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Drawing Colored Graphs on Colored Points∗

Melanie Badent† Emilio Di Giacomo‡ Giuseppe Liotta‡

Abstract

Let G be a planar graph with n vertices whose vertex set is partitioned into subsets V0, . . . , Vk−1 for
some positive integer 1 ≤ k ≤ n and let S be a set of n distinct points in the plane partitioned into
subsets S0, . . . , Sk−1 with |Vi| = |Si| (0 ≤ i ≤ k − 1). This paper studies the problem of computing a
crossing-free drawing of G such that each vertex of Vi is mapped to a distinct point of Si. Lower and
upper bounds on the number of bends per edge are proved for any 2 ≤ k ≤ n. As a special case, we
improve the upper and lower bounds presented in a paper by Pach and Wenger for k = n [Graphs and
Combinatorics (2001), 17:717–728].

1 Introduction

Let G be a planar graph with n vertices whose vertex set is partitioned into subsets V0, . . . , Vk−1 for some
positive integer 1 ≤ k ≤ n and let S be a set of n distinct points in the plane partitioned into subsets
S0, . . . , Sk−1 with |Vi| = |Si| (0 ≤ i ≤ k − 1). We say that each index i is a color, G is a k-colored planar
graph, and S is a k-colored set of points compatible with G. This paper studies the problem of computing
a k-colored point-set embedding of G on S, i.e. a crossing-free drawing of G such that each vertex of Vi is
mapped to a distinct point of Si.

Computing k-colored point-set embeddings of k-colored planar graphs has applications in graph drawing,
where the semantic constraints for the vertices of a graph G define the placement that these vertices must
have in a readable visualization of G (see, e.g., [6, 15, 18]). For example, in the context of data base systems
design some particularly relevant entities of an ER schema may be required to be drawn in the center and/or
along the boundary of the diagram (see, e.g., [19]); in social network analysis, a typical technique to visualize
and navigate large networks is to group the vertices into clusters and to draw the vertices of a same cluster
close with each other and relatively far from those of other clusters (see, e.g., [5]). A natural way of modelling
these types of semantic constraints is to color a (sub)set of the vertices of the input graph and to specify a
set of locations having the same color for their placement in the drawing.

As a result, the problem of computing k-colored point-set embeddings of k-colored planar graphs has
received considerable interest in the computational geometry and graph drawing communities, where par-
ticular attention has been devoted to the curve complexity of the computed drawings, i.e. the maximum
number of bends along each edge. Namely, reducing the number of bends along the edges is a fundamental
optimization goal when computing aesthetically pleasing drawings of graphs (see, e.g., [6, 15, 18]). Before
presenting our results, we briefly review the literature on the subject. Since there is not a unified terminology,
we slightly rephrase some of the known results; in what follows, n denotes both the number of vertices of a
k-colored planar graph and the number of points of a k-colored set of points compatible with the graph.

Kaufmann and Wiese [16] study the “mono-chromatic version” of the problem, that is they focus on 1-
colored point-set embeddings. Given a 1-colored planar graph G (i.e. a planar graph G) and a (1-colored) set
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S of points in the plane they show how to compute a 1-colored point-set embedding of G on S such that the
curve complexity is at most two, which is proved to be worst case optimal. Further studies on 1-chromatic
point-set embeddings can be found in [3, 4, 10]; these papers are devoted to characterizing which 1-colored
planar graphs with n vertices admit 1-colored point-set embeddings of curve complexity zero on any set of
n points and to presenting efficient algorithms for the computation of such drawings.

2-colored point-set embeddings are studied in [9] where it is proved that subclasses of outerplanar graphs,
including paths, cycles, caterpillars, and wreaths all admit a 2-colored point-set embedding on any 2-colored
set of points such that the resulting drawing has constant curve complexity. It is also shown in [9] that
there exists a 3-connected 2-colored planar graph G and a 2-colored set of points S such that every 2-colored
point-set embedding of G on S has at least one edge requiring Ω(n) bends. These results are extended in [7],
where an O(n log n)-time algorithm is described to compute a 2-colored point-set embedding with constant
curve complexity for every 2-colored outerplanar graph; in the same paper, it is also proved that for any
positive integer h there exists a 3-colored outerplanar graph G and a 3-colored set of points such that any
3-colored point-set embedding of G on S has at least one edge having more than h bends. Characterizations
of families of 2-colored planar graphs which admit a 2-colored point-set embedding having curve complexity
zero on any compatible 2-colored set of points can be found in [1, 2, 12, 13, 14].

Key references for the “n-chromatic version” of the problem are the works by Halton [11] and by Pach
and Wenger [17]. Halton [11] proves that an n-colored planar graph always admits an n-colored point-set
embedding on any n-colored set of points; however, he does not address the problem of optimizing the curve
complexity of the computed drawing. About ten years later, Pach and Wenger [17] re-visit the question and
show that an n-colored planar graph G always has an n-colored point-set embedding on any n-colored set of
points such that each edge of the drawing has at most 120n bends; they also give a probabilistic argument
to prove that, asymptotically, the upper bound on the curve complexity is tight for a linear number of edges.
More precisely, let G be an n-colored planar graph with m independent edges and let S be a set of n points
in convex position such that each point is colored at random with one of n distinct colors. Pach and Wenger
prove that, almost surely, at least m

20 edges of G have at least m
403 bends on any n-colored point-set embedding

of G on S.
The present paper describes a unified approach to the problem of computing k-colored point-set em-

beddings for 2 ≤ k ≤ n. The research is motivated by the following observations: (i) The literature has
either focused on very few colors or on the n colors case; in spite of the practical relevance of the problem,
little seems to be known about how to draw graphs where the vertices are grouped into 2 ≤ k ≤ n clusters
and there are semantic constraints for the placement of these vertices. (ii) The Ω(n) lower bound on the
curve complexity for 2-colored point-set embeddings described in [9] implies that for any 2 ≤ k ≤ n there
can be k-colored point-set embeddings which require a linear number of bends per edge. This could lead to
the conclusion that in order to compute k-colored point-set embeddings that are optimal in terms of curve
complexity one can arbitrarily n-color the input graph, consistently color the input set of points, and then
use the drawing algorithm by Pach and Wenger [17]. However, the lower bound of [9] shows Ω(n) curve
complexity for a constant number of edges, whereas the drawing technique of Pach and Wenger gives rise to a
linear number of edges each having a linear number of bends. Hence, the total number of bends in a drawing
obtained by the technique of [17] is O(n2) and it is not known whether there are small values of k for which
o(n2) bends would be always possible. (iii) There is a large gap between the multiplicative constant factors
that define the upper and the lower bound of the curve complexity of n-colored point-set embeddings [17].
Since the readability of a drawing of a graph is strongly affected by the number of bends along the edges, it
is natural to study whether there exists an algorithm that guarantees curve complexity less than 120n. Our
main results are as follows.

• A lower bound on the curve complexity of k-colored point-set embeddings is presented which establishes
that Ω(n2) bends may be necessary even for small values of k. Namely, it is shown that for every n such
that n ≥ 16 and for every k such that 2 ≤ k ≤ n there exists a k-colored planar graph G with n vertices
and a k-colored set of points S compatible with G such that any k-colored point-set embedding of G
on S has Ω(n) edges each having Ω(n) bends. This lower bound generalizes the one in [17] for k = n
and the one in [9] for k = 2. Also, the constant factors of our lower bound for k = n are significantly
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larger than those in [17].

• An O(n2 log n)-time algorithm is described that receives as input a k-colored planar graph G (2 ≤ k ≤
n), a k-colored set of points S compatible with G, and computes a k-colored point-set embedding of G
on S with curve complexity at most 3n + 2. This reduces by about forty times the previously known
upper bound for k = n [17].

• Motivated by the previously described lower bound, special colorings of the input graph are studied
which can guarantee a curve complexity that does not depend on n. Namely, it is shown that if the
k-colored planar graph G has k − 1 vertices each having a distinct color and n− k + 1 vertices of the
same color, it is always possible to compute a k-colored point-set embedding whose curve complexity
is at most 9k − 1.

Both the lower and the upper bounds are proved by using a common technique, based on translating the
geometric problem into a topological augmentation problem. The upper bounds are based on an algorithm
that computes a planar drawing of a graph such that all vertices are collinear, the vertices follow a given
left-to-right order, and the edges “ripple only a few times”.

The remainder of this paper is organized as follows. Preliminary definitions are in Section 2. The lower
bound is described in Section 3. Sections 4, 6, and 7 are devoted to the drawing algorithms and their analysis
both in terms of computational complexity and in terms of curve complexity. Conclusions and open problems
can be found in Section 8.

2 Preliminaries

A drawing of a graph G is a geometric representation of G such that each vertex is a distinct point of the
Euclidean plane and each edge is a simple Jordan curve connecting the points which represent its endvertices.
A drawing is planar if any two edges can only share the points that represent common endvertices. A graph
is planar if it admits a planar drawing.

Let G = (V, E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1} of V where the integers
0, 1, . . . , k − 1 are called colors. In the rest of this section the index i is 0 ≤ i ≤ k − 1 if not differently
specified. For each vertex v ∈ Vi we denote by col(v) the color i of v. A graph G with a k-coloring is called a
k-colored graph. Let S be a set of distinct points in the plane. We always assume that the points of S have
distinct x-coordinates (this condition can always be satisfied by means of a suitable rotation of the plane).
For any point p ∈ S we denote by x(p) and y(p) the x- and y-coordinates of p, respectively. A k-coloring of
S is a partition {S0, S1, . . . , Sk−1} of S. A set S of distinct points in the plane with a k-coloring is called a
k-colored set of points. For each point p ∈ Si col(p) denotes the color i of p. A k-colored set of points S is
compatible with a k-colored graph G if |Vi| = |Si| for every i; if G is planar, we say that G has a k-colored
point-set embedding on S if there exists a planar drawing of G such that: (i) every vertex v is mapped to a
distinct point p of S with col(p) = col(v), (ii) each edge e of G is drawn as a polyline λ; a point shared by
any two consecutive segments of λ is called a bend of e. The curve complexity of a drawing is the maximum
number of bends per edge. Throughout the paper n denotes the number of vertices of graph and m the
number of its edges.

3 Lower Bounds on the Curve Complexity

In this section, we first show that for any integer k such that 3 ≤ k ≤ n, the problem of computing k-colored
point-set embeddings can require a linear number of edges each having a linear number of bends. Then, we
show how this result can be extended to 2-colored point-set embeddings.

The lower bound technique for 3 ≤ k ≤ n is based on a deterministic proof and uses combinatorial
arguments. We first describe a 3-colored planar graph with n vertices and a 3-colored set of points compatible
with this graph. We then show a property of any 3-colored point-set embedding of this graph on the set of
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points; we finally describe a topological property of the graph. The union of the two properties gives rise to
the lower bound. Since the lower bound for the special case of 2-colored point-set embeddings can be proved
by means of the same approach but with slight differences in the constant factors, we just state the result
in this section and refer the interested reader to the paper appendix for a detailed proof.

3.1 Diamond Graphs and 3-colored Sets of Points
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Figure 1: (a) A diamond graph Gn. (b) A 3-colored set of points with an alternating bi-colored sequence compatible
with Gn.

A diamond graph is a 3-colored planar graph as the one depicted in Figure 1(a). More formally, let n ≥ 12,
let n′′ = (n mod 12) and let n′ = n− n′′ = 12h for some h > 0; a diamond graph Gn = (V, E) is defined as
follows:

• V = V0 ∪ V1 ∪ V2

• V0 = {vi | 0 ≤ i ≤ n′
3 +

⌈
n′′
2

⌉
}

• V1 = {ui | 0 ≤ i ≤ n′
3 +

⌊
n′′
2

⌋
}

• V2 = {wi | 0 ≤ i ≤ n′
3 }

• E = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4

• E0 = {(vi, vi+1) | 0 ≤ i ≤ n′
3 +

⌈
n′′
2

⌉
− 1}

• E1 = {(ui, ui+1) | 0 ≤ i ≤ n′
3 +

⌊
n′′
2

⌋
− 1}

• E2 = {(wi, wi+1), (wi+1, wi+2), (wi+2, wi+3), (wi+3, wi) | 0 ≤ i ≤ 4h− 1,
i mod 4 = 0}

• E3 = {(wi+1, wi+4), (wi+3, wi+4), (wi+1, wi+6), (wi+3, wi+6) | 0 ≤ i ≤ 4h− 5,
i mod 4 = 0}
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• E4 = {(w4h−1, vn′
3 +dn′′

2 e), (w4h−3, v0), (w0, u0), (w2, un′
3 +bn′′

2 c)}

Let S = S0 ∪ S1 be a 2-colored set of points all belonging to a horizontal straight line `; we say that S is
an alternating bi-colored sequence if |S0| = |S1| or |S0| = |S1|+1 and no two points of the same color appear
consecutively along the line `. A 3-colored set of points with an alternating bi-colored sequence is a 3-colored
set of points S = S0 ∪ S1 ∪ S2 such that S′ = S0 ∪ S1 is an alternating bi-colored sequence with no point of
S2 on `. See Figure 1(b) for an example.

3.2 Bi-colored Paths and Lower Bounds

Let Gn (n ≥ 12) be the diamond graph with n vertices and let S be a 3-colored set of points with an
alternating bi-colored sequence and compatible with Gn. Let Γn be a 3-colored point-set embedding of Gn

on S. In what follows we shall assume that no bend is represented by a point that belongs to the horizontal
straight line ` that contains the bi-colored sequence of S. Namely, if a point p representing a bend of an
edge of Γn is a point of `, we can slightly perturb the drawing so that the drawing remains planar and p is
moved either above or below `.

Let p0, p1, . . . , p8h+n′′−1 be the points of the bi-colored sequence of S ordered according to their x-
coordinates. Denote with zi the vertex of Gn which is mapped to pi. Notice that zi and zi+1 are not
adjacent in Γn because one of them belongs to V0 and the other one belongs to V1 in Gn. Connect in Γn zi

and zi+1 with a straight-line segment (i = 0, . . . , 8h + n′′ − 2); the obtained path is called bi-colored path on
Γn.

Lemma 1 Let Gn (n ≥ 12) be a diamond graph and let S be a 3-colored set of points with an alternating
bi-colored sequence such that S is compatible with Gn. Let Γn be a 3-colored point-set embedding of Gn on
S, let e be an edge of Γn, and let Π be the bi-colored path on Γn. If Π crosses e b times, then e has at least
b− 1 bends.

Proof: Since no bend of Γn is on ` and no vertex of V2 is on ` then each segment of e can cross the straight
line that contains the bi-colored sequence of S at most once. Thus, if e is crossed b times by Π, then it
consists of at least b segments. Since at most two endpoints of these segments can be the endvertices of e,
it follows that e has at least b− 1 bends. ¤

Lemma 2 Let Gn (n ≥ 12) be a diamond graph and let S be a 3-colored set of points with an alternating
bi-colored sequence such that S is compatible with Gn. Let Γn be a 3-colored point-set embedding of Gn on
S and let Π be the bi-colored path on Γn. Π crosses at least n′

6 − 1 edges of Γn, where n′ = n− (n mod 12);
also, Π crosses each of these edges at least n′

6 times.

Proof: For a planar drawing of Gn and a cycle C ∈ Gn we say that C separates a subset V ′ ⊂ V from
a subset V ′′ ⊂ V if all vertices of V ′ lie in the interior of the region bounded by C and all vertices of V ′′

are in the exterior of this region. In every planar drawing of Gn each of the h cycles defined by the edges
in the set E2 separates all vertices in V0 from all vertices in V1. Thus every edge of Π must cross these h
cycles. Analogously, in every planar drawing of Gn each of the h− 1 cycles defined by the edges in the set
E3 separates all vertices in V0 from all vertices in V1. Therefore, every edge of Π must also cross these h− 1
cycles. The number of edges in Π is 2n′

3 + n′′ − 1, where n′′ = n− n′ = n mod 12, and hence each cycle is
crossed 2n′

3 + n′′− 1 times. Since each cycle has four edges, we have that at least 2h− 1 = n′
6 − 1 edges (one

per cycle) are crossed at least dn′
6 + n′′

4 − 1
4e ≥ d 12h

6 − 1
4e = d2h− 1

4e = 2h = n′
6 times. ¤

We are now ready to prove the lower bound.

Theorem 1 For every n ≥ 12 and for every 3 ≤ k ≤ n there exists a k-colored planar graph G with n
vertices and a k-colored set of points S compatible with G such that any k-colored point-set embedding of G
on S has at least n′

6 − 1 edges each having at least n′
6 − 1 bends, where n′ = n− (n mod 12).
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Proof: Given any n ≥ 12 construct a diamond graph Gn and consider a 3-colored set of points S with an
alternating bi-colored sequence which is compatible with Gn.

Arbitrarily divide the set of colors {0, 1, . . . , k−1} in three non-empty subsets C0, C1 and C2. Arbitrarily
color the vertices of Gn in the set Vi by using the colors in the set Ci (i = 0, 1, 2), with the only requirement
that each color is used at least once. Analogously, arbitrarily color the points of S in the set Si by using the
colors in the set Ci (i = 0, 1, 2) with the only requirement that S remains compatible with Gn. As a result
we have a k-colored graph Gn with n vertices and a k-colored set of points S compatible with Gn. Let Γn

be a k-colored point-set embedding of Gn on S. Let Π be the bi-colored path on Γn. By Lemma 2 there are
at least n′

6 − 1 edges of Γn that are crossed by Π at least n′
6 times. By Lemma 1 each of these edges has at

least n′
6 − 1 bends in Γn. ¤

We can compare the result of Theorem 1 with the known lower bound for k = n [17]. Let G be an
n-colored graph with m independent edges and let S be a set of n points in convex position such that each
point is colored at random with one of n distinct colors. In [17] it is proved that, almost surely, at least m

20
edges of G have at least m

403 bends on any possible n-colored point-set embedding of G on S. A comparison
with the result in Theorem 1 can be easily done by observing that the maximum number of independent
edges in a graph with n vertices is at most n/2. Also, we remark the argument of Theorem 1 is deterministic
and that it can be applied to all values of k such that 3 ≤ k ≤ n.

We conclude this section by extending Theorem 1 to the case of 2-colored point-set embeddings. The
extension uses the same reasoning illustrated above for three or more colors, but it requires slightly different
definitions and gives rise to slightly smaller constant factors. While all details have been moved to the paper
appendix, we give here only a brief sketch of the ideas behind this lower bound. Intuitively, a 2-colored
diamond graph can be regarded as a diamond graph where the vertices of set V1 and V2 have the same
color and the vertices of set V0 are such that |V0| = |V1| + |V2|. Figure 2(a) is an example of a 2-colored
diamond graph (see also the appendix for a formal definition of a 2-colored diamond graph); Figure 2(b)
is an alternating bi-colored sequence compatible with the graph of Figure 2(a). With the same reasoning
illustrated above, the following can be proved (see the appendix for details).

Theorem 2 For every n ≥ 16 there exists a 2-colored planar graph Gn with n vertices and a 2-colored set
of points S compatible with Gn such that any 2-colored point-set embedding of Gn on S has at least n′

8 − 1
edges each having at least n′

8 − 1 bends, where n′ = n− (n mod 16).

4 Upper Bounds: Overview of the Approach

Theorems 1 and 2 show that, for every 2 ≤ k ≤ n, Ω(n) bends per edge can be required in a k-colored point-
set embedding of a k-colored graph G with n vertices. Therefore, a drawing algorithm that is asymptotically
optimal in terms of curve complexity for all values of k such that 2 ≤ k ≤ n can be designed as follows:
(1) Arbitrarily assign each vertex of G having color i to a distinct point of color i (if there is more than one
vertex of G having color i); and (2) Apply the drawing algorithm of Pach and Wenger [17], which computes
an n-colored point-set embedding of G whose curve complexity is at most 120n.

However, since optimizing the number of bends per edge is an important requirement that guarantees
the readability of a drawing of a graph [6, 15, 18], we present in the next three sections a new drawing
strategy that gives rise to n-colored point-set embeddings with curve complexity at most 3n + 2. The key
idea is to translate the geometric problem into an equivalent topological problem, namely that of computing
a Hamiltonian path of a planar graph by suitably augmenting it with dummy edges that do not cross the
real edges “too many times”. An overview of the content of the next three sections is as follows:

• The notion of augmenting k-colored Hamiltonian path for a k-colored planar graph G is introduced
(Section 5).

• A theorem that proves that the number of crossings between the edges of an augmenting k-colored
Hamiltonian path and the edges of G define an upper bound on the curve complexity of a k-colored
point-set embedding of G is proved (Theorem 3).
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Figure 2: (a) A 2-colored diamond graph Gn. (b) An alternating bi-colored sequence compatible with Gn.
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• An algorithm that, for any linear ordering of the vertices of G, computes a planar drawing of G such
that all vertices are collinear, the vertices in the drawing follow the given ordering , and each edge can
be decomposed into at most three x-monotone curves is presented (Section 6).

• Finally, the above algorithm is exploited to compute a k-colored hamiltonian path on G and then a
k-colored point-set embedding such that every edge bends at most 3n + 2 times. (Section 7).

5 Colored Hamiltonicity

A k-colored sequence σ is a linear sequence of (possibly repeated) colors c0, c1, . . . , cn−1 such that 0 ≤
cj ≤ k − 1 (0 ≤ j ≤ n − 1). We say that σ is compatible with a k-colored graph G if, for every 0 ≤
i ≤ k − 1, color i occurs |Vi| times in σ. Let S be a k-colored set of points and let p0, p1, . . . , pn−1 be
the points of S ordered according to their x-coordinates. We say that S induces the k-colored sequence
σ = col(p0), col(p1), . . . , col(pn−1). Figures 3(a) and 3(b) show an example of a 3-colored planar graph and
of a 3-colored sequence compatible with it and induced by a 3-colored set of points.

A graph G has a Hamiltonian path if it has a simple path that contains all the vertices of G. If G is a
k-colored graph and σ = c0, c1, . . . , cn−1 is a k-colored sequence compatible with G, a k-colored Hamiltonian
path of G consistent with σ is a Hamiltonian path v0, v1, . . . , vn−1 such that col(vi) = ci (0 ≤ i ≤ n − 1).
A k-colored planar graph G can always be augmented to a (not necessarily planar) k-colored graph G′ by
adding to G a suitable number of dummy edges and such that G′ has a k-colored Hamiltonian path H′
consistent with σ and that includes all dummy edges. Figure 3(c) shows an augmentation of the graph of
Figure 3(a) such that the augmented (non-planar) graph has a 3-colored Hamiltonian consistent with the
sequence of Figure 3(b).

If G′ is not planar, we can apply a planarization algorithm (see, e.g., [6]) to G′ with the constraint that
only crossings between dummy edges and edges of G−H′ are allowed (see Figure 3(d)). Such a planarization
algorithm constructs an embedded planar graph G′′, called augmented Hamiltonian form of G, where each
edge crossing is replaced with a dummy vertex, called division vertex. By this procedure, an edge e of H′
can be transformed into a path whose internal vertices are division vertices. The subdivision of H′ obtained
this way is called an augmenting k-colored Hamiltonian path of G consistent with σ and is denoted as H′′. If
every edge e of G is crossed at most d times in G′ (i.e. e is split by at most d division vertices in G′′), H′′ is
said to be an augmenting k-colored Hamiltonian path of G consistent with σ and inducing at most d division
vertices per edge. Notice that d is the number of division vertices that have been inserted along each edge
of G; for example, the path H′′ of Figure 3(d) is an augmenting 3-colored Hamiltonian path of the graph of
Figure 3(a) consistent with the sequence of Figure 3(b) and inducing one division vertex per edge, because
each edge of H′′ crosses each edge of G at most once. If G′ is planar, then the augmented Hamiltonian form
of G is G′ and H′′ coincides with H′. If both endvertices of H′′ are on the external face of the augmented
Hamiltonian form of G, then H′′ is said to be external.

Let vd be a division vertex for an edge e of G. Since a division vertex corresponds to a crossing between
e and an edge of H′, there are four edges incident on vd in G′′; two of them are dummy edges that belong
to H′′, the other two are two “pieces” of edge e obtained by splitting e with vd. Let (u, vd) and (v, vd) be
the latter two edges. We say that vd is a flat division vertex if it is encountered after u and before v while
walking along H′′; vd is a pointy division vertex otherwise. The following theorem refines and improves a
similar result presented in [7]. The algorithm described in its proof is based on the drawing technique of
Kaufmann and Wiese [16].

Theorem 3 Let G be a k-colored planar graph with n vertices, let σ be a k-colored sequence compatible with
G, and let H be an augmenting k-colored Hamiltonian path of G consistent with σ inducing at most df flat
and dp pointy division vertices per edge. If H is external then G admits a k-colored point-set embedding on
any set of points that induces σ such that the maximum number of bends along each edge is df + 2dp + 1.

Proof: Let S be a k-colored set of points that induces the k-colored sequence σ. We shall use path H to
construct a k-colored point-set embedding of G on S. Let H = w0, w1, . . . , wn′−1. Path H contains also the
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Figure 3: (a) A 3-colored planar graph graph G. (b) A 3-colored set of points S consistent with G and its induced
3-colored sequence σ, compatible with G. (c) An augmentation of G to a (non-planar) 3-colored graph G′ that admits
a 3-colored Hamiltonian path H′ consistent with σ. Path H′ is highlighted in bold. Dashed edges are dummy edges.
(d) A planar graph G′′ obtained by applying a planarization algorithm to G′. The path highlighted in bold is an
augmenting 3-colored Hamiltonian path H′′ of G consistent with σ and inducing at most 1 division vertex per edge.
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division vertices, which are not vertices of G. We give these vertices a new color k. In order to draw them
we define a new set of points S′ by adding a suitable number of points to S, all having color k and placed
so that if q0, q1, . . . , qn′−1 are the points of S′ ordered according to their x-coordinates, then c(qj) = c(wj)
(j = 0, . . . , n′ − 1). In the following we denote as G′ the augmented Hamiltonian form of G. We can now
use the the drawing technique of Kaufmann and Wiese [16] to point set embed G′ on S′; for completeness,
we recall this technique in the following.

Map each vertex wj to point qj (j = 0, . . . , n′ − 1) in S′ and draw the edges of path H as straight-line
segments between their endvertices. Each edge e not in H is drawn by using two segments, one with slope
s > 0 and the other with slope −s. In order to avoid crossings between e and the edges in H the slope s is
chosen to be greater than the absolute value of the slope of each edge in H. With segments of slope ±s, it is
possible to draw each edge e above or below H. Since H is external, there exists a planar embedding of G′

such that w0 and wn′−1 are on the external face. In such an embedding every edge not in H is either on the
left-hand side of H, in which case it is drawn above H, or on the right-hand side of H when walking from
w0 to wn′−1, in which case it is drawn below H.

The resulting drawing is planar except that edges outside H that are incident on the same vertex may
contain overlapping segments. To eliminate overlapping, perturb overlapping edges by decreasing the abso-
lute value of their segment slopes by slightly different amounts. The slope changes are chosen to be small
enough to avoid creating edge crossings while preserving the same planar embedding. For details about this
rotation see [16].

The drawing obtained by the technique described above is a (k + 1)-colored point-set embedding of G′

on S′ with at most one bend per edge. Removing the vertices and edges added to obtain G′ from G we have
a k-colored point-set embedding of G on S. Consider an edge e of G and suppose that e is split by means of
dt = df + dp division vertices in G′. Then there are dt + 1 edges in G′ corresponding to e, each one having
at most one bend. As we pointed out above, there are four edges incident on every dummy vertex d; two
of them are dummy edges that belong to H, the other two are two “pieces” of the real edge e obtained by
splitting e by means of d. After the removal of dummy elements (vertices and edges) only the latter two
edges remain in the drawing. Denote them as (u, d) and (v, d). Since these edges are not in H, one of them
is above H and the other one is below H. Thus a segment su of (u, d) and a segment sv of (v, d) are incident
on d, one from above and one from below. Since d has only one segment incident from above and only one
segment incident from below, the rotation performed to remove overlap does not affect su and sv, which
therefore have slope either +s or −s. If d is a pointy division vertex then su and sv have different slopes
and the removal of d gives an extra bend; if d is a flat division vertex, then su and sv have the same slope
and d can be removed without introducing any extra bend. Thus we can have dp extra bends for an overall
curve complexity of dt + 1 + dp = df + 2dp + 1. ¤

Based on Theorem 3, we will show our upper bound by proving that for any n-colored sequence σ an
n-colored planar graph G always admits an augmenting k-colored Hamiltonian path of G consistent with σ
such that for each edge df ≤ 3n− 3 and dp ≤ 2.

6 Computing Topological Book Embeddings with a Given Linear
Ordering

The algorithm to compute an augmenting k-colored Hamiltonian path of G consistent with σ relies on a
geometric technique that starts with a topological book embedding of G (a special type of planar drawing
where all vertices are aligned, defined in the next paragraphs) and transforms it into a new topological book
embedding that respects the given linear ordering for the vertices of G.

A spine is an horizontal line. Let ` be a spine and let p, q be two points of `. An arc is a circular arc
passing through the three points p, q, and r, where r is a point of the perpendicular bisector of pq, at a
distance d(p,q)

4 from `. The arc can be either in the half-plane above the spine or in the half-plane below the
spine; in the first case we say that the arc is in the top page of `, otherwise it is in the bottom page of `.

Let G = (V, E) be a planar graph. A topological book embedding of G is a planar drawing such that all
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vertices of G are represented as points of a spine ` and each edge can be either above the spine, or below
the spine, or it can cross the spine. Each crossing between an edge and the spine is called a spine crossing.
It is also assumed that in a topological book embedding every edge consists of one or more arcs such that
no two consecutive arcs are in the same page. An edge e is said to be in the top (bottom) page of the spine
if it consists of exactly one arc and this arc is in the top (bottom) page. Figure 4 shows two examples of
topological book embeddings.

A monotone topological book embedding is a topological book embedding such that each edge crosses the
spine at most once. Also, let e = (u, v) be an edge of a monotone topological book embedding that crosses
the spine at a point p; e is such that if u precedes v in the left-to-right order along the spine then p is between
u and v, the arc with endpoints u and p is in the bottom page, and the arc with endpoints u and v is in the
top page. Figure 4(a) is an example of a monotone topological book embedding of a planar graph.

1

2

3 4 5 6

(a)

5 4 61

23

(b)

Figure 4: Two topological book embeddings of a planar graph G. (a) A monotone topological book embedding of
G. (b) A 3-chain topological book embedding of G. The bold edge consists of three x-monotone chains.

Theorem 4 [8] Every planar graph admits a monotone topological book embedding. Also, a monotone topo-
logical book embedding can be computed in O(n) time, where n is the number of the vertices in the graph.

Let e = (u, v) be an edge of a topological book embedding. An x-monotone portion of e is a portion
πe of e such that every vertical line intersects πe at most once. An x-monotone portion of e is maximal if
it is not contained in any other x-monotone portion of e. A maximal x-monotone portion of e is called an
x-monotone chain of e. We say that a topological book embedding is a k-chain topological book embedding
if each edge consists of at most k x-monotone chains. Figure 4(b) is an example of a 3-chain monotone
topological book embedding of the same graph of Figure 4(a): the bold edge in the drawing consists of three
x-monotone chains and all other edges consist of at most two x-monotone chains. Notice that the linear
order of the vertices along the spine in Figure 4(b) is different from the one in Figure 4(a).

Before presenting our drawing algorithm to compute a topological book embedding with a given left-
to-right order of the vertices along the spine we need to introduce another concept, which generalizes the
notion of topological book embedding. Let ` and `′ be two distinct spines such that ` is above `′; ` is called
upper spine and `′ is called lower spine. A 2-spine drawing Γ∗ of G is a (not necessarily planar) drawing
such that each vertex of G is represented as a point either of the upper spine or of the lower spine and each
edge crosses the spines a finite number of times. More precisely, an edge of a 2-spine drawing can have both
endvertices in the same spine, or in different spines. If both endvertices are in the same spine, the edge
consists of a sequence of arcs such that any two consecutive arcs are on opposite pages of the spine. If one
endvertex is in the upper spine and the other is in the lower spine, then the edge consists of: (i) a (possibly
empty) sequence of arcs whose endpoints are in the upper spine, called the upper sequence of the edge; (ii)
a straight-line segment between the two spines, called the inter-spine segment of the edge; (iii) a (possibly
empty) sequence of arcs whose endpoints are in the lower spine, called the lower sequence of the edge. It is
also assumed that any two consecutive arcs of the upper (lower) sequence are on opposite pages of the upper
(lower) spine. In what follows, we shall sometimes treat arcs and inter-spine segments in the same way; in
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these cases we shall use the term sub-edge of an edge to mean either an arc or an inter-spine segment of an
edge in a 2-spine drawing.

Figure 5 is an example of a planar 2-spine drawing of the same graph of Figure 4(a); (1, 3) is an example
of an edge with both endvertices on the same spine. Edge e = (2, 6) in Figure 5 has its endvertices on
different spines: The upper sequence is the sequence of arcs of e from p to 6; the straight-line segment pq is
the inter-spine segment of e; the sequence of arcs of e from q to 2 is the lower sequence of e.

Observe that if all vertices are on the same (upper or lower) spine and if the drawing is planar, a 2-spine
drawing of a graph is a topological book embedding of the graph.

4 5 6

23

1

p

q

Figure 5: A 2-spine drawing of the graph in Figure 4(a). The bold edge has an upper sequence, an inter-spine
segment, and a lower sequence.

6.1 Algorithm LinearOrderDraw

Algorithm LinearOrderDraw receives as input a planar graph G with n vertices and a linear ordering λ of
the vertices of G. It produces as output a 3-chain topological book embedding Γ′ of G such that the left-to-
right order of the vertices along the spine of Γ′ is λ. By using Theorem 4, Algorithm LinearOrderDraw
computes first a monotone topological book embedding of G, denoted as Γ; then, it transforms Γ into the
3-chain topological book embedding Γ′. Let ` be the spine of Γ and let v0, . . . , vn−1 be the vertices of G in
the left-to-right order they have along ` (note that this order can be different from λ).

A horizontal line below ` is chosen as the spine of Γ′ and is denoted as `′. Let δ be the distance between
the leftmost vertex and the rightmost vertex of Γ along spine `. Choose the distance between ` and `′ greater
than

√
3δ. Also, choose an interval I on `′ of size at most δ. Every vertex v of G has a source position

s(v) defined by the point along ` representing v in Γ and a target position t(v) on `′ such that t(v) will
represent v in Γ′. The target positions are chosen inside interval I in such a way that their left-to-right order
corresponds to λ. Also, the endpoints of every arc a that Algorithm LinearOrderDraw will draw either
in top or in the bottom page of the lower spine will be points inside interval I. The trajectory of vertex v is
the straight-line segment s(v)t(v) and it is denoted as τ(v).

Algorithm LinearOrderDraw visits the vertices of Γ in the left-to-right order along ` and executes
n steps. At each step, a vertex is moved to its target position on `′ and a planar 2-spine drawing with
upper spine ` and lower spine `′ of G is computed. More precisely, a sequence Γ0, . . . , Γn of planar 2-spine
drawings with spines ` and `′ are computed such that Γ0 coincides with Γ and Γn coincides with Γ′. At Step i
(0 ≤ i ≤ n−1), the planar 2-spine drawing Γi is transformed into the planar 2-spine drawing Γi+1 by moving
vi to its target position on `′. When moving vertex vi to its target position, Algorithm LinearOrderDraw
maintains the planar embedding of Γ and changes only the shape of those edges incident on vi and the shape
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of every edge that is intersected by the trajectory of vi. Details on how the shapes of these edges are changed
are given below.

s(vi) z1z0

t(vi)y0 y2 y3 z2z3y1

a2

a0

a1

a3

`

`′

(a)

s(vi)y0y1

y2 y3

a0

a1

t(vi)

a2

z3 z2 z1 z0

a3

`

`′

(b)

s(vi) z1z0

y0 y2 y3 z2z3y1 p3 p2 p1 p0 q0 q1 q2 q3

t(vi)

t′ t′′

`

`′

(c)

t′ t′′

s(vi)y0y1

y2 y3

t(vi)

p3 p2 p1 p0 q0 q1 q2 q3 z3 z2 z1 z0

`

`′

(d)

Figure 6: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges inter-
sected by the trajectory τ(vi) of vi. The trajectory is the light grey segment. (a) and (c) describe the change of the
shapes of left inter-spine segments and of arcs in the lower sequence. (b) and (d) describe the change of the shapes
of right inter-spine segments and of arcs in the lower sequence.

• Transformation of the shape of the edges intersected by the trajectory of vi. The trajectory
τ(vi) can intersect both inter-spine segments and arcs of the lower sequence of some edges. Let
a0, a1, . . . , ah−1 be the sub-edges crossed by τ(vi) in the order they are encountered when going from
s(vi) to t(vi) along τ(vi). If aj is an arc, denote its endpoints on `′ as yj and zj and assume yj to the
left of zj . If aj is an inter-spine segment and the endpoint of aj that is on `′ is to the left of t(vi) denote
this endpoint as yj , the other one as zj , and call the inter-spine segment a left inter-spine segment
(see also Figure 6(a)); if, otherwise, the endpoint of aj that is on `′ is to the right of t(vi) denote this
endpoint as zj , the other one as yj , and call the inter-spine segment a right inter-spine segment (see
also Figure 6(b)).

Algorithm LinearOrderDraw modifies the shape of the h sub-edges a0, a1, . . . , ah−1 intersected by
τ(vi) as follows. Refer to Figures 6(c) and 6(d). Let t′ and t′′ be two points of `′ ∩ I such that t′,
t(vi) and t′′ appear in this left-to-right order along `′ and no vertex or spine crossing is between t′ and
t(vi) and between t(vi) and t′′ on `′. Choose h points p0, p1, . . . , ph such that each pj (0 ≤ j ≤ h)
is between t′ and t(vi) on `′ and pj is to the right of pj+1 on `′ (0 ≤ j ≤ h − 1). Choose h points
q0, q1, . . . , qh such that each qj (0 ≤ j ≤ h) is between t(vi) and t′′ on `′ and qj is to the left of qj+1

on `′ (0 ≤ j ≤ h − 1). If aj is an arc it is replaced by: (i) an arc with endpoints yj and pj ; (ii) an
arc with endpoints pj and qj ; (ii) an arc with endpoints qj and zj . If aj is a left inter-spine segment
it is replaced by: (i) an arc with endpoints yj and pj ; (ii) an arc with endpoints pj and qj ; (iii) an
inter-spine segment with endpoints qj and zj (Figure 6(c)). If aj is a right inter-spine segment it is
replaced by: (i) an inter-spine segment with endpoints yj and pj ; (ii) an arc with endpoints pj and qj ;
(iii) an arc with endpoints qj and zj (Figure 6(d)).
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• Transformation of the shape of the edges incident on vi. Partition the edges incident on vi in
the drawing Γ into four sets. The set Et,l (Eb,l) contains the edges e = (vj , vi) such that j < i and the
arc of e incident on vi is in the top (bottom) page of the spine ` of Γ. Analogously, Et,r (Eb,r) contains
the edges e = (vj , vi) such that i < j and the arc of e incident on vi is in the top (bottom) page of `.

– Let e = (vj , vi) be an edge of Et,l or Eb,l. Refer to Figure 7. When vi is moved to its target
position, vj has already been processed and moved to its target position on `′ during a previous
step of Algorithm LinearOrderDraw because j < i and the algorithm processes the vertices
of Γ in a left-to-right order. Hence, when going from vj to vi along e in Γi we find the (possibly
empty) lower sequence σl of e, the inter-spine segment a of e, and the (possibly empty) upper
sequence σu of e. Let x′ be the endpoint of a on `′. Replace a and σu with an arc whose endpoints
are x′ and t(vi).

x′
`′

`
vi

t(vi)

s(vi)

(a)

x′
`′

`
s(vi)

t(vi)

vi

(b)

Figure 7: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges incident
on vi and belonging to Et,l or Eb,l.

– Let e = (vi, vj) be an edge of Eb,r. Refer to Figure 8). Edge e is represented in Γi as an arc a

with endpoints s(vi) and s(vj). Arc a is replaced by the straight-line segment t(vi)s(vj).

– Let ej = (vi, vij ) (0 ≤ j ≤ h − 1) be the edges of Et,r with ij < ij+1 (0 ≤ j < h − 1). Refer to
Figure 8. Let s′ be a point on ` such that s′ is to the right of s(vi) and no vertex or spine crossing
is between s(vi) and s′ on `. Choose h points p0, p1, . . . , ph−1 such that each pj (0 ≤ j ≤ h − 1)
is between s(vi) and s′ on ` and pj is to the left of pj+1 along ` (0 ≤ j < h − 1). Edge ej is
represented in Γi as an arc aj with endpoints s(vi) and s(vij )(0 ≤ j ≤ h− 1). Arc aj is replaced
by the segment t(vi)pj and the arc with endpoints pj and s(vij ).

vi0

t(vi)

vi

s(vi)

`′

vi1 vj vh vl

`

(a)

vi0

s(vi)

`′

vi1 vj vh vl

`

vi

s′

p1p0

t(vi)

(b)

Figure 8: Illustration of Step i of Algorithm LinearOrderDraw: Transformation of the shape of the edges incident
on vi and belonging to Et,r or Eb,r.
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6.2 Analysis of Algorithm LinearOrderDraw

In this section we prove the correctness of Algorithm LinearOrderDraw and analyze its time complexity.
As explained in the previous section, Algorithm LinearOrderDraw computes first a monotone topological
book embedding Γ0 and then it executes n steps to transform Γ0 into a 3-chain topological book embedding.
We distinguish each of these n steps with an index i such that 0 ≤ i ≤ n− 1; recall that Step i computes a
drawing denoted as Γi+1. Also, we shall conventionally denote as Step (−1) the initial step that computes
Γ0. Let a be a sub-edge of a drawing Γi that is replaced in Γi+1 by other sub-edges, and let a′ be one of
these sub-edges. We say that a′ replaces a; we also say that a′ is a replacing sub-edge of Step i. We start by
proving that the output of each step is a 2-spine drawing.

Lemma 3 Let Γi be the drawing computed by Step (i−1) of Algorithm LinearOrderDraw (0 ≤ i ≤ n−1).
Γi is a 2-spine drawing.

Proof: Step (−1) computes a monotone topological book embedding Γ0 by using Theorem 4. By definition,
a monotone topological book embedding is also a 2-spine drawing.

Assume by induction that the drawing Γi computed by Step (i− 1) (1 ≤ i ≤ n− 1) is a 2-spine drawing.
The vertices of Γi+1 are either points of the lower or of the upper spine by construction. Step i of Algorithm
LinearOrderDraw modifies the shape of those edges that are intersected by the trajectory of vi and of
those edges that are incident to vi. Let e be an edge of Γi that is intersected by the trajectory of vi. Algorithm
LinearOrderDraw either replaces an arc of e with three arcs or it replaces the inter-spine segment of e
with two arcs and a new inter-spine segment (see also Figure 6); in both cases any two consecutive arcs are
on opposite pages.

Let e be an edge of Γi incident on vi. If e ∈ Et,l or e ∈ Eb,l, then after moving vi to its target position e
has both endvertices on a same spine; in this case Algorithm LinearOrderDraw replaces the inter-spine
segment of e and the upper sequence of e (if such a sequence exists) with an arc having both endpoints on
`′ (see also Figure 8); if e ∈ Et,r or e ∈ Eb,r, then after moving vi to its target position, edge e has its
endvertices on different spines; in this case Algorithm LinearOrderDraw replaces an arc of e having both
endpoints on ` with an inter-spine segment plus (possibly) another arc (see also Figure 8); in both cases the
new shape of e respects the definition of 2-spine drawing. It follows that Γi+1 is also a 2-spine drawing. ¤

To complete the prof of correctness of Algorithm LinearOrderDraw, we will first prove that each
2-spine drawing Γi computed by Step (i − 1) is a planar drawing (Lemma 4), and then show that Γn is
a 3-chain monotone topological book embedding such that the linear order of the vertices along the spine
respects the given linear order (Lemma 5). The next properties are used to prove the planarity of Γi. We
use the same notation and terminology as in the previous section.

Property 1 The distance between ` and `′ and the interval I on `′ are such that: (i) the trajectory of any
vertex intersects an arc with endpoints p and q only if one of the endpoints of the trajectory is in the closed
interval defined by p and q; (ii) no two arcs such that one has its endpoints in the lower spine and the other
has its endpoints in the upper spine can intersect.

Proof: Let Γ0 be the monotone topological book embedding computed at Step (−1) of Algorithm Lin-
earOrderDraw. Let δ be the distance between the leftmost vertex and the rightmost vertex of Γ0 along
spine `. The distance between ` and `′ is chosen to be greater than

√
3δ and the interval I is chosen to have

length at most δ. Since an arc of an edge with endpoints p and q is drawn as a circular arc passing trough
p, q, and a point of the perpendicular bisector of pq at a distance d(p,q)

4 from ` or `′, all tangent lines to
each arc have slope − tan π

6 ≤ σ ≤ tan π
6 . By choosing the distance between ` and `′ greater than

√
3δ we

have that the slope of each trajectory is either lower than − tan π
6 or greater than tan π

6 . This implies that
a trajectory intersects an arc with endpoints p and q only if one of the endpoints of the trajectory is in the
closed interval defined by p and q. Also, let a be an arc of any of the drawings computed by any of the steps
of Algorithm LinearOrderDraw and let p, q be the endpoints of a. By construction, p and q are inside
interval I and therefore we have d(p, q) ≤ δ, which implies that the maximum distance between a point of a
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and the spine is at most δ
4 . Since the distance between ` and `′ is larger than δ

2 we have that no two arcs
such that one has its endpoint in the lower spine and the other has its endpoints in the upper spine can
intersect. ¤

Property 2 Let Γi and Γi+1 be the 2-spine drawings computed by Steps (i − 1) and i of Algorithm Lin-
earOrderDraw, respectively (0 ≤ i ≤ n − 1). Every arc in the bottom page of the upper spine of Γi+1 is
also an arc in the bottom page of the upper spine of Γi.

Proof: Step i of Algorithm LinearOrderDraw (i = 0, 1, . . . , n − 1) can change the shape of some edges
of Γi by creating new inter-spine segments and new arcs. These arcs can have endpoints on the lower spine
(see also Figure 6) or can be arcs in the top page of the upper spine (see also Figures 7 and 8). No arcs in
the bottom page of the upper spine are created at Step i. ¤

Property 3 Let Γi be the 2-spine drawing computed by Step (i − 1) of Algorithm LinearOrderDraw
(0 ≤ i ≤ n− 1) and let τ(vi) be the trajectory of vertex vi processed at Step i. Every arc of Γi intersected by
τ(vi) is in the top page of the lower spine of Γi.

Proof: Let a be an arc of Γi intersected by τ(vi). Since τ(vi) is a straight-line segment with one endpoint
in the upper spine and the other endpoint in the lower spine, arc a can either be in the top page of the
lower spine or in the bottom page of the upper spine. Assume that a is an arc in the bottom page of the
upper spine. By Property 2, a is also an arc of Γ0. Since, by Theorem 4, Γ0 is a monotone topological book
embedding, if a is in the bottom page of the upper spine then the leftmost endpoint of a is a vertex of the
input graph G, that we denote as vj .

Algorithm LinearOrderDraw defines the distance between the two spines ` and `′ and the target
positions along `′ in such a way that for every vertex v with source position s(v) and target position t(v),
the trajectory τ(v) intersects a only if s(v) is in the interval between the endpoints of a. It follows that
vertex vj is left of vi along the spine of Γ0, that is j < i.

Since Algorithm LinearOrderDraw processes the vertices in the left-to-right order along the spine of
Γ0, vertex vj is moved to its target position before Step i is executed. Also, when the leftmost endvertex of
an arc belonging to the to the bottom page of the upper spine is moved to its target position, then this arc
is replaced by an inter-spine segment (see also Figure 8). It follows that a cannot be an arc of Γi such that
a is in the bottom page of the upper spine and a is intersected by τ(vi). ¤

Property 4 Let Γi+1 be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw (0 ≤
i ≤ n − 1). Let a be an arc of Γi+1 in the top page of the lower spine. Let y and z be the endpoints of a,
with y to the left of z. Point t(vi) cannot be a point to the right of y and to the left of z.

Proof: Two cases are possible: Either a is an arc in the top page of the lower spine also in the drawing Γi

computed by Step (i− 1) or a is created at Step i. In the first case, a cannot be crossed by τ(vi) (because
otherwise a would not exist in Γi+1) and thus the property immediately holds. In the second case, either
t(vi) is an endpoint of a or a is a replacing sub-edge of Step i. Then, by construction the endpoints of a are
either both to the left of t(vi), or both to the right of t(vi) (see also Figure 6). ¤

Property 5 Let Γi+1 be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw (0 ≤
i ≤ n− 1). Let a be an arc of Γi+1 in the bottom page of the lower spine. Let y and z be the endpoints of a,
with y to the left of z. If a is a replacing sub-edge of Step i, point t(vi) is to the right of y and to the left of
z.

Proof: Since a is a replacing sub-edge of Step i, then it replaces a sub-edge a′ that is crossed by τ(vi).
Both in the case when a′ is an arc and in the case when a′ is an inter-spine segment, the only sub-edge that
replaces a′ and is in the bottom page has t(vi) between its endpoint (see also Figure 6). ¤
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Property 6 Let Γi+1 be the 2-spine drawing computed by Step i of Algorithm LinearOrderDraw (0 ≤
i ≤ n− 1). Let a be an inter-spine segment of Γi+1. Let y and z be the endpoints of a, with y ∈ ` and z ∈ `′.
If t(vi) is to the left (right) of z, then s(vi) is to the left (right) of y.

Proof: Two cases are possible: Either a is an inter-spine segment also in the drawing Γi computed by
Step (i − 1) or a is created by Step i. In the first case, a is not crossed by the trajectory τ(vi) (because
otherwise a would not exist in Γi+1) and thus the property immediately holds. In the second case, a is a
replacing sub-edge. If a replaces an arc of the upper spine, then t(vi) is one of its endpoint. Otherwise a
replaces an inter-spine segment a′. Depending on whether a′ is a left or a right inter-spine segment, we have
that at the end of Step i either t(vi) is to the left of z and s(vi) is to the left of y , or t(vi) is to the right of
z and s(vi) is to the right of y (see also Figure 6). ¤

Property 7 Let Γi and Γi+1 be the 2-spine drawings computed by Steps (i − 1) and i of Algorithm Lin-
earOrderDraw, respectively (0 ≤ i ≤ n− 1). Let a1 and a2 be two arcs of Γi that are both intersected by
τ(vi). If Γi is a planar drawing, then the sub-edges that replace a1 and a2 in Γi+1 do not cross.

Proof: By Property 3, both a1 and a2 are arcs in the top page of the lower spine of Γi. Let yj and zj be
the endpoints of aj (j = 1, 2), with yj to the left of zj . Since a1 and a2 are both crossed by τ(vi) and Γi is
planar, then y1, y2, z2, and z1 appear in this left-to-right order along `′ in Γi.

Algorithm LinearOrderDraw replaces aj with three arcs a′j (in the top page of `′), a′′j (in the bottom
page of `′), and a′′′j (in the top page of `′) (j = 1, 2) (see also Figure 6). Denote the endpoint shared by a′j
and a′′j as pj and the endpoint shared by a′′j and a′′′j as qj . By construction, points y1, y2, p2, p1, q1, q2, z2,
and z1 appear in this left-to-right order along `′ which implies that the sub-edges that replace a1 and a2 in
Γi+1 do not cross each other. ¤

Property 8 Let Γi and Γi+1 be the 2-spine drawings computed by Steps (i − 1) and i of Algorithm Lin-
earOrderDraw, respectively (0 ≤ i ≤ n − 1). Let a1 and a2 be two inter-spine segments of Γi that are
both intersected by τ(vi). If Γi is a planar drawing, then the sub-edges that replace a1 and a2 in Γi+1 do not
cross.

Proof: Let yj and zj be the endpoints of aj (j = 1, 2), with yj ∈ ` and zj ∈ `′ and assume that y1 is to
the left of y2 on `. Since Γi is planar, then z1 is to the left of z2 on `′. Also, a2 and a1 are either both left
inter-spine segments or both right inter-spine segments. Assume they are both left inter-spine segments, the
other case is symmetric. Algorithm LinearOrderDraw replaces aj with two arcs a′j (in the top page of `′)
and a′′j (in the bottom page of `′), and with an inter-spine segment a′′′j (j = 1, 2) (see also Figure 6). Denote
the endpoint shared by a′j and a′′j as pj and the endpoint shared by a′′j and a′′′j as qj . By construction,
points y1, y2, p2, p1, q1, and q2 appear in this left-to-right order along `′; since z1 is to the left of z2 then
the sub-edges that replace a1 and a2 in Γi+1 do not cross each other. ¤

Property 9 Let Γi and Γi+1 be the 2-spine drawings computed by Steps (i − 1) and i of Algorithm Lin-
earOrderDraw, respectively (0 ≤ i ≤ n − 1). Let a1 be an arc of Γi that is intersected by τ(vi) and let
a2 be an inter-spine segment of Γi that is intersected by τ(vi). If Γi is a planar drawing, then the sub-edges
that replace a1 and a2 in Γi+1 do not cross.

Proof: By Property 3, a1 is an arc in the top page of the lower spine of Γi. Let y1 and z1 be the endpoints
of a1, with y1 to the left of z1. Let y2 and z2 be the endpoints of a2, with y2 ∈ ` and z2 ∈ `′. Since Γi is
planar, then z2 cannot be between y1 and z1. Assume that z2 is to the left of y1, i.e. a2 is a left inter-spine
segment (because t(vi) between y1 and z1). The case when z2 is to the right of z1, i.e. a2 is a right inter-spine
segment, is analogous.

Algorithm LinearOrderDraw replaces a1 with three arcs a′1 (in the top page of `′), a′′1 (in the bottom
page of `′), and a′′′1 (in the top page of `′) (see also Figure 6). Denote the endpoint shared by a′1 and a′′1 as
p1 and the endpoint shared by a′′1 and a′′′1 as q1. Also, Algorithm LinearOrderDraw replaces a2 with two
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arcs a′2 (in the top page of `′) and a′′2 (in the bottom page of `′), and with an inter-spine segment a′′′2 (see
also Figure 6). Denote the endpoint shared by a′2 and a′′2 as p2 and the endpoint shared by a′′2 and a′′′2 as q2.

By construction, points z2, y1, p1, p2, q2, q1, and z1 appear in this left-to-right order along `′ which
implies that the sub-edges that replace a1 and a2 in Γi+1 do not cross each other. ¤

The following two properties consider portions of edges of Γi consisting of two consecutive sub-edges.
Let e be an edge of Γi that has two consecutive sub-edges a and a′ such that a is an arc in the top page of
the upper spine and a′ is an inter-spine segment; the portion of e consisting of a and a′ is an hook of e. The
point shared by a and a′ is the mid-point of the hook and the other endpoint of a is the top endpoint of the
hook. For example, edge (vi, vi0) in Figure 8 (b) has a hook with mid-point p0 and top endpoint vi0 .

Property 10 At any step of Algorithm LinearOrderDraw, an edge with an inter-spine segment shares
with the upper spine at most two points. Also, if it shares two points with the upper spine, then the edge has
a hook whose mid-point is to the left of the top endpoint.

Proof: Consider the drawing Γ0 computed at Step (−1) by Algorithm LinearOrderDraw and let
e = (vi, vj) be an edge of Γ0 with vi to left of vj along the spine `. Edge e shares at most three points
with ` depending on whether it crosses or does not cross the spine of Γ0. We recall that Algorithm Lin-
earOrderDraw: (i) processes the vertices according to their left-to-right order along the spine of Γ0 and
(ii) at each step, changes the shape only of those edges that are intersected by the trajectory of the vertex
that is moved to its target position during that step. Also, by Property 1, edge e is not intersected by the
trajectory of any vertex to the left of vi. It follows that the shape of edge e is not changed until its leftmost
endvertex vi is moved to the target position t(vi) by Step i of Algorithm LinearOrderDraw. Now consider
the representation of e in the 2-spine drawing Γi+1 computed by Step i of Algorithm LinearOrderDraw.
Different cases are possible depending on how e is represented in the initial drawing Γ0. Refer also Figure 8
for examples.

If in Γ0 edge e is drawn in the bottom page of the lower spine, then in Γi+1 e is drawn as an inter-spine
segment connecting t(vi) with vj . If in Γ0 edge e is an edge in the top page of `, then when Step i moves vi to
its target position, a hook η is created. The mid-point of η is a point p between s(vi) (i.e. the source position
of vi in Γ0) and the first sub-edge endpoint that is immediately to the right of s(vi); the top endpoint of η is
vj which is to the left of s(vi), and therefore to the left of p. Finally, assume that in Γ0 edge e intersects `.
Let us denote with p such intersection point; by Theorem 4, Γ0 is a monotone topological book embedding
and thus p is right of vi and left of vj along `. At Step i, vi is moved to its target position and a hook is
created whose mid-point is p and whose top endpoint is vj which is to the left of p. It follows that at the
end of Step i, edge e has an inter-spine segment and that e satisfies the property.

At each Step h, with i < h < j, Algorithm LinearOrderDraw can change the shape of e by possibly
introducing arcs only in its lower sequence; this happens when the trajectory τ(vh) of the current vertex vh

that is moved to the target position either intersects the inter-spine segment or the lower sequence of e. See
for example Figure 6. In no case, however, either the coordinates of the intersection points between e and `
are changed or new intersection points between e and ` are introduced. Finally at Step j, the other endvertex
vj of e is moved to `′ and e no longer has an inter-spine segment or hook in Γj+1. For all other steps that
follow Step j, edge e will no longer have an inter-spine segment because Algorithm LinearOrderDraw
moves vertices from ` to `′ and never moves them in the opposite direction. ¤

Property 11 Let Γi be the 2-spine drawing computed by Steps (i − 1) of Algorithm LinearOrderDraw
(0 ≤ i ≤ n− 1). Let e be an edge that has a hook whose top endpoint is vi. Let e′ be another edge that has
an inter-spine segment a in Γi. Let u′ be the endvertex of e′ that is on ` and let y′ be the endpoint of a on
`. If Γi is planar, then either u′ = vi, or y′ is to the right of vi.

Proof: Since Algorithm LinearOrderDraw process the vertices according to their left-to-right order along
`, at the end of Step (i− 1) all vertices to the left of vi are already moved to `′, i.e. vi is the leftmost vertex
on ` in Γi. Therefore either u′ = vi or u′ is to the right of vi. Notice that e′ may or may not have a hook.
If e′ has a hook then u′ and y′ are distinct points, otherwise they coincide. If u′ and y′ coincide and u′ is to
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right of vi, then trivially y′ is to the right of vi. If u′ and y′ do not coincide (i.e. e′ has a hook) and u′ is to
right of vi, then y′ must be to the right of vi because otherwise there would be a crossing between the two
arcs of the hooks of e and e′. Thus either u′ coincides with vi or y′ is to the right of vi. ¤

Lemma 4 Let Γi and Γi+1 be the 2-spine drawings computed by Steps (i − 1) and i of Algorithm Lin-
earOrderDraw, respectively (0 ≤ i ≤ n− 1). If Γi is planar, then Γi+1 is planar.

Proof: Suppose by contradiction that there are two sub-edges a1 and a2 that cross in Γi+1. The endpoints
of aj (j = 1, 2) are denoted as yj and zj ; if aj is an arc, we shall assume that yj is to the left of zj ; if aj is an
inter-spine segment we shall assume that yj is in the upper spine and that zj is in the lower spine. Since the
crossing between a1 and a2 cannot exist in Γi (because it is planar by hypothesis), then at least one of the
two sub-edges does not exist in Γi and is created at Step i of Algorithm LinearOrderDraw. A sub-edge
is created at Step i either because one of its endpoints is the target position t(vi) of the vertex moved from
the upper to the lower spine at that step, or because it is a replacing sub-edge.

The proof is based on a case analysis that depends on whether each of a1 and a2 is an inter-spine segment
or an arc; if it is an arc, we also distinguish between the case that it is in the bottom or in the top page of
either the upper or the lower spine. By Property 1, two arcs that have endpoints on different spines do not
cross. Thus, in the case analysis below we only consider those cases in which a1 and a2 are both arcs with
endpoints on the same spine, or at least one of them is an inter-spine segment. Also, for each case we first
consider the sub-case where t(vi) is one of the endpoints of a sub-edge and then the sub-case where at least
one of the sub-edges is a replacing sub-edge.

• Both a1 and a2 are arcs in the top page of the lower spine. Since a1 and a2 cross, y1, y2, z1, and
z2 appear in this left-to-right order along `′ (see Figure 9(a)). By Property 4, t(vi) cannot be between
y1 and z2. If t(vi) = y1, then there exists an inter-spine segment a1 in Γi having z1 as an endpoint.
This means that there is a crossing in Γi, which is impossible because Γi is planar. Analogously if
t(vi) = z2, then there exists an inter-spine segment a2 in Γi having y2 as an endpoint. Also in this case
there is a crossing in Γi, which is impossible because Γi is planar.

Suppose now that t(vi) is to the left of y1. If both a1 and a2 are replacing sub-edges, then by
Properties 7, 8, and 9 they do not cross. If only a1 is a replacing sub-edge, then there exists a sub-edge
a1 in Γi that is crossed by τ(vi) and that has z1 as one of its endpoints. This implies a crossing in
Γi. If only a2 is a replacing sub-edge, then a1 is an arc of Γi and therefore y1 exists also in Γi; since
Algorithm LinearOrderDraw chooses y2 as a point between t(vi) and the first sub-edge endpoint
that follows t(vi) along `′, then y2 would be to the left of y1, thus avoiding the crossing between a1

and a2.

The case when t(vi) is to the right of z2, is symmetric to the case when t(vi) is to the left of y1.

• Both a1 and a2 are arcs in the bottom page of the lower spine. Also in this case, a crossing
is possible only if y1, y2, z1, and z2 appear in this left-to-right order along `′ (see Figure 9(b)). Also,
none of the endpoints of a1 and a2 can be t(vi) because otherwise a1 and a2 would not be in the
bottom page of the lower spine. Namely, when Algorithm LinearOrderDraw moves vi to t(vi) all
sub-edges having t(vi) as an endpoint are either arcs in the top page of the lower spine or inter-spine
segments. Since at least one of a1 and a2 must be a replacing sub-edge, t(vi) is in the interval between
y1 and z2 by Property 5. If both a1 and a2 are replacing sub-edges, then by Properties 7, 8, and 9
they do not cross. If only a1 is a replacing sub-edge, then a2 is a sub-edge also in Γi and y2 is a point
of Γi. Since a1 is a replacing sub-edge in the bottom page of the lower spine, t(vi) is between y1 and
z1; furthermore since a2 is not a replacing sub-edge, t(vi) is in the interval between y1 and y2. Since
Algorithm LinearOrderDraw chooses z1 as a point between t(vi) and the first sub-edge endpoint
that follows t(vi) along `′, then z1 would be to the left of y2, thus avoiding the crossing. Analogously,
if only a2 is a replacing sub-edge, then t(vi) is between z1 and z2; this implies that z1 exists also in Γi;
since Algorithm LinearOrderDraw chooses y2 as a point between the first sub-edge endpoint that
precedes t(vi) and t(vi) along `′, then y2 would be to the right of z1, thus avoiding the crossing.
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Figure 9: Two cases for the proof of Lemma 4.

• Sub-edge a1 is an arc in the top page of the lower spine and a2 is an inter-spine segment.
In this case a crossing is possible only if y1, z2, and z1 appear in this left-to-right order along `′ (see
Figure 10(a)). By Property 4, t(vi) cannot be equal to z2.

If t(vi) = y1, then sub-edge a1 does not exist in Γi and z1 is the endpoint of an inter-spine segment
a1 in Γi. Denote as y1 the endpoint of a1 other than z1. On the other hand either a2 exists in Γi, or
there exists a inter-spine segment a2 whose endvertices are y2 and a point z2 which is to the left of z2.
Denote as y1 the endpoint of a1 other than z1 and let e be the edge of Γi that contains the inter-spine
segment a1; note that s(vi) is the endvertex of e on the upper spine. Edge e may or may not have
a hook. If e does not have a hook, then s(vi) and y1 coincide; otherwise y1 is to the left of s(vi) by
Property 10. Also, by Property 6, s(vi) is to the left of y2. If s(vi) and y1 coincide (i.e. e does not
have a hook), then a1 crosses either a2 or a2 in Γi because s(vi) is to the left of y2 in the upper spine
while z1 is to the right of z2 or of z2 in the lower spine. If s(vi) and y1 are distinct (i.e. e does have a
hook), then y1 is to the left of s(vi) and therefore to the left of y2; again, since z1 is to the right of z2

or of z2 on the lower spine, this would imply a crossing in Γi which is impossible.

If t(vi) = z1, then a1 does not exist in Γi and y1 is the endpoint of an inter-spine segment a1 in Γi. On
the other hand either a2 exists in Γi, or there exists a inter-spine segment a2 whose endvertices are y2

and a point z2 which is to the right of z2. Denote as z1 the endpoint of a1 in Γi other that y1. Point
z1 is to the left of y2 or else a1 crosses either a2 or a2 in Γi, which is impossible. Let e be the edge of
Γi that contains the inter-spine segment a1; note that s(vi) is the endvertex of e on the upper spine.
Point s(vi) must be to the right of y2 by Property 6. Therefore e has a hook whose mid-point is z1 (to
the left of y2) and whose top endpoint is s(vi) (to the right of y2). Let e′ be the edge that contains the
inter-spine segment a2 or a2 and let u′ be the endvertex of e′ on `. By Property 11 and based on the
fact that y2 is to the left of s(vi), it must be u′ = s(vi); but in this case a2 would not exist in Γi+1.

Suppose now that t(vi) is to the left of y1. If only a1 is a replacing sub-edge, then a2 is a sub-edge also
in Γi and z1 is the endpoint of a sub-edge a1 in Γi that can be either an arc or an inter-spine segment.
Let y1 be the endpoint of a1 other than z1. If a1 is an arc, then y1 is to the left of z1 (otherwise a1

would not be crossed by τ(vi)), but this would imply a crossing in Γi, which is impossible. If a1 is an
inter-spine segment, then y1 is on the upper spine. Since a1 cannot cross a2 in Γi then y1 must be to
the right of y2; also, since τ(vi) crosses a1, then s(vi) is to the right of y1 and hence to the right of y2.
However, by Property 6, s(vi) must be to the left of y2.

If only a2 is a replacing sub-edge, then a1 is a sub-edge also in Γi and y1 is a point of Γi; since Algorithm
LinearOrderDraw chooses z2 as a point between t(vi) and the first sub-edge endpoint that follows
t(vi) along `′, then z2 would be to the left of y1, thus avoiding the crossing. If both a1 and a2 are
replacing sub-edges, then they do not cross by Properties 7, 8, and 9.
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The case when t(vi) is to the right of z1, is symmetric to the case when t(vi) is to the left of y1.
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Figure 10: Two cases for the proof of Lemma 4.

• Both a1 and a2 are inter-spine segments. In this case, a crossing is possible only if y2 is to the
right of y1 (on `) and z2 is to the left of z1 (on `′) (see Figure 10(b)).

If t(vi) = z1, then a1 does not exist in Γi and the endvertices of the edge e that contains a1 are both in
the upper spine. Also, one of the endvertices of e is vi. By Property 6 s(vi) is to the right of y2. and
therefore to the right of y1. Notice that in no case Algorithm LinearOrderDraw moves the first
endvertex of an edge to `′ creating an inter-spine segment with an endpoint on ` that is to the left of
the moved point. This implies that this case never happens.

If t(vi) = z2, then a2 does not exist in Γi and the endvertices of the edge e that contains a2 are both in
the upper spine. Also, one of the two endvertices is vi. By Property 6 s(vi) is to the left of y1. Denote
by u the endvertex of e other than vi. By Property 10, either s(u) = y2 or y2 is to the left of s(u) in
Γi+1. If s(u) = y2 in Γi+1, then e is represented in Γi by an arc a in the bottom page of the upper
spine; the endpoints of a are y2 (to the right of y1) and s(vi) (to the left of y1). But this means that
there is a crossing in Γi between a and a1, which is impossible. If y2 is to the left of s(u) in Γi+1, then
e is represented in Γi by two arcs: a′ in the bottom page of the upper spine and a′′ in the top page of
the upper spine; the endpoints of a′ are s(vi) (to the left of y1) and y2 (to the right of y1), while the
endpoints of a′′ are y2 and s(u) (both to the right of y1). In this case there would be a crossing in Γi

between a1 and a′, which is impossible.

If t(vi) is between z1 and z2 then, by Property 6, s(vi) should be to the left of y1 and to the right of
y2, which is impossible.

Suppose now that t(vi) is to the left of z2. If only a1 is a replacing sub-edge, then a2 is a sub-edge
also in Γi and z2 is a point of Γi; since Algorithm LinearOrderDraw chooses z1 as a point between
t(vi) and the first sub-edge endpoint that follows t(vi) along `′, then z1 would be to the left of z2, thus
avoiding the crossing. If only a2 is a replacing sub-edge, then a1 is a sub-edge also in Γi and y2 is the
endpoint of an inter-spine segment a2 in Γi. Let z2 be the endpoint of a2 other than y2. Since τ(vi)
crosses a2, then z2 is to the left of z1. But in this case a1 and a2 would cross in Γi, which is impossible.
If both a1 and a2 are replacing sub-edges, then they do not cross by Properties 7, 8, and 9.

The case when t(vi) is to the right of z1 is symmetric to the case when t(vi) is to the left of z2.

• Sub-edge a1 is an arc in the bottom page of the upper spine and a2 is an inter-spine
segment. In this case a crossing is possible only if y2 is between y1 and z1 (see Figure 11(a)). By
Property 2 a1 exists also in Γi. Thus a2 must not exist in Γi (otherwise the crossing between a1 and a2

would exist in Γi). If t(vi) 6= z2, then a2 is a replacing sub-edge and y2 is the endpoint of an inter-spine
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segment a2 of Γi. Since y2 is between y1 and z1 there would be a crossing between a2 and a1 in Γi.
Hence t(vi) = z2. Note that, since a2 is an arc in the bottom page of the upper spine, y1 is not a spine
crossing but a “real” vertex vj . This means that s(vi) is to the left of y1 because otherwise Algorithm
LinearOrderDraw would have moved vj = y1 to `′ at some Step j, with j < i and arc a1 would not
exist in Γi+1. Let e be the edge that contains a2, let u be the endvertex of e that is on `. Edge e may
or may not have a hook. If e does not have a hook, then u and y2 coincide; otherwise y2 is to the left
of u in Γi+1 by Property 10. If u and y2 coincide, i.e. if e does not have a hook, then e is represented
in Γi by an arc a in the bottom page of the upper spine; the endpoints of a are y2 (between y1 and z1)
and s(vi) (to the left of y1). But this implies that there is a crossing in Γi between a and a1, which is
impossible. If y2 is to the left of s(u), i.e. e does have a hook, then e is represented in Γi by two arcs:
a′ in the bottom page of the upper spine and a′′ in the top page of the upper spine; the endpoints of a′

are s(vi) (to the left of y1) and y2 (between y1 and z1), while the endpoints of a′′ are y2 and s(u) (to
the right of z1). In this case there would be a crossing in Γi between a1 and a′, which is impossible.

a2

z2

y2

a1

y1 z1

`′

`

(a)

y1 y2 z1 z2

a2a1

`′

`

(b)

Figure 11: Two cases for the proof of Lemma 4.

• Both a1 and a2 are arcs in the bottom page of the upper spine. By Property 2 both a1 and
a2 are arcs of Γi, but this would imply that the crossing exists in Γi, which is impossible.

• Both a1 and a2 are arcs in the top page of the upper spine. In this case, a crossing is possible
only if y1, y2, z1, and z2 appear in this left-to-right order along ` (see Figure 11(b)). At least one of
the two sub-edges a1 and a2 must not exist in Γi (otherwise there would be a crossing in Γi). Let e1

and e2 be the edges that contain sub-edge a1 and a2, respectively.

Suppose first that a1 does not exist in Γi, while a2 does. In this case e1 has both endvertices on ` in
Γi while it has one endvertex on `′ in Γi+1, i.e. vi is the leftmost endvertex of e1. Since a1 is an arc
in the top page of the upper spine, then e1 is drawn in Γi either as an arc a in the top page of `, or
as two arcs a′ and a′′ such that a′ is in the bottom page of ` and a′′ is in the top page of `. In both
cases there exists an arc in Γi that is in the top page of `, that has one endpoint to the left of y2 and
that has the second endpoint between y2 and z2. This implies that there is a crossing in Γi, which is
impossible.

Suppose now that a2 does not exist in Γi, while a1 does. In this case e2 has both endvertices on `
in Γi while it has one endvertex, which is vi, on `′ in Γi+1, i.e. vi is the leftmost endvertex of e1.
Since a2 is an arc in the top page of the upper spine, then e2 is drawn in Γi either as an arc a in the
top page of `, or as two arcs a′ and a′′ such that a′ is in the bottom page of ` and a′′ is in the top
page of `. In the first case the leftmost endpoint of a is s(vi) and, due to the fact that there is no
crossing in Γi, s(vi) must be to the left of y1. Since Algorithm LinearOrderDraw chooses y2 as
a point between s(vi) and the first sub-edge endpoint that follows s(vi) along `, then y2 would be to
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the left of y1, thus avoiding the crossing. In the second case the leftmost endpoint of a′ is s(vi) and,
due to the fact that there is no crossing in Γi, the rightmost endpoint of a′, call it z′, must be to the
left of y1. The endpoints of a′′ are z′ (to the left of y1) and z2 (to the right of z1). When Algorithm
LinearOrderDraw moves vi to t(vi), arc a′ is replaced by an inter-spine segment while arc a′′ is
unchanged and coincides with a2; but this would imply that a2 and a1 do not cross.

Finally, suppose that both a1 and a2 do not exist in Γi. In this case both e1 and e2 have both
endvertices on ` in Γi while they have one endvertex, which is vi, on `′ in Γi+1, i.e. vi is the leftmost
endvertex of both e1 and e2. Since aj is an arc in the top page of the upper spine, then ej is drawn
in Γi either as an arc a′j in the top page of `, or as two arcs a′j and a′′j such that a′j is in the bottom
page of ` and a′′j is in the top page of ` (j = 1, 2). Assume first that both e1 and e2 are drawn in Γi

as arcs in the top page. The endvertex of e1 other that vi is z1, and the endvertex of e2 other than
vi is z2. Then, by construction, the endpoint y1 of a1 is chosen to be to the left of the endpoint y2

of a2, thus avoiding the crossing. Assume now that both e1 and e2 are drawn in Γi as two arcs. In
this case a1 coincides with a′′1 and a2 coincides with a′′2 . Therefore a crossing between a1 and a2 would
imply a crossing between a′′1 and a′′2 , which is impossible because Γi is planar. Finally, assume that
e1 is drawn in Γi as an arc in the top page and that e2 is drawn in Γi as two arcs (the case when e1

is drawn as two arcs and e2 as an arc in the top page is analogous). In this case, since Γi is planar,
either the endpoints of a′′2 are both to the right of both the endpoints of a′1, or they are both between
the endpoints of a′1. Arc a2 coincides with a′′2 , while the rightmost endpoint of a1 coincides with the
rightmost endpoint of a′1 and the leftmost point of a1 is a point between s(vi) and the leftmost point
of a′1. It follows that either the endpoints of a2 are both to the right of both the endpoints of a1, or
they are both between the endpoints of a1. In both cases a crossing between a1 and a2 is not possible.

From the case analysis above it follows that the assumption that two sub-edges cross in Γi+1 always leads
to a contradiction, which implies that the statement is true. ¤

Lemma 5 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G.
Algorithm LinearOrderDraw computes a 3-chain topological book embedding Γ′ of G such that the left-
to-right order of the vertices in Γ′ coincides with λ.

Proof: By Lemmas 3 and 4 the output Γ′ = Γn of Algorithm LinearOrderDraw is a planar 2-spine
drawing. Also, all vertices of G are on the spine `′ of Γ′. Thus Γ′ is a topological book embedding. The left-
to-right order of the vertices of G in Γ′ is equal to λ by construction because Algorithm LinearOrderDraw
defines the target positions of the vertices according to λ. It remains to show that every edge of Γ′ consists
of at most three x-monotone chains.

Let e = (vi, vj) be an edge of Γ0 such that vi is to the left of vj along the upper spine ` of Γ0. By
Property 1, edge e is not intersected by the trajectory of any vertex to the left of vi. It follows that for any
Step h of Algorithm LinearOrderDraw such that 0 ≤ h ≤ i− 1 e is an edge with both endvertices on the
upper spine ` and the shape of e is not changed. Also, for any Step h of Algorithm LinearOrderDraw
such that j + 1 ≤ h ≤ n− 1 both endvertices of e are on the lower spine `′, e does not have any inter-spine
segment, and the shape of e is changed if the trajectory τ(vh) crosses some of the arcs of e. Let a be an arc
of e crossed by τ(vh). By Property 3 a is in the top page of the lower spine. As also illustrated in Figure 6,
Algorithm LinearOrderDraw replaces a with an x-monotone portion consisting of three arcs such that
the leftmost endpoint and the rightmost endpoint of this portion coincide with the leftmost endpoint and
rightmost endpoint of a, respectively. It follows that the number of x-monotone chains that form edge e is
not changed by any Step h such that j + 1 ≤ h ≤ n − 1. We now prove that the number of x-monotone
chains of e created from Step i to Step j is at most three. There are three cases to consider, depending on
the drawing of e in Γ0.

If e is drawn in Γ0 as an arc in the bottom page of the spine `, then at Step i it is transformed into
an inter-spine segment and the lower sequence of e is empty (i.e. there are no arcs in the lower sequence);
see also Figures 12(a) and 12(b). New arcs are added to the lower sequence of e by Step h of Algorithm
LinearOrderDraw with i+1 ≤ h ≤ j−1 only if τ(vh) crosses the inter-spine segment or an arc of the lower
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Figure 12: (a) An edge e in the bottom page of ` in Γ0. (b) The edge after that Step i of Algorithm LinearOrder-
Draw is executed and a trajectory crossing it; the inter-spine segment is a left inter-spine segment. (c)–(e) New arcs
are added to the lower sequence of e. (f) At the end Step j, e consists of at most two x-monotone chains.
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sequence of e. By the same reasoning as above, when an arc is crossed by τ(vh) the number of x-monotone
chains of the lower sequence of e does not change. So, assume that τ(vh) crosses the inter-spine segment of
e and refer to Figures 12(b), 12(c), 12(d), and 12(e). Note that since e is in the lower page of the spine ` of
Γ0, the inter-spine segment crossed by τ(vh) is a left inter-spine segment. Algorithm LinearOrderDraw
modifies the lower sequence of e by concatenating it with an x-monotone portion consisting of two arcs and
such that the leftmost endpoint of this x-monotone portion coincides with the rightmost endpoint of the
lower sequence. It follows that the end of Step j − 1, the lower sequence of e is an x-monotone chain. Let
p be the rightmost endpoint of such x-monotone chain; see also Figures 12(e) and 12(f). At Step j, vertex
vj is moved to its target position t(vj). If t(vj) is to the right of p, then another arc is added to the lower
sequence such that the added arc shares its leftmost endpoint with the lower sequence and thus e consists of
one x-monotone chain. If otherwise t(vi) is not to the left of p, the new arc added at Step j and the lower
sequence of Step j − 1 form two x-monotone chains. Therefore, if e is drawn in Γ0 as an edge in the bottom
page of `, then e consists of at most two x-monotone chains in Γ′.
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Figure 13: (a) An edge e in the top page of ` in Γ0. (b) The edge after that Step i of Algorithm LinearOrderDraw
is executed and a trajectory crossing it; the inter-spine segment is a right inter-spine segment. (c)–(e) New arcs are
added to the lower sequence of e. (f) At the end Step j, e consists of at most two x-monotone chains.
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If e is drawn in Γ0 as an arc in the top page of the spine `, then at Step i it is transformed into an hook
and the lower sequence of e is empty; see also Figures 13(a) and 13(b). The reasoning is symmetric to the
one of the previous case, the main difference being that in this case the inter-spine segment crossed by τ(vh)
is a right inter-spine segment and that the lower sequence is increased by adding two arcs at its leftmost
end. See also Figures 13(b), 13(c), 13(d), and 13(e). Therefore, if e is drawn in Γ0 as an edge in the top
page of `, then e consists of at most two x-monotone chains in Γ′.

Finally, assume that e is drawn in Γ0 as two arcs, on in the bottom page and the other in the top page
of the spine `. By adding a dummy vertex at the spine crossing between e and `, the edge e can be regarded
as the concatenation of two edges, one in the bottom page of ` and the other in the top page of `. As
illustrated in Figure 14, by combining the previous arguments, it is straightforward to conclude that at the
end of Step j edge e consists of at most three x-monotone chains. Therefore, if e is drawn in Γ0 as an edge
that crosses the spine, then e consists of at most three x-monotone chains in Γ′. ¤

Theorem 5 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G.
There exists an O(n2 log n)-time algorithm that computes a 3-chain topological book embedding Γ′ of G such
that the left-to-right order of the vertices in Γ′ coincides with λ.

Proof: By Lemma 5, the drawing Γ′ computed by Algorithm LinearOrderDraw is a 3-chain topological
book embedding Γ′ of G such that the left-to-right order of the vertices along the spine of Γ′ is λ.

As for the time complexity, computing a monotone topological book embedding of the input graph can
be done in O(n) time by Theorem 4; also computing the target positions of the vertices along `′ can be done
in O(n) time.

At Step i (0 ≤ i ≤ n− 1), Algorithm LinearOrderDraw performs the following tasks: (1) It finds the
sub-edges crossed by the trajectory τ(vi). (2) It modifies the shape of these sub-edges. (3) It modifies the
shape of the edges incident to vi.

We can use an AVL-tree for each of the x-monotone chains of each edge. Since each edge has at most
three x-monotone chains and G is planar, we have O(n) such AVL-trees. Let T be an AVL-tree associated
with an x-monotone chain π of an edge. Each node of T stores an arc a of π; a is represented by the
x-coordinates of its endpoints and by a flag that describes whether a is in the top or in the bottom page
of `′. Since at each step of Algorithm LinearOrderDraw a constant number of arcs can be added to an
x-monotone chain and the total number of steps is O(n), the number of nodes of T is O(n).

Task (1) can be executed as follows. By performing a search operation on T , one can find in O(log n)
time the arc of π that is intersected by τ(vi), if such an arc exists. Also, deciding if an inter-spine segment is
crossed by τ(vi) can be done in O(1) time by comparing the coordinates of the endpoints of the inter-spine
segment with the coordinates of s(vi) and t(vi). Therefore, finding all the sub-edges of an edge crossed by
τ(vi) can be done in O(log n) time. Since we have O(n) edges, the overall time complexity of Task (1) is
O(n log n).

Task (2) modifies the shape of the edges found in Task (1). For each edge, the sub-edges intersected by
τ(vi) are replaced by a constant number of sub-edges. This implies computing the endpoints of the new
sub-edges, which can be done in O(1) time for each sub-edge, and to update the AVL-trees associated with
the x-monotone chains that are changed. Since each x-monotone chain can be crossed by τ(vi) at most
once and each crossing requires a constant number of updates in the associated AVL-tree, Task (2) can be
executed in O(log n) time per edge, i.e. in O(n log n) time in total.

Also Task (3) requires to compute the endpoints of new sub-edges, which can be done in O(1) time for
each sub-edge and it may require to update an AVL-tree per edge (this happens when the inter-spine segment
and the upper sequence of an edge are replaced by an arc in the lower sequence). Thus, also Task (3) can
be executed in O(n log n) time. It follows that Step i can be executed in O(n log n). Since there are n such
steps, Algorithm LinearOrderDraw can be executed in O(n2 log n) time. ¤
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Figure 14: (a) An edge e that crosses spine of Γ0. (b) The edge after Step i Algorithm LinearOrderDraw. (c)–(e)
New arcs are added to the lower sequence of e. (f) At the end Step j, e consists of at most three x-monotone chains.
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7 Upper Bounds on the Curve Complexity of k-colored Point-set
Embeddings

Let G be a k-colored planar graph with n vertices such that 2 ≤ k ≤ n and let S be a k-colored set of
points compatible with G. In this section we first show how to compute a k-colored point-set embedding of
G on S having curve complexity at most 3n + 2 and then consider the special case in which there are k − 1
colors each associated with exactly one vertex in G and the remaining color is associated with all remaining
vertices of G.

7.1 Computing k-colored Point-set Embeddings

Let σ be the k-colored sequence induced by S. Based on Theorem 3, we prove an upper bound on the
curve complexity of a k-colored point-set embedding of G on S by computing an external augmenting k-
colored Hamiltonian path H′′ of G consistent with σ and inducing a bounded number of division vertices
per edge. To this aim, we consider the linear order given by σ and exploit Algorithm LinearOrderDraw
to compute H′′. As it will explained later, the number of division vertices per edge depends on the number
of spine crossings. We start with two lemmas that show how to simplify the shape of the edges computed
by Algorithm LinearOrderDraw in order to reduce this number of spine crossings.

The interval of an arc of a topological book embedding is the open interval of the spine between the
leftmost endpoint and the rightmost endpoint of the arc.

Lemma 6 Let G be a planar graph with n vertices and let Γ′ be the 3-chain topological book embedding
computed by Algorithm LinearOrderDraw. Γ′ can be transformed into a new 3-chain topological book
embedding Γ′′ of G such that: (i) the left-to-right order of the vertices along the spine is the same as in Γ′

and (ii) every x-monotone chain crosses the spine at most n− 1 times.

Proof: Assume first that for every arc of Γ′ the interval of the arc contains at least a vertex of G. Since
there are n vertices, every x-monotone chain π of every edge of Γ′ consists of at most n arcs. Since a spine
crossing of an x-monotone chain is defined by two consecutive arcs, π can cross the spine at most n−1 times
and the proof is completed by saying that Γ′′ coincides with Γ′. So, assume otherwise that there is at least
one arc a of Γ′ such that the interval of a does not contain a vertex of G; we show how to modify the shape
of some of the edges of Γ′ in order to construct Γ′′.

We first observe that arc a belongs to the top page of Γ′. Namely, by construction, every arc that is
drawn in the bottom page of `′ by Algorithm LinearOrderDraw is such that its interval contains at least
one vertex of G (see also Section 6.1). This implies that the interval of a cannot contain both endpoints of
arcs in the bottom page of Γ′ or else the interval of a would also contain a vertex of G. If the interval of a
contains one endpoint u of an arc a′ of the bottom page, then it must contain both endpoints of the arc a′′

that shares the endpoint u with a′. Indeed, since Γ′ is a topological book embedding, two arcs that share
an endpoint are in opposite pages; hence, a′′ is in the top page of Γ′ and, by the planarity of Γ′, it must
have both endpoints in the interval of a. Also, a′′ cannot have any vertex of G in its interval, or else also a
would have a vertex in its interval. It follows that either the interval of a does not contain any endpoint of
any arc of Γ′ or there exist arcs of the top page that have both endpoints in the interval of a and that do
not contain any vertex in their interval.

By iterating this argument we conclude that if there is at least one arc of Γ′ whose interval does not
contain a vertex of G, it must exists at least one arc of the top page of Γ′ such that its interval does not
contain any endpoints. We say that such an arc is good for simplification. Let π be an x-monotone chain of
an edge e of Γ′ such that π consists of at least two arcs (i.e. π crosses the spine). Assume that π contains
at least one arc good for simplification and let a be one of such arcs. Let y be the left endpoint of a and z
be the right endpoint of a. Note that since π consists of at least two arcs, at least one of the endpoints of a
cannot be an endpoint of π.

We consider first the case that neither y nor z are endpoints of π. Let a1 be the arc immediately preceding
a along π, i.e. let a1 be the arc of π whose rightmost endpoint is y; denote as y1 the other endpoint of a1.
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Similarly, let z and z2 be the endpoints of the arc a2 that immediately follows a along π. Recall that by
definition of 3-chain topological book embedding consecutive arcs are in opposite pages and hence a1 and
a2 are in the bottom page. Chain π is modified by deleting arcs a1, a, and a2 and by inserting a single arc
a′ such that the endpoints of a′ are y1 and z2 and a′ is in the bottom page. This procedure is illustrated in
Figures 15(a) and 15(b). Note also that a′ is in the page opposite to that of the arc preceding a1 and of the
arc following a2 in Γ′.

If only y (only z) is an endpoint of π, let a1 be the arc of π that follows (precedes) a, i.e. let a1 be the
arc of π whose leftmost (rightmost) endpoint is y; denote as z1 (y1) the other endpoint of a1. Chain π is
modified by deleting arcs a1 and a and by inserting a single arc a′ such that the endpoints of a′ are y and
z1 (y1 and z) and a′ is in the bottom page. This procedure is illustrated in Figures 15(c), 15(d), 15(e), and
15(f). Also in this case, arc a′ is in the opposite page of the arc following (preceding) a1 in Γ′.

Let Γ̂ be the drawing after a has been removed by the simplification procedure described above. Γ̂ differs
from Γ′ only for the shape of edge e. Let π′ be the x-monotone portion of Γ′ that is replaced in Γ̂ by arc a′

(π′ is formed by arc a and by one or two of its neighboring arcs depending on the cases described above).
Since the endpoints of a′ coincide with the endpoints of π′ and since an arc is clearly an x-monotone curve,
it follows that the number of x-monotone chains that form e is the same in Γ′ and in Γ̂.

We now show that replacing π′ with arc a′ does not introduce edge crossings. Consider first the case that
π′ is formed by three arcs, i.e. neither y nor z are endpoints of π. Arcs a1, a, and a2 are replaced by a single
arc a′ in the bottom page. We show that the replacement does not create any crossing. If a′ crossed another
arc, this arc should be in the bottom page. Since a is good for simplification, no arcs have endpoints in the
interval of a. Also, by the planarity of Γ′, we have that an arc in the bottom page of Γ′ has both endpoints
either to the left of y1, or to the right of z2, or it has one endpoint to the left of y1 and the other one to the
right of z2. It follows that arc a′ does not cross any arc in its page. The proof that Γ̂ is a planar drawing in
the case that π′ consists of two arcs is analogous.

From the arguments above it follows that Γ̂ is a 3-chain topological book embedding of G; also, since the
coordinates of the vertices of G have not been changed when transforming Γ′ into Γ̂, the left-to-right order of
the vertices along the spine is the same in the two drawings. We now look for arcs good for simplification in
Γ̂. If there are no such arcs, we say that the wanted Γ′′ coincides with Γ̂. If otherwise Γ̂ has an arc good for
simplification, we apply the above described simplification procedure to this arc and obtain a new 3-chain
topological book embedding of G that maintains the left-to-right order of the vertices along the spine as
in Γ̂ and hence as in Γ′. The procedure is then repeated until a 3-chain topological book embedding of G,
that we call Γ′′, is computed such that Γ′′ does not have an arc good for simplification and it maintains the
same left-to-right order of the vertices along the spine as in Γ′. Observe that the interval of every arc of Γ′′

contains at least one vertex of G because otherwise, by the argument at the beginning of this proof, there
would be at least one arc good for simplification in Γ′′. It follows that every x-monotone chain of Γ′′ crosses
the spine at most n− 1 times and that Γ′′ satisfies the statement. ¤

The procedure described in the proof of Lemma 6 will be called simplification procedure in the remainder.
Also we call the drawing computed by the simplification procedure a simplified 3-chain topological book
embedding of G. The next lemma discusses the time complexity of the simplification procedure and will be
used to prove an upper bound on the time complexity of computing k-colored point-set embeddings.

Lemma 7 Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. There
exists an O(n2 log n)-time algorithm that computes a simplified 3-chain topological book embedding Γ′′ of G
such that the left-to-right order of the vertices in Γ′′ coincides with λ.

Proof: We use the same definitions and notation as in the proof of Lemma 6. By Theorem 5, one can
compute in O(n2 log n) time a 3-chain topological book embedding Γ′ of G where the left-to-right order of
the vertices along the spine is λ. By using Lemma 6, we can compute a simplified 3-chain topological book
embedding Γ′′ of G such that the left-to-right order of the vertices in Γ′′ is the same as in Γ′. As explained
in the proof of Lemma 6, after an arc of Γ′ that is good for simplification is processed a new drawing if
G is constructed that can have some other arc good for simplification. We say that an arc is candidate
for simplification if it is good for simplification or if it will become good for simplification at some step of
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Figure 15: Illustration of the simplification procedure described in the proof of Lemma 5.

the simplification procedure. The proof of the upper bound on the time complexity of the simplification
procedure relies on a characterization of those arcs that are candidate for simplification.

Firstly, observe that if an arc is candidate for simplification then it belongs to an x-monotone chain of
Γ′ having at least two arcs; indeed, by definition, an arc good for simplification belongs to an x-monotone
chain of at least two arcs. Secondly, as already discussed in the proof of Lemma 6, no arc in the bottom page
of Γ′ is good for simplification. Furthermore, since any step of the simplification procedure neither changes
the coordinates of the vertices in the drawing nor it changes the coordinates of those spine crossings that
are not removed, it follows that arc in the bottom page of Γ′ will never be good for simplification at any of
the steps of the simplification procedure. By the same reasoning, an arc in the top page of the upper page
of Γ′ whose interval contains some vertex of G will never be good for simplification.

Thirdly, let a be an arc in the top page of Γ′ such that a is good for simplification and let a′ be another
arc in the top page of Γ′ such that the interval of a′ contains only the endpoints of a. After the simplification
procedure is applied to arc a, we have that a′ is still an arc in the resulting drawing (the simplification
procedure only deletes a and one or two arcs adjacent to a and belonging to the bottom page). Also, the
interval of a′ does not contain any other endpoint of any other arcs, because this interval only contained
the endpoints of a and a has been replaced by an arc in the bottom page whose endpoints are out of the
interval of a′. By iterating this reasoning, we can conclude that if an arc of the top page of Γ′ is such that
its interval only contains endpoints that correspond to spine crossings, then this arc will become good for
simplification and thus it is candidate for simplification.

From the observations above it follows that an arc is candidate for simplification if and only if it satisfies
the following three conditions: (i) it belongs to an x-monotone chain of Γ′ having at least two arcs, (ii)
it belongs to the upper page of Γ′, and (iii) its interval does not contains any vertex of G. By using this
characterization, the simplification algorithm can be implemented as follows.

As described in the proof of Theorem 5, we can assume to have an AVL tree for each x-monotone chain
of Γ′ such that each node of the AVL tree stores an arc of the chain. We construct two arrays, one storing all
vertices of Γ′ and the other one storing all endpoints (vertices and spine crossings); both arrays are sorted
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according to the left-to-right order of their elements along the spine of Γ′. We call A the array with only the
vertices of Γ′ and A′ the array with the vertices and the spine crossings of Γ′. As observed in the proof of
Theorem 5, the total number of arcs stored in the AVL trees of Γ′ is O(n2) and thus the two arrays A and
A′ can be constructed in O(n2 log n) time.

We now visit those arcs that are in the top page and are stored in those AVL trees having more than one
element (an AVL tree having only one element corresponds to an x-monotone chain of a single arc). Let a
be the currently visited arc; by performing a binary search in A, we determine in O(log n) time whether a is
candidate for simplification. In the affirmative case, we equip the two elements of A′ that are the leftmost
endpoint and the rightmost endpoint of a with a reference to a. Since there are O(n2) arcs in the top page
of Γ′, it follows that identifying the arcs candidate for simplification and equipping the elements of A′ with
pointers to them can be done in O(n2 log n) time.

We now visit all endpoints of Γ′ from left-to-right by scanning A′. An arc a that is candidate for
simplification is processed only when its rightmost endpoint is encountered. This guarantees that all other
candidate arcs whose endpoints are in the interval of a have been already processed and that a is now good
for simplification. Processing a consists of identifying one or two arcs that precede and follow a in Γ′, deleting
both a and such arcs, and replacing the (two or three) deleted arcs with a single arc in the bottom page. All
these steps can be executed in O(log n) time by accessing and updating the AVL tree of a.

It follows that the overall time complexity of the simplification procedure of Lemma 6 can be done in
O(n2 log n) time. ¤

Lemma 8 Let G be an n-colored planar graph with n vertices and let σ be an n-colored sequence compatible
with G. G admits an external augmenting n-colored Hamiltonian path consistent with σ inducing at most
3n− 3 flat division vertices and at most 2 pointy division vertices per edge.

Proof: The n-colored sequence σ defines a linear ordering λ = v0, v1, . . . , vn−1 of the vertices of G. By using
Theorem 5 and Lemma 6 we compute a 3-chain topological book embedding Γ of G such that the linear
ordering of the vertices along the spine is λ and each x-monotone chain crosses the spine at most n−1 times.

We then replace each spine crossing of Γ with a dummy vertex. Let λ′ = w0, w1, . . . , wn′−1 be the left-
to-right order of the vertices (dummy or not) along the spine of Γ (n′ ≥ n). Connect wi to wi+1 with a
straight-line segment if wi and wi+1 are not adjacent in G (0 ≤ i ≤ n′− 2). The resulting planar drawing Γ′

describes an augmentation of G with dummy vertices and edges that admits an external Hamiltonian path
visiting all real vertices according to σ. Therefore, the path H from w0 to wn′−1 is an external augmenting
n-colored Hamiltonian path of G consistent with σ.

It remains to show that this path induces at most 3n − 3 flat division vertices and at most 2 pointy
division vertices per edge. Let e be an edge of Γ and assume that e consists of three x-monotone chains.
The number of division vertices along e is the number of spine crossings of e in Γ. By the monotonicity, each
spine crossing of an x-monotone chain of e defines a flat division vertex of e. Indeed, a spine crossing wi of
an x-monotone chain π is the common endpoint of two consecutive arcs a1 and a2 that share wi and form
an x-monotone portion; this implies that the two endpoints of a1 and a2 different form wi are encountered
one before and the other after wi along the spine of Γ′. Since the order of the vertices along H is the same
as the left-to-right order of the vertices Γ′, it follows that wi is a flat division vertex.

Let wj be a spine crossing defined by two consecutive x-monotone chains of e. wj is the common endpoint
of two consecutive arcs such that a1 and a2 that share wj and do not form an x-monotone portion. This
implies that the two endpoints of a1 and a2 different form wj are encountered both before or both after wj

along the spine of Γ′. Hence wj is a pointy division vertex.
Since each x-monotone chain of Γ has at most n − 1 spine crossings and each edge has at most three

x-monotone chains, it follows that H induces at most 3n − 3 flat division vertices and at most 2 pointy
division vertices. ¤

By using Lemma 8 and Theorem 3, we are in the position of proving the following upper bound on the
curve complexity of k-colored point-set embeddings.
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Theorem 6 Let G be a k-colored planar graph with n vertices such that 2 ≤ k ≤ n and let S be a k-colored set
of points compatible with G. There exists an O(n2 log n)-time algorithm that computes a k-colored point-set
embedding of G on S having curve complexity at most 3n + 2.

Proof: Assume first that k = n and let σ be the n-colored sequence induced by S. The algorithm is as
follows.

1. Compute the n-colored sequence σ induced by S by sorting the points according to their x-coordinates.
Let λ be the linear ordering of the vertices of G defined by σ.

2. By using Lemma 7, compute a simplified 3-chain topological book embedding Γ′′ of G such that the
left-to-right order of the vertices of G along the spine is λ .

3. By means of Γ′′ and by using Lemma 8, compute an external augmenting n-colored Hamiltonian path
consistent with σ inducing at most df = 3n−3 flat division vertices and at most dp = 2 pointy division
vertices per edge.

4. By using Theorem 3, construct an n-colored point-set embedding on S such that the maximum number
of bends along each edge is df + 2dp + 1 = 3n + 2 by using .

If k < n, then one can arbitrarily map each vertex of color i (0 ≤ i ≤ k−1) to a point of Si (thus defining
an n-coloring of G and S) and then use the drawing algorithm just described.

Step 1 can be executed in O(n log n) time and Step 2 can be executed in O(n2 log n) time (see Lemma 7).
Step 3 can be performed as follows. Refer to the data structures in the proof of Lemma 7) and to the

technique illustrated in Lemma 8. Visit each arc in the top page of the AVL trees associated with the x-
monotone chains of Γ′′. Let a be the currently visited arc and let A′ be the array that stores all vertices and
spine crossings of Γ′′, sorted according to their left-to-right order along the spine. By performing a binary
search in the array A′, we can determine in O(log n) time whether the endpoints of a are consecutive along
the spine. In the affirmative case, we equip the two elements of A′ that are the leftmost endpoint and the
rightmost endpoint of a with a reference to a. Since there are O(n2) arcs Γ′′, this step can be executed in
O(n2 log n) time. We now construct the external augmenting n-colored Hamiltonian path by scanning the
O(n2) elements of A′ and by connecting with an edge every pair of elements that are not adjacent in Γ′′. It
follows that the overall time complexity of Step 3 is O(n2 log n).

Step 4 is based on the drawing technique of Kaufmann and Wiese [16], that is recalled in Theorem 3.
In [16] it is proved that this technique can be executed in linear time for an embedded planar graph with a
given external hamiltonian path. Observe that the graph obtained by augmenting G with the edges and the
vertices of the external augmenting n-colored Hamiltonian path computed by the previous steps is a planar
graph with O(n2) vertices and has an external hamiltonian path. It follows that Step 4 can be executed in
O(n2) time.

We can therefore conclude that a k-colored point-set embedding of G on S having curve complexity at
most 3n + 2 can be computed in O(n2 log n) time. ¤

7.2 Special Colorings

Since by Theorem 1 k-colored point-set embeddings can have a linear number of edges each requiring a linear
number of bends, the upper bound on the curve complexity expressed by Theorem 6 is asymptotically tight.
However, there can be special colorings of the input graph that guarantee a curve complexity which depends
on k and it does not depend on n.

Let G be a planar graph with n vertices and let λ be a linear ordering of the vertices of G. We
present a lemma that studies the relationship between a drawing of an edge in the monotone topological
book embedding of G computed by Step (−1) of Algorithm LinearOrderDraw and a simplified 3-chain
topological book embedding of G that has the left-to-right ordering of λ. In the statement we say that two
vertices u and v of G are consecutive along the spine to mean that there is no vertex of G drawn in the open
interval defined by u and v in the spine; clearly, such interval may contain spine crossings.
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Lemma 9 Let Γ be a monotone topological book embedding of G computed by Step (−1) of Algorithm Lin-
earOrderDraw and let Γ′ be a simplified simplified 3-chain topological book embedding of G computed by
the simplification procedure. Let u and v be two vertices of G that are consecutive along the spine of Γ and
are consecutive along the the spine of Γ′. Let e be an edge of G such that the drawing of e in Γ does not cross
the spine at a point between u and v. Then, also the drawing of e in Γ′ does not cross the spine between u
and v.

Proof: Consider the drawing of e in Γ and let vi, vj be the endvertices of e with vi left of vj . Edge e in Γ′

consists of at most three x-monotone chains. More precisely, if the drawing of e in Γ does not cross the spine
then, as explained in the proof of Lemma 5, its drawing in Γ′ consists of at most two x-monotone chains else
it can have also a third x-monotone chain.

Let π be an x-monotone chain of a 3-chain topological book embedding. The top interval of π is the union
of all intervals of the arcs of π that are in the bottom page. Similarly, the bottom interval of π is the union
of all intervals of the arcs of π that are in the top page. We shall study the properties of the bottom and top
intervals of the x-monotone chains forming e in the drawing computed by Algorithm LinearOrderDraw
and then take into account the simplification procedure. Refer also to the notation of Section 6.1.

Assume first that e does not cross the spine in Γ. We will consider next the case that e crosses the spine
of Γ. We can partition the vertices of Γ different from vi and from vj into three sets: The backward vertices
are the vertices to the left of vi along teh spine of Γ; the in-between vertices are the vertices in the open
interval between vi and vj ; the forward vertices are to the right of vj . We say that two vertices have the
same type if they belong to the same partition set and we say that they have different type if they do not
belong to the same partition set.

From Step 0 to Step (i − 1), Algorithm LinearOrderDraw processes the backward vertices and the
lower sequence of e does not exist. From Step i to Step (j − 1) the in-between vertices are moved to their
target positions and the lower sequence of e consists of at most one x-monotone chain that we call π1. During
these steps, when the trajectory of an in-between vertex intersects π1, the x-monotone chain is modified by
creating an arc a in the bottom page. The interval of a contains the target position of the moved in-between
vertex plus, possibly, some spine crossings. As a result, at the end of Step (j − 1) the top interval of π1

contains only in-between vertices and spine crossings, while the bottom interval only contains backward
vertices, target positions of forward vertices, and spine crossings. At Step j, vertex vj is moved to its target
position; either a second x-monotone chain, that we call π2, is created or a new arc is added to π1, depending
on the coordinates of the target position of vj . From Step j to Step (n−1), Algorithm LinearOrderDraw
processes the forward vertices by moving them to their target positions. If the trajectory of a forward vertex
intersects π1 or π2 (or both), the intersected x-monotone chain is modified by creating an arc in the bottom
page whose interval contains the target position of the moved forward vertex plus, possibly, some spine
crossings. As a result, at the end of Step (n − 1) the top interval of π1 contains only in-between vertices,
forward vertices, and spine crossings, while the bottom interval only contains backward vertices and spine
crossings. Similarly, the top interval of π2 contains only forward vertices and spine crossings while its bottom
interval contains only backward vertices, in-between vertices, and spine crossings. Hence, the vertices that
are in the top interval of πh (h = 1, 2) and those that are in the bottom interval of πh have different type.

Consider now the the simplified 3-chain monotone topological book embedding Γ′. As explained in the
proof of Lemma 6, a simplified 3-chain topological book embedding is such that the interval of each arc
contains at least one vertex of G. Also, a spine crossing of an x-monotone chain of Γ′ is a point shared by
two arcs belonging to opposite pages. From the discussion above, we have that the intervals of these two arcs
contain vertices that have different type. Therefore, an x-monotone chain of Γ′ can have a spine crossing
between consecutive vertices only if these two vertices have different type.

Now notice that e does not cross the spine of Γ between u and v. This implies that u and v either have
the same type or at least one of them is an endvertex of e; in no case however they can have different type.
Since u and v are consecutive along the spine of Γ′ it follows that e cannot cross the spine of Γ′ between u
and v.

It remains to study the case that e crosses the spine of Γ. In this case, the vertices of Γ that are not
the endvertices of e are partitioned into four sets: The backward vertices are the vertices to the left of vi;
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the in-between vertices of type A are the vertices in the open interval between vi and the spine crossing of e;
the in-between vertices of type B are the vertices in the open interval between the spine crossing and vj ; the
forward vertices are those to the right of vj .

The execution of the n Steps of Algorithm LinearOrderDraw can give rise to a drawing Γn where e
consists of three x-monotone chains. By using a similar analysis as the one of the previous case, one can show
that after the simplification procedure is applied, an x-monotone chain can have a spine crossing between
consecutive vertices only if these two vertices have different type and conclude that also in this case e cannot
cross the spine of Γ′ between u and v. ¤

We are in the position of proving the main result of this section.

Theorem 7 Let G be a k-colored planar graph with n vertices such that: (i) 1 ≤ k < n; (ii) |Vi| = 1 for
every 0 ≤ i ≤ k − 2; (iii) |Vk−1| = n − k + 1. Let S be a k-colored set of points compatible with G. There
exists an O(n2 log n)-time algorithm that computes a k-colored point-set embedding of G on S having curve
complexity at most 9k − 1.

Proof: Since k < n, we choose a mapping of the n − k + 1 vertices of Vk−1 to the points of Sk−1, thus
obtaining an n-coloring of G and S. Let σ be the n-colored sequence induced by S and let λ be the linear
ordering of the vertices of G defined by σ. Let Γ be the monotone topological book embedding computed at
Step (−1) of Algorithm LinearOrderDraw and let Γ′ be a simplified 3-chain topological book embedding
of G such that the left-to-right order of the vertices along the spine of Γ′ is λ (see Lemma 7).

By Lemma 8, G admits an augmenting n-colored Hamiltonian path consistent with σ and inducing at
most df = 3n− 3 flat division vertices and at most dp = 2 pointy division vertices per edge. We show that if
the mapping between the n− k + 1 vertices of Vk−1 and the points of Sk−1 is chosen in such a way that the
order of the vertices of Vk−1 along ` is also maintained along `′, then each x-monotone chain of Γ′ crosses
the spine at most 3k − 2 times. By a reasoning analogous to that of Lemma 8, we can conclude that G
admits an augmenting n-colored Hamiltonian path consistent with σ and inducing at most df = 9k − 6 flat
division vertices per edge and at most dp = 2 pointy division vertices per edge. Hence, by Theorem 3, G
admits an n-colored point-set embedding on S such that the maximum number of bends along each edge is
df +2dp +1 = 9k− 1. Clearly, such an n-colored point-set embedding of G on S is also a k-colored point-set
embedding of G on S.

Observe that, as described in the proof of Lemma 6, an x-monotone chain of an edge e of Γ′ can cross the
spine only once between each pair of consecutive vertices. Also, by Lemma 9, there is not a spine crossing
if these two consecutive vertices are also consecutive along ` and e does not cross ` between them. In order
to compute an upper bound on the number of spine crossings of an x-monotone chain of Γ′, we count the
number of consecutive pairs of vertices along the spine of Γ′ for which Lemma 9 does not hold. Denote by
c1 the maximum number of pairs of vertices that can be consecutive in `′ and not in `; denote by c2 the
maximum number of pairs of vertices u and v such that u and v are consecutive both in ` and in `′ and e
has a spine crossing between u and v in Γ. The wanted upper bound is c1 + c2.

Since Γ is a monotone topological book embedding, c2 = 1. As for c1, we observe that the order of the
vertices along `′ is the same as the order along ` except for those vertices of colors 0, 1, . . . , k− 2. Let v be a
vertex having color different form k−1 and assume that v is followed and preceded along ` by vertices u and
w; also assume that v is followed and preceded by vertices u′ and w′ along `′. Note that the vertices forming
pairs < u′, v > and < v, w′ > are consecutive in Γ′ but not in Γ; also the vertices of the pair < u, w >
can be consecutive in Γ′ but not in Γ. It follows that for every vertex having color different form k − 1,
an x-monotone chain of Γ′ can cross the spine at most 3 times, and therefore c1 = 3k − 3. Since an edge
of Γ′ can consist of at most three x-monotone chains, it follows that G admits an augmenting n-colored
Hamiltonian path consistent with σ and inducing at most df = 9k − 6 flat division vertices per edge and at
most dp = 2 pointy division vertices per edge.

The stated time complexity can be proved by the same analysis in the proof of Theorem 6. ¤
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8 Conclusions and Open Problems

This paper has presented a unified approach to the problem of computing k-colored point-set embeddings
of k-colored planar graphs such that the curve complexity of the drawing is optimal. The described results
extend and improve known results described in the literature. The used techniques rely on the study of
topological properties of planar graphs and on an equivalence relation between computing a k-colored point-
set embedding and finding a suitable Hamiltonian path in a graph.

We conclude with some open problems about k-colored point-set embeddings that could be the subject
of further research.

1. Reduce the gap between upper and lower bound for the curve complexity of k-colored point-set em-
beddings.

2. Theorems 1 and 2 show that the total number of bends of k-colored point-set embeddability problem
can be quadratic for 2 ≤ k ≤ n. It would be interesting to study whether a subquadratic upper can
be obtained in the case that the number of points for each color i is cni, where c is a constant larger
than 1 and ni is the number of vertices of color i.

3. What is the curve complexity of k-colored point-set embeddings of k-colored trees for small values of
k? Notice that the described lower bounds use bi-connected graphs.
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Appendix

A1. 2-colored Diamond Graph and Lower Bound

A 2-colored diamond graph is a 2-colored graph as the one depicted in Figure 2(a). More formally, let n ≥ 16
and let n′ = n−n mod 16 = 16h, for a positive integer h; a 2-colored diamond graph Gn = (V, E) is defined
as follows:

• V = V0 ∪ V1 ∪ V2

• V0 = {vi | 0 ≤ i ≤ n′
2 +

⌈
n mod 16

2

⌉
}

• V1 = {ui | 0 ≤ i ≤ n′
4 +

⌊
n mod 16

2

⌋
}

• V2 = {wi | 0 ≤ i ≤ n′
4 }

• E = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4

• E0 = {(vi, vi+1) | 0 ≤ i ≤ n′
2 +

⌈
n mod 16

2

⌉
− 1}

• E1 = {(ui, ui+1) | 0 ≤ i ≤ n′
2 +

⌊
n mod 16

2

⌋
− 1}

• E2 = {(wi, wi+1), (wi+1, wi+2), (wi+2, wi+3), (wi+3, wi) | 0 ≤ i ≤ 4h− 1,
i mod 4 = 0}

• E3 = {(wi+1, wi+4), (wi+3, wi+4), (wi+1, wi+6), (wi+3, wi+6) | 0 ≤ i ≤ 4h− 5,
i mod 4 = 0}

• E4 = {(w4h−1, vn′
2 +dn mod 16

2 e), (w4h−3, v0), (w0, u0), (w2, un′
4 +bn mod 16

2 c)}

Let S be an alternating bi-colored sequence compatible with Gn and let p0, . . . , pn−1 be the points of S
ordered according to their x-coordinates. Let Γn be a 2-colored point-set embedding of Gn on S where zi

is the vertex of Gn that is mapped to pi. In contrary to the k-colored case (3 ≤ k ≤ n), zi and zi+1 can
be adjacent in Γn. This can happen at most twice since only the vertices w4h−3 and w4h−1 are adjacent to
a vertice of set V0. Connect in Γn zi and zi+1 with a straight-line segment (i = 0, . . . , n − 2); the obtained
path is called bi-colored path Π on Γn.

Lemma 10 Let Gn be a 2-colored diamond graph and let S be an alternating bi-colored sequence compatible
with Gn. Let Γn be a 2-colored point-set embedding of Gn on S and let Π be the bi-colored path on Γn. Π
crosses at least n′

8 − 1 edges of Γn, where n′ = n− (n mod 16); also, Π crosses each of these edges at least
n′
8 times.

Proof: We will use the definition of a cycle C ∈ Gn that separates a subset of vertices from another subset
of vertices which was already explained in the proof of Lemma 2. In every planar drawing of Gn each of
the h cycles defined by the edges in set E2 separates all vertices in V0 from all vertices in V1. In the same
way, each of the h − 1 cycles defined by the edges in set E3 separates all vertices in V0 from all vertices
in V1. Let n′′ = n − n′ = n mod 16. As we have n′

4 + bn′′
2 c vertices in the interior region defined by the

cycles C and n′
4 + dn′′

2 e in the exterior region defined by these cycles, each cycle is crossed n′
2 + n′′ − 1

times. Since each cycle has four edges, we have that at least 2h − 1 = n′
8 − 1 edges are crossed at least

dn′
8 + n′′

4 − 1
4e ≥ d 16h

8 − 1
4e = d2h− 1

4e = 2h = n′
8 times. ¤

By means of Lemma 1 and Lemma 10 the following lower bound for 2-colored point-set embeddings can
be proved.
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Theorem 2 For every n ≥ 16 there exists a 2-colored planar graph Gn with n vertices and a 2-colored set
of points S compatible with Gn such that any 2-colored point-set embedding of Gn on S has at least n′

8 − 1
edges each having at least n′

8 − 1 bends, where n′ = n− (n mod 16).

Proof: Given any n ≥ 16 construct a 2-colored diamond graph Gn. Let S be an alternating bi-colored
sequence compatible with Gn. Let Γn be a 2-colored point-set embedding of Gn on S and let Π be the
bi-colored path on Γn.

By Lemma 10 there are at least n′
8 − 1 edges of Γn that are crossed by Π at least n′

8 times. By Lemma 1
each of these edges has at least n′

8 − 1 bends. ¤
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