Task (1). For each edge, the sub-edges intersected by $\tau\left(v_{i}\right)$ are replaced by a constant number of sub-edges. This implies computing the endpoints of the new sub-edges, which can be done in $O(1)$ time for each sub-edge, and to update the AVL-trees associated with the x-monotone chains that are changed. Since each x-monotone chain can be crossed by $\tau\left(v_{i}\right)$ at most once and each crossing requires a constant number of updates in the associated AVL-tree, Task (2) can be executed in $O(\log n)$ time per edge, i.e. in $O(n \log n)$ time in total.

Also Task (3) requires to compute the endpoints of new sub-edges, which can be done in $O(1)$ time for each sub-edge and it may require to update an AVL-tree per edge (this happens when the inter-spine segment and the upper sequence of an edge are replaced by an arc in the lower sequence). Thus, also Task (3) can be executed in $O(n \log n)$ time. It follows that Step i can be executed in $O(n \log n)$. Since there are n such steps, Algorithm LinearOrderDraw can be executed in $O\left(n^{2} \log n\right)$ time.

(a)

(c)

(e)

(b)

(d)

(f)
\qquad ℓ

(g)

Figure 14: (a) An edge e that crosses spine of Γ_{0}. (b) The edge after Step i Algorithm LinearOrderDraw. (c)-(e) New arcs are added to the lower sequence of e. (f) At the end Step j, e consists of at most three x-monotone chains.

7 Upper Bounds on the Curve Complexity of k-colored Point-set Embeddings

Let G be a k-colored planar graph with n vertices such that $2 \leq k \leq n$ and let S be a k-colored set of points compatible with G. In this section we first show how to compute a k-colored point-set embedding of G on S having curve complexity at most $3 n+2$ and then consider the special case in which there are $k-1$ colors each associated with exactly one vertex in G and the remaining color is associated with all remaining vertices of G.

7.1 Computing k-colored Point-set Embeddings

Let σ be the k-colored sequence induced by S. Based on Theorem 3, we prove an upper bound on the curve complexity of a k-colored point-set embedding of G on S by computing an external augmenting k colored Hamiltonian path $\mathcal{H}^{\prime \prime}$ of G consistent with σ and inducing a bounded number of division vertices per edge. To this aim, we consider the linear order given by σ and exploit Algorithm LinearOrderDraw to compute $\mathcal{H}^{\prime \prime}$. As it will explained later, the number of division vertices per edge depends on the number of spine crossings. We start with two lemmas that show how to simplify the shape of the edges computed by Algorithm LinearOrderDraw in order to reduce this number of spine crossings.

The interval of an arc of a topological book embedding is the open interval of the spine between the leftmost endpoint and the rightmost endpoint of the arc.

Lemma 6 Let G be a planar graph with n vertices and let Γ^{\prime} be the 3-chain topological book embedding computed by Algorithm LinearOrderDraw. Γ^{\prime} can be transformed into a new 3-chain topological book embedding $\Gamma^{\prime \prime}$ of G such that: (i) the left-to-right order of the vertices along the spine is the same as in Γ^{\prime} and (ii) every x-monotone chain crosses the spine at most $n-1$ times.

Proof: Assume first that for every arc of Γ^{\prime} the interval of the arc contains at least a vertex of G. Since there are n vertices, every x-monotone chain π of every edge of Γ^{\prime} consists of at most n arcs. Since a spine crossing of an x-monotone chain is defined by two consecutive arcs, π can cross the spine at most $n-1$ times and the proof is completed by saying that $\Gamma^{\prime \prime}$ coincides with Γ^{\prime}. So, assume otherwise that there is at least one arc a of Γ^{\prime} such that the interval of a does not contain a vertex of G; we show how to modify the shape of some of the edges of Γ^{\prime} in order to construct $\Gamma^{\prime \prime}$.

We first observe that arc a belongs to the top page of Γ^{\prime}. Namely, by construction, every arc that is drawn in the bottom page of ℓ^{\prime} by Algorithm LinearOrderDraw is such that its interval contains at least one vertex of G (see also Section 6.1). This implies that the interval of a cannot contain both endpoints of arcs in the bottom page of Γ^{\prime} or else the interval of a would also contain a vertex of G. If the interval of a contains one endpoint u of an arc a^{\prime} of the bottom page, then it must contain both endpoints of the arc $a^{\prime \prime}$ that shares the endpoint u with a^{\prime}. Indeed, since Γ^{\prime} is a topological book embedding, two arcs that share an endpoint are in opposite pages; hence, $a^{\prime \prime}$ is in the top page of Γ^{\prime} and, by the planarity of Γ^{\prime}, it must have both endpoints in the interval of a. Also, $a^{\prime \prime}$ cannot have any vertex of G in its interval, or else also a would have a vertex in its interval. It follows that either the interval of a does not contain any endpoint of any arc of Γ^{\prime} or there exist arcs of the top page that have both endpoints in the interval of a and that do not contain any vertex in their interval.

By iterating this argument we conclude that if there is at least one arc of Γ^{\prime} whose interval does not contain a vertex of G, it must exists at least one arc of the top page of Γ^{\prime} such that its interval does not contain any endpoints. We say that such an arc is good for simplification. Let π be an x-monotone chain of an edge e of Γ^{\prime} such that π consists of at least two arcs (i.e. π crosses the spine). Assume that π contains at least one arc good for simplification and let a be one of such arcs. Let y be the left endpoint of a and z be the right endpoint of a. Note that since π consists of at least two arcs, at least one of the endpoints of a cannot be an endpoint of π.

We consider first the case that neither y nor z are endpoints of π. Let a_{1} be the arc immediately preceding a along π, i.e. let a_{1} be the arc of π whose rightmost endpoint is y; denote as y_{1} the other endpoint of a_{1}.

Similarly, let z and z_{2} be the endpoints of the $\operatorname{arc} a_{2}$ that immediately follows a along π. Recall that by definition of 3-chain topological book embedding consecutive arcs are in opposite pages and hence a_{1} and a_{2} are in the bottom page. Chain π is modified by deleting arcs a_{1}, a, and a_{2} and by inserting a single arc a^{\prime} such that the endpoints of a^{\prime} are y_{1} and z_{2} and a^{\prime} is in the bottom page. This procedure is illustrated in Figures $15(\mathrm{a})$ and $15(\mathrm{~b})$. Note also that a^{\prime} is in the page opposite to that of the arc preceding a_{1} and of the arc following a_{2} in Γ^{\prime}.

If only y (only z) is an endpoint of π, let a_{1} be the arc of π that follows (precedes) a, i.e. let a_{1} be the arc of π whose leftmost (rightmost) endpoint is y; denote as $z_{1}\left(y_{1}\right)$ the other endpoint of a_{1}. Chain π is modified by deleting arcs a_{1} and a and by inserting a single arc a^{\prime} such that the endpoints of a^{\prime} are y and $z_{1}\left(y_{1}\right.$ and $\left.z\right)$ and a^{\prime} is in the bottom page. This procedure is illustrated in Figures $15(\mathrm{c}), 15(\mathrm{~d}), 15(\mathrm{e})$, and $15(\mathrm{f})$. Also in this case, arc a^{\prime} is in the opposite page of the arc following (preceding) a_{1} in Γ^{\prime}.

Let $\hat{\Gamma}$ be the drawing after a has been removed by the simplification procedure described above. $\hat{\Gamma}$ differs from Γ^{\prime} only for the shape of edge e. Let π^{\prime} be the x-monotone portion of Γ^{\prime} that is replaced in $\hat{\Gamma}$ by arc a^{\prime} (π^{\prime} is formed by arc a and by one or two of its neighboring arcs depending on the cases described above). Since the endpoints of a^{\prime} coincide with the endpoints of π^{\prime} and since an arc is clearly an x-monotone curve, it follows that the number of x-monotone chains that form e is the same in Γ^{\prime} and in $\hat{\Gamma}$.

We now show that replacing π^{\prime} with arc a^{\prime} does not introduce edge crossings. Consider first the case that π^{\prime} is formed by three arcs, i.e. neither y nor z are endpoints of π. Arcs a_{1}, a, and a_{2} are replaced by a single arc a^{\prime} in the bottom page. We show that the replacement does not create any crossing. If a^{\prime} crossed another arc, this arc should be in the bottom page. Since a is good for simplification, no arcs have endpoints in the interval of a. Also, by the planarity of Γ^{\prime}, we have that an arc in the bottom page of Γ^{\prime} has both endpoints either to the left of y_{1}, or to the right of z_{2}, or it has one endpoint to the left of y_{1} and the other one to the right of z_{2}. It follows that arc a^{\prime} does not cross any arc in its page. The proof that $\hat{\Gamma}$ is a planar drawing in the case that π^{\prime} consists of two arcs is analogous.

From the arguments above it follows that $\hat{\Gamma}$ is a 3 -chain topological book embedding of G; also, since the coordinates of the vertices of G have not been changed when transforming Γ^{\prime} into $\hat{\Gamma}$, the left-to-right order of the vertices along the spine is the same in the two drawings. We now look for arcs good for simplification in $\hat{\Gamma}$. If there are no such arcs, we say that the wanted $\Gamma^{\prime \prime}$ coincides with $\hat{\Gamma}$. If otherwise $\hat{\Gamma}$ has an arc good for simplification, we apply the above described simplification procedure to this arc and obtain a new 3 -chain topological book embedding of G that maintains the left-to-right order of the vertices along the spine as in $\hat{\Gamma}$ and hence as in Γ^{\prime}. The procedure is then repeated until a 3-chain topological book embedding of G, that we call $\Gamma^{\prime \prime}$, is computed such that $\Gamma^{\prime \prime}$ does not have an arc good for simplification and it maintains the same left-to-right order of the vertices along the spine as in Γ^{\prime}. Observe that the interval of every arc of $\Gamma^{\prime \prime}$ contains at least one vertex of G because otherwise, by the argument at the beginning of this proof, there would be at least one arc good for simplification in $\Gamma^{\prime \prime}$. It follows that every x-monotone chain of $\Gamma^{\prime \prime}$ crosses the spine at most $n-1$ times and that $\Gamma^{\prime \prime}$ satisfies the statement.

The procedure described in the proof of Lemma 6 will be called simplification procedure in the remainder. Also we call the drawing computed by the simplification procedure a simplified 3-chain topological book embedding of G. The next lemma discusses the time complexity of the simplification procedure and will be used to prove an upper bound on the time complexity of computing k-colored point-set embeddings.

Lemma 7 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. There exists an $O\left(n^{2} \log n\right)$-time algorithm that computes a simplified 3-chain topological book embedding $\Gamma^{\prime \prime}$ of G such that the left-to-right order of the vertices in $\Gamma^{\prime \prime}$ coincides with λ.

Proof: We use the same definitions and notation as in the proof of Lemma 6. By Theorem 5, one can compute in $O\left(n^{2} \log n\right)$ time a 3 -chain topological book embedding Γ^{\prime} of G where the left-to-right order of the vertices along the spine is λ. By using Lemma 6, we can compute a simplified 3-chain topological book embedding $\Gamma^{\prime \prime}$ of G such that the left-to-right order of the vertices in $\Gamma^{\prime \prime}$ is the same as in Γ^{\prime}. As explained in the proof of Lemma 6, after an arc of Γ^{\prime} that is good for simplification is processed a new drawing if G is constructed that can have some other arc good for simplification. We say that an arc is candidate for simplification if it is good for simplification or if it will become good for simplification at some step of

Figure 15: Illustration of the simplification procedure described in the proof of Lemma 5.
the simplification procedure. The proof of the upper bound on the time complexity of the simplification procedure relies on a characterization of those arcs that are candidate for simplification.

Firstly, observe that if an arc is candidate for simplification then it belongs to an x-monotone chain of Γ^{\prime} having at least two arcs; indeed, by definition, an arc good for simplification belongs to an x-monotone chain of at least two arcs. Secondly, as already discussed in the proof of Lemma 6, no arc in the bottom page of Γ^{\prime} is good for simplification. Furthermore, since any step of the simplification procedure neither changes the coordinates of the vertices in the drawing nor it changes the coordinates of those spine crossings that are not removed, it follows that arc in the bottom page of Γ^{\prime} will never be good for simplification at any of the steps of the simplification procedure. By the same reasoning, an arc in the top page of the upper page of Γ^{\prime} whose interval contains some vertex of G will never be good for simplification.

Thirdly, let a be an arc in the top page of Γ^{\prime} such that a is good for simplification and let a^{\prime} be another arc in the top page of Γ^{\prime} such that the interval of a^{\prime} contains only the endpoints of a. After the simplification procedure is applied to arc a, we have that a^{\prime} is still an arc in the resulting drawing (the simplification procedure only deletes a and one or two arcs adjacent to a and belonging to the bottom page). Also, the interval of a^{\prime} does not contain any other endpoint of any other arcs, because this interval only contained the endpoints of a and a has been replaced by an arc in the bottom page whose endpoints are out of the interval of a^{\prime}. By iterating this reasoning, we can conclude that if an arc of the top page of Γ^{\prime} is such that its interval only contains endpoints that correspond to spine crossings, then this arc will become good for simplification and thus it is candidate for simplification.

From the observations above it follows that an arc is candidate for simplification if and only if it satisfies the following three conditions: (i) it belongs to an x-monotone chain of Γ^{\prime} having at least two arcs, (ii) it belongs to the upper page of Γ^{\prime}, and (iii) its interval does not contains any vertex of G. By using this characterization, the simplification algorithm can be implemented as follows.

As described in the proof of Theorem 5, we can assume to have an AVL tree for each x-monotone chain of Γ^{\prime} such that each node of the AVL tree stores an arc of the chain. We construct two arrays, one storing all vertices of Γ^{\prime} and the other one storing all endpoints (vertices and spine crossings); both arrays are sorted
according to the left-to-right order of their elements along the spine of Γ^{\prime}. We call A the array with only the vertices of Γ^{\prime} and A^{\prime} the array with the vertices and the spine crossings of Γ^{\prime}. As observed in the proof of Theorem 5, the total number of arcs stored in the AVL trees of Γ^{\prime} is $O\left(n^{2}\right)$ and thus the two arrays A and A^{\prime} can be constructed in $O\left(n^{2} \log n\right)$ time.

We now visit those arcs that are in the top page and are stored in those AVL trees having more than one element (an AVL tree having only one element corresponds to an x-monotone chain of a single arc). Let a be the currently visited arc; by performing a binary search in A, we determine in $O(\log n)$ time whether a is candidate for simplification. In the affirmative case, we equip the two elements of A^{\prime} that are the leftmost endpoint and the rightmost endpoint of a with a reference to a. Since there are $O\left(n^{2}\right)$ arcs in the top page of Γ^{\prime}, it follows that identifying the arcs candidate for simplification and equipping the elements of A^{\prime} with pointers to them can be done in $O\left(n^{2} \log n\right)$ time.

We now visit all endpoints of Γ^{\prime} from left-to-right by scanning A^{\prime}. An arc a that is candidate for simplification is processed only when its rightmost endpoint is encountered. This guarantees that all other candidate arcs whose endpoints are in the interval of a have been already processed and that a is now good for simplification. Processing a consists of identifying one or two arcs that precede and follow a in Γ^{\prime}, deleting both a and such arcs, and replacing the (two or three) deleted arcs with a single arc in the bottom page. All these steps can be executed in $O(\log n)$ time by accessing and updating the AVL tree of a.

It follows that the overall time complexity of the simplification procedure of Lemma 6 can be done in $O\left(n^{2} \log n\right)$ time.

Lemma 8 Let G be an n-colored planar graph with n vertices and let σ be an n-colored sequence compatible with G. G admits an external augmenting n-colored Hamiltonian path consistent with σ inducing at most $3 n-3$ flat division vertices and at most 2 pointy division vertices per edge.

Proof: The n-colored sequence σ defines a linear ordering $\lambda=v_{0}, v_{1}, \ldots, v_{n-1}$ of the vertices of G. By using Theorem 5 and Lemma 6 we compute a 3 -chain topological book embedding Γ of G such that the linear ordering of the vertices along the spine is λ and each x-monotone chain crosses the spine at most $n-1$ times.

We then replace each spine crossing of Γ with a dummy vertex. Let $\lambda^{\prime}=w_{0}, w_{1}, \ldots, w_{n^{\prime}-1}$ be the left-to-right order of the vertices (dummy or not) along the spine of $\Gamma\left(n^{\prime} \geq n\right)$. Connect w_{i} to w_{i+1} with a straight-line segment if w_{i} and w_{i+1} are not adjacent in $G\left(0 \leq i \leq n^{\prime}-2\right)$. The resulting planar drawing Γ^{\prime} describes an augmentation of G with dummy vertices and edges that admits an external Hamiltonian path visiting all real vertices according to σ. Therefore, the path \mathcal{H} from w_{0} to $w_{n^{\prime}-1}$ is an external augmenting n-colored Hamiltonian path of G consistent with σ.

It remains to show that this path induces at most $3 n-3$ flat division vertices and at most 2 pointy division vertices per edge. Let e be an edge of Γ and assume that e consists of three x-monotone chains. The number of division vertices along e is the number of spine crossings of e in Γ. By the monotonicity, each spine crossing of an x-monotone chain of e defines a flat division vertex of e. Indeed, a spine crossing w_{i} of an x-monotone chain π is the common endpoint of two consecutive arcs a_{1} and a_{2} that share w_{i} and form an x-monotone portion; this implies that the two endpoints of a_{1} and a_{2} different form w_{i} are encountered one before and the other after w_{i} along the spine of Γ^{\prime}. Since the order of the vertices along \mathcal{H} is the same as the left-to-right order of the vertices Γ^{\prime}, it follows that w_{i} is a flat division vertex.

Let w_{j} be a spine crossing defined by two consecutive x-monotone chains of $e . w_{j}$ is the common endpoint of two consecutive arcs such that a_{1} and a_{2} that share w_{j} and do not form an x-monotone portion. This implies that the two endpoints of a_{1} and a_{2} different form w_{j} are encountered both before or both after w_{j} along the spine of Γ^{\prime}. Hence w_{j} is a pointy division vertex.

Since each x-monotone chain of Γ has at most $n-1$ spine crossings and each edge has at most three x-monotone chains, it follows that \mathcal{H} induces at most $3 n-3$ flat division vertices and at most 2 pointy division vertices.

By using Lemma 8 and Theorem 3, we are in the position of proving the following upper bound on the curve complexity of k-colored point-set embeddings.

Theorem 6 Let G be a k-colored planar graph with n vertices such that $2 \leq k \leq n$ and let S be a k-colored set of points compatible with G. There exists an $O\left(n^{2} \log n\right)$-time algorithm that computes a k-colored point-set embedding of G on S having curve complexity at most $3 n+2$.

Proof: Assume first that $k=n$ and let σ be the n-colored sequence induced by S. The algorithm is as follows.

1. Compute the n-colored sequence σ induced by S by sorting the points according to their x-coordinates. Let λ be the linear ordering of the vertices of G defined by σ.
2. By using Lemma 7, compute a simplified 3 -chain topological book embedding $\Gamma^{\prime \prime}$ of G such that the left-to-right order of the vertices of G along the spine is λ.
3. By means of $\Gamma^{\prime \prime}$ and by using Lemma 8 , compute an external augmenting n-colored Hamiltonian path consistent with σ inducing at most $d_{f}=3 n-3$ flat division vertices and at most $d_{p}=2$ pointy division vertices per edge.
4. By using Theorem 3, construct an n-colored point-set embedding on S such that the maximum number of bends along each edge is $d_{f}+2 d_{p}+1=3 n+2$ by using .

If $k<n$, then one can arbitrarily map each vertex of color $i(0 \leq i \leq k-1)$ to a point of S_{i} (thus defining an n-coloring of G and S) and then use the drawing algorithm just described.

Step 1 can be executed in $O(n \log n)$ time and Step 2 can be executed in $O\left(n^{2} \log n\right)$ time (see Lemma 7).
Step 3 can be performed as follows. Refer to the data structures in the proof of Lemma 7) and to the technique illustrated in Lemma 8. Visit each arc in the top page of the AVL trees associated with the x monotone chains of $\Gamma^{\prime \prime}$. Let a be the currently visited arc and let A^{\prime} be the array that stores all vertices and spine crossings of $\Gamma^{\prime \prime}$, sorted according to their left-to-right order along the spine. By performing a binary search in the array A^{\prime}, we can determine in $O(\log n)$ time whether the endpoints of a are consecutive along the spine. In the affirmative case, we equip the two elements of A^{\prime} that are the leftmost endpoint and the rightmost endpoint of a with a reference to a. Since there are $O\left(n^{2}\right) \operatorname{arcs} \Gamma^{\prime \prime}$, this step can be executed in $O\left(n^{2} \log n\right)$ time. We now construct the external augmenting n-colored Hamiltonian path by scanning the $O\left(n^{2}\right)$ elements of A^{\prime} and by connecting with an edge every pair of elements that are not adjacent in $\Gamma^{\prime \prime}$. It follows that the overall time complexity of Step 3 is $O\left(n^{2} \log n\right)$.

Step 4 is based on the drawing technique of Kaufmann and Wiese [16], that is recalled in Theorem 3. In [16] it is proved that this technique can be executed in linear time for an embedded planar graph with a given external hamiltonian path. Observe that the graph obtained by augmenting G with the edges and the vertices of the external augmenting n-colored Hamiltonian path computed by the previous steps is a planar graph with $O\left(n^{2}\right)$ vertices and has an external hamiltonian path. It follows that Step 4 can be executed in $O\left(n^{2}\right)$ time.

We can therefore conclude that a k-colored point-set embedding of G on S having curve complexity at most $3 n+2$ can be computed in $O\left(n^{2} \log n\right)$ time.

7.2 Special Colorings

Since by Theorem $1 k$-colored point-set embeddings can have a linear number of edges each requiring a linear number of bends, the upper bound on the curve complexity expressed by Theorem 6 is asymptotically tight. However, there can be special colorings of the input graph that guarantee a curve complexity which depends on k and it does not depend on n.

Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. We present a lemma that studies the relationship between a drawing of an edge in the monotone topological book embedding of G computed by Step (-1) of Algorithm LinearOrderDraw and a simplified 3-chain topological book embedding of G that has the left-to-right ordering of λ. In the statement we say that two vertices u and v of G are consecutive along the spine to mean that there is no vertex of G drawn in the open interval defined by u and v in the spine; clearly, such interval may contain spine crossings.

Lemma 9 Let Γ be a monotone topological book embedding of G computed by Step (-1) of Algorithm LinEarOrderDraw and let Γ^{\prime} be a simplified simplified 3-chain topological book embedding of G computed by the simplification procedure. Let u and v be two vertices of G that are consecutive along the spine of Γ and are consecutive along the the spine of Γ^{\prime}. Let e be an edge of G such that the drawing of e in Γ does not cross the spine at a point between u and v. Then, also the drawing of e in Γ^{\prime} does not cross the spine between u and v.

Proof: Consider the drawing of e in Γ and let v_{i}, v_{j} be the endvertices of e with v_{i} left of v_{j}. Edge e in Γ^{\prime} consists of at most three x-monotone chains. More precisely, if the drawing of e in Γ does not cross the spine then, as explained in the proof of Lemma 5 , its drawing in Γ^{\prime} consists of at most two x-monotone chains else it can have also a third x-monotone chain.

Let π be an x-monotone chain of a 3 -chain topological book embedding. The top interval of π is the union of all intervals of the arcs of π that are in the bottom page. Similarly, the bottom interval of π is the union of all intervals of the arcs of π that are in the top page. We shall study the properties of the bottom and top intervals of the x-monotone chains forming e in the drawing computed by Algorithm Linearorderdraw and then take into account the simplification procedure. Refer also to the notation of Section 6.1.

Assume first that e does not cross the spine in Γ. We will consider next the case that e crosses the spine of Γ. We can partition the vertices of Γ different from v_{i} and from v_{j} into three sets: The backward vertices are the vertices to the left of v_{i} along teh spine of Γ; the in-between vertices are the vertices in the open interval between v_{i} and v_{j}; the forward vertices are to the right of v_{j}. We say that two vertices have the same type if they belong to the same partition set and we say that they have different type if they do not belong to the same partition set.

From Step 0 to Step $(i-1)$, Algorithm LinearOrderDraw processes the backward vertices and the lower sequence of e does not exist. From Step i to Step $(j-1)$ the in-between vertices are moved to their target positions and the lower sequence of e consists of at most one x-monotone chain that we call π_{1}. During these steps, when the trajectory of an in-between vertex intersects π_{1}, the x-monotone chain is modified by creating an arc a in the bottom page. The interval of a contains the target position of the moved in-between vertex plus, possibly, some spine crossings. As a result, at the end of $\operatorname{Step}(j-1)$ the top interval of π_{1} contains only in-between vertices and spine crossings, while the bottom interval only contains backward vertices, target positions of forward vertices, and spine crossings. At Step j, vertex v_{j} is moved to its target position; either a second x-monotone chain, that we call π_{2}, is created or a new arc is added to π_{1}, depending on the coordinates of the target position of v_{j}. From Step j to Step $(n-1)$, Algorithm LinearOrderDraw processes the forward vertices by moving them to their target positions. If the trajectory of a forward vertex intersects π_{1} or π_{2} (or both), the intersected x-monotone chain is modified by creating an arc in the bottom page whose interval contains the target position of the moved forward vertex plus, possibly, some spine crossings. As a result, at the end of Step $(n-1)$ the top interval of π_{1} contains only in-between vertices, forward vertices, and spine crossings, while the bottom interval only contains backward vertices and spine crossings. Similarly, the top interval of π_{2} contains only forward vertices and spine crossings while its bottom interval contains only backward vertices, in-between vertices, and spine crossings. Hence, the vertices that are in the top interval of $\pi_{h}(h=1,2)$ and those that are in the bottom interval of π_{h} have different type.

Consider now the the simplified 3 -chain monotone topological book embedding Γ^{\prime}. As explained in the proof of Lemma 6, a simplified 3-chain topological book embedding is such that the interval of each arc contains at least one vertex of G. Also, a spine crossing of an x-monotone chain of Γ^{\prime} is a point shared by two arcs belonging to opposite pages. From the discussion above, we have that the intervals of these two arcs contain vertices that have different type. Therefore, an x-monotone chain of Γ^{\prime} can have a spine crossing between consecutive vertices only if these two vertices have different type.

Now notice that e does not cross the spine of Γ between u and v. This implies that u and v either have the same type or at least one of them is an endvertex of e; in no case however they can have different type. Since u and v are consecutive along the spine of Γ^{\prime} it follows that e cannot cross the spine of Γ^{\prime} between u and v.

It remains to study the case that e crosses the spine of Γ. In this case, the vertices of Γ that are not the endvertices of e are partitioned into four sets: The backward vertices are the vertices to the left of v_{i};
the in-between vertices of type A are the vertices in the open interval between v_{i} and the spine crossing of e; the in-between vertices of type B are the vertices in the open interval between the spine crossing and v_{j}; the forward vertices are those to the right of v_{j}.

The execution of the n Steps of Algorithm LinearOrderDraw can give rise to a drawing Γ_{n} where e consists of three x-monotone chains. By using a similar analysis as the one of the previous case, one can show that after the simplification procedure is applied, an x-monotone chain can have a spine crossing between consecutive vertices only if these two vertices have different type and conclude that also in this case e cannot cross the spine of Γ^{\prime} between u and v.

We are in the position of proving the main result of this section.
Theorem 7 Let G be a k-colored planar graph with n vertices such that: (i) $1 \leq k<n$; (ii) $\left|V_{i}\right|=1$ for every $0 \leq i \leq k-2$; (iii) $\left|V_{k-1}\right|=n-k+1$. Let S be a k-colored set of points compatible with G. There exists an $O\left(n^{2} \log n\right)$-time algorithm that computes a k-colored point-set embedding of G on S having curve complexity at most $9 k-1$.

Proof: Since $k<n$, we choose a mapping of the $n-k+1$ vertices of V_{k-1} to the points of S_{k-1}, thus obtaining an n-coloring of G and S. Let σ be the n-colored sequence induced by S and let λ be the linear ordering of the vertices of G defined by σ. Let Γ be the monotone topological book embedding computed at Step (-1) of Algorithm LinearOrderDraw and let Γ^{\prime} be a simplified 3-chain topological book embedding of G such that the left-to-right order of the vertices along the spine of Γ^{\prime} is λ (see Lemma 7).

By Lemma 8, G admits an augmenting n-colored Hamiltonian path consistent with σ and inducing at most $d_{f}=3 n-3$ flat division vertices and at most $d_{p}=2$ pointy division vertices per edge. We show that if the mapping between the $n-k+1$ vertices of V_{k-1} and the points of S_{k-1} is chosen in such a way that the order of the vertices of V_{k-1} along ℓ is also maintained along ℓ^{\prime}, then each x-monotone chain of Γ^{\prime} crosses the spine at most $3 k-2$ times. By a reasoning analogous to that of Lemma 8 , we can conclude that G admits an augmenting n-colored Hamiltonian path consistent with σ and inducing at most $d_{f}=9 k-6$ flat division vertices per edge and at most $d_{p}=2$ pointy division vertices per edge. Hence, by Theorem $3, G$ admits an n-colored point-set embedding on S such that the maximum number of bends along each edge is $d_{f}+2 d_{p}+1=9 k-1$. Clearly, such an n-colored point-set embedding of G on S is also a k-colored point-set embedding of G on S.

Observe that, as described in the proof of Lemma 6, an x-monotone chain of an edge e of Γ^{\prime} can cross the spine only once between each pair of consecutive vertices. Also, by Lemma 9, there is not a spine crossing if these two consecutive vertices are also consecutive along ℓ and e does not cross ℓ between them. In order to compute an upper bound on the number of spine crossings of an x-monotone chain of Γ^{\prime}, we count the number of consecutive pairs of vertices along the spine of Γ^{\prime} for which Lemma 9 does not hold. Denote by c_{1} the maximum number of pairs of vertices that can be consecutive in ℓ^{\prime} and not in ℓ; denote by c_{2} the maximum number of pairs of vertices u and v such that u and v are consecutive both in ℓ and in ℓ^{\prime} and e has a spine crossing between u and v in Γ. The wanted upper bound is $c_{1}+c_{2}$.

Since Γ is a monotone topological book embedding, $c_{2}=1$. As for c_{1}, we observe that the order of the vertices along ℓ^{\prime} is the same as the order along ℓ except for those vertices of colors $0,1, \ldots, k-2$. Let v be a vertex having color different form $k-1$ and assume that v is followed and preceded along ℓ by vertices u and w; also assume that v is followed and preceded by vertices u^{\prime} and w^{\prime} along ℓ^{\prime}. Note that the vertices forming pairs $<u^{\prime}, v>$ and $<v, w^{\prime}>$ are consecutive in Γ^{\prime} but not in Γ; also the vertices of the pair $<u, w>$ can be consecutive in Γ^{\prime} but not in Γ. It follows that for every vertex having color different form $k-1$, an x-monotone chain of Γ^{\prime} can cross the spine at most 3 times, and therefore $c_{1}=3 k-3$. Since an edge of Γ^{\prime} can consist of at most three x-monotone chains, it follows that G admits an augmenting n-colored Hamiltonian path consistent with σ and inducing at most $d_{f}=9 k-6$ flat division vertices per edge and at most $d_{p}=2$ pointy division vertices per edge.

The stated time complexity can be proved by the same analysis in the proof of Theorem 6.

8 Conclusions and Open Problems

This paper has presented a unified approach to the problem of computing k-colored point-set embeddings of k-colored planar graphs such that the curve complexity of the drawing is optimal. The described results extend and improve known results described in the literature. The used techniques rely on the study of topological properties of planar graphs and on an equivalence relation between computing a k-colored pointset embedding and finding a suitable Hamiltonian path in a graph.

We conclude with some open problems about k-colored point-set embeddings that could be the subject of further research.

1. Reduce the gap between upper and lower bound for the curve complexity of k-colored point-set embeddings.
2. Theorems 1 and 2 show that the total number of bends of k-colored point-set embeddability problem can be quadratic for $2 \leq k \leq n$. It would be interesting to study whether a subquadratic upper can be obtained in the case that the number of points for each color i is $c n_{i}$, where c is a constant larger than 1 and n_{i} is the number of vertices of color i.
3. What is the curve complexity of k-colored point-set embeddings of k-colored trees for small values of k ? Notice that the described lower bounds use bi-connected graphs.

Acknowledgements

The authors thank Walter Didimo for useful discussions.

References

[1] M. Abellanas, J. Garcia-Lopez, G. Hernández-Peñver, M. Noy, and P. A. Ramos. Bipartite embeddings of trees in the plane. Discrete Applied Mathematics, 93(2-3):141-148, 1999.
[2] J. Akiyama and J. Urrutia. Simple alternating path problem. Discrete Mathematics, 84:101-103, 1990.
[3] P. Bose. On embedding an outer-planar graph on a point set. Computational Geometry: Theory and Applications, 23:303-312, 2002.
[4] P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed trees in a point set. Journal of Graph Algorithms and Applications, 2(1):1-15, 1997.
[5] U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Foundations, volume 3418 of Lecture Notes in Computer Science. Springer, 2005.
[6] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.
[7] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Trotta, and S. K. Wismath. k-colored point-set embeddability of outerplanar graphs. In Graph Drawing (Proc. GD 2006), volume 4372 of LNCS, pages 318-329. Springer-Verlag, 2007.
[8] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Curve-constrained drawings of planar graphs. Computational Geometry, 30:1-23, 2005.
[9] E. Di Giacomo, G. Liotta, and F. Trotta. On embedding a graph on two sets of points. International Journal of Foundations of Computer Science, Special Issue on Graph Drawing, 17(5):1071-1094, 2006.
[10] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly, 98(2):165-166, 1991.
[11] J. H. Halton. On the thickness of graphs of given degree. Information Sciences, 54:219-238, 1991.
[12] A. Kaneko and M. Kano. Straight line embeddings of rooted star forests in the plane. Discrete Applied Mathematics, 101:167-175, 2000.
[13] A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane - a survey. In Discrete \mathcal{E} Computational Geometry, volume 25 of Algorithms and Combinatories, pages 551-570. Springer, 2003.
[14] A. Kaneko, M. Kano, and K. Suzuki. Path coverings of two sets of points in the plane. In J. Pach, editor, Towards a Theory of Geometric Graphs, volume 342 of Contemporary Mathematics. American Mathematical Society, 2004.
[15] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001.
[16] M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications, 6(1):115-129, 2002.
[17] J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. Graph and Combinatorics, 17:717728, 2001.
[18] K. Sugiyama. Graph Drawing and Applications for Software and Knowledge Engineers. Word Scientific, 2002.
[19] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, SMC-18(1):61-79, 1988.

Appendix

A1. 2-colored Diamond Graph and Lower Bound

A 2-colored diamond graph is a 2-colored graph as the one depicted in Figure 2(a). More formally, let $n \geq 16$ and let $n^{\prime}=n-n \bmod 16=16 h$, for a positive integer h; a 2 -colored diamond graph $G_{n}=(V, E)$ is defined as follows:

- $V=V_{0} \cup V_{1} \cup V_{2}$
- $V_{0}=\left\{v_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{2}+\left\lceil\frac{n \bmod 16}{2}\right\rceil\right.\right\}$
- $V_{1}=\left\{u_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{4}+\left\lfloor\frac{n \bmod 16}{2}\right\rfloor\right.\right\}$
- $V_{2}=\left\{w_{i} \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{4}\right.\right\}$
- $E=E_{0} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$
- $E_{0}=\left\{\left(v_{i}, v_{i+1}\right) \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{2}+\left\lceil\frac{n \bmod 16}{2}\right\rceil-1\right.\right\}$
- $E_{1}=\left\{\left(u_{i}, u_{i+1}\right) \left\lvert\, 0 \leq i \leq \frac{n^{\prime}}{2}+\left\lfloor\frac{n \bmod 16}{2}\right\rfloor-1\right.\right\}$
- $E_{2}=\left\{\left(w_{i}, w_{i+1}\right),\left(w_{i+1}, w_{i+2}\right),\left(w_{i+2}, w_{i+3}\right),\left(w_{i+3}, w_{i}\right) \mid 0 \leq i \leq 4 h-1\right.$, $i \bmod 4=0\}$
- $E_{3}=\left\{\left(w_{i+1}, w_{i+4}\right),\left(w_{i+3}, w_{i+4}\right),\left(w_{i+1}, w_{i+6}\right),\left(w_{i+3}, w_{i+6}\right) \mid 0 \leq i \leq 4 h-5\right.$, $i \bmod 4=0\}$
- $E_{4}=\left\{\left(w_{4 h-1}, v_{\frac{n^{\prime}}{2}+\left\lceil\frac{n \bmod 16}{2}\right\rceil}\right),\left(w_{4 h-3}, v_{0}\right),\left(w_{0}, u_{0}\right),\left(w_{2}, u_{\frac{n^{\prime}}{4}+\left\lfloor\frac{n \bmod 16}{2}\right\rfloor}\right)\right\}$

Let S be an alternating bi-colored sequence compatible with G_{n} and let p_{0}, \ldots, p_{n-1} be the points of S ordered according to their x-coordinates. Let Γ_{n} be a 2 -colored point-set embedding of G_{n} on S where z_{i} is the vertex of G_{n} that is mapped to p_{i}. In contrary to the k-colored case ($3 \leq k \leq n$), z_{i} and z_{i+1} can be adjacent in Γ_{n}. This can happen at most twice since only the vertices $w_{4 h-3}$ and $w_{4 h-1}$ are adjacent to a vertice of set V_{0}. Connect in $\Gamma_{n} z_{i}$ and z_{i+1} with a straight-line segment $(i=0, \ldots, n-2)$; the obtained path is called bi-colored path Π on Γ_{n}.

Lemma 10 Let G_{n} be a 2-colored diamond graph and let S be an alternating bi-colored sequence compatible with G_{n}. Let Γ_{n} be a 2-colored point-set embedding of G_{n} on S and let Π be the bi-colored path on $\Gamma_{n} . \Pi$ crosses at least $\frac{n^{\prime}}{8}-1$ edges of Γ_{n}, where $n^{\prime}=n-(n \bmod 16)$; also, Π crosses each of these edges at least $\frac{n^{\prime}}{8}$ times.

Proof: We will use the definition of a cycle $C \in G_{n}$ that separates a subset of vertices from another subset of vertices which was already explained in the proof of Lemma 2. In every planar drawing of G_{n} each of the h cycles defined by the edges in set E_{2} separates all vertices in V_{0} from all vertices in V_{1}. In the same way, each of the $h-1$ cycles defined by the edges in set E_{3} separates all vertices in V_{0} from all vertices in V_{1}. Let $n^{\prime \prime}=n-n^{\prime}=n \bmod 16$. As we have $\frac{n^{\prime}}{4}+\left\lfloor\frac{n^{\prime \prime}}{2}\right\rfloor$ vertices in the interior region defined by the cycles C and $\frac{n^{\prime}}{4}+\left\lceil\frac{n^{\prime \prime}}{2}\right\rceil$ in the exterior region defined by these cycles, each cycle is crossed $\frac{n^{\prime}}{2}+n^{\prime \prime}-1$ times. Since each cycle has four edges, we have that at least $2 h-1=\frac{n^{\prime}}{8}-1$ edges are crossed at least $\left\lceil\frac{n^{\prime}}{8}+\frac{n^{\prime \prime}}{4}-\frac{1}{4}\right\rceil \geq\left\lceil\frac{16 h}{8}-\frac{1}{4}\right\rceil=\left\lceil 2 h-\frac{1}{4}\right\rceil=2 h=\frac{n^{\prime}}{8}$ times.

By means of Lemma 1 and Lemma 10 the following lower bound for 2-colored point-set embeddings can be proved.

Theorem 2 For every $n \geq 16$ there exists a 2 -colored planar graph G_{n} with n vertices and a 2 -colored set of points S compatible with G_{n} such that any 2 -colored point-set embedding of G_{n} on S has at least $\frac{n^{\prime}}{8}-1$ edges each having at least $\frac{n^{\prime}}{8}-1$ bends, where $n^{\prime}=n-(n \bmod 16)$.

Proof: Given any $n \geq 16$ construct a 2 -colored diamond graph G_{n}. Let S be an alternating bi-colored sequence compatible with G_{n}. Let Γ_{n} be a 2 -colored point-set embedding of G_{n} on S and let Π be the bi-colored path on Γ_{n}.

By Lemma 10 there are at least $\frac{n^{\prime}}{8}-1$ edges of Γ_{n} that are crossed by Π at least $\frac{n^{\prime}}{8}$ times. By Lemma 1 each of these edges has at least $\frac{n^{\prime}}{8}-1$ bends.

[^0]: * An extended abstract of this paper will appear in the proceedings of the $10^{t h}$ Workshop on Algorithms and Data Structures, WADS 2007. Work partially supported by the MIUR Project "MAINSTREAM: Algorithms for massive information structures and data streams"
 ${ }^{\dagger}$ Department of Computer and Information Science, University of Konstanz. melanie.badent@uni-konstanz.de
 ${ }^{\ddagger}$ Dipartimento di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia. \{digiacomo, liotta\}@diei.unipg.it

